請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84809
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳志毅(Jyh-Yih Chen) | |
dc.contributor.author | Po-Hsien Hsu | en |
dc.contributor.author | 許博咸 | zh_TW |
dc.date.accessioned | 2023-03-19T22:26:46Z | - |
dc.date.copyright | 2022-09-05 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-31 | |
dc.identifier.citation | (1) Verma, T.; Aggarwal, A.; Singh, S.; Sharma, S.; Sarma, S. J. Current challenges and advancements towards discovery and resistance of antibiotics. Journal of Molecular Structure 2022, 1248, 131380. (2) Michael, C. A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Frontiers in Public Health 2014, 2, Review. (3) Spellberg, B.; Gilbert, D. N. The Future of Antibiotics and Resistance: A Tribute to a Career of Leadership by John Bartlett. Clinical Infectious Diseases 2014, 59 (suppl_2), S71-S75. (4) Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environmental Science and Pollution Research 2022, 29 (8), 11054-11075. (5) Ventola, C. L. The antibiotic resistance crisis: part 1: causes and threats. P t 2015, 40 (4), 277-283. (6) Murray, C. J. L.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022, 399 (10325), 629-655. (7) Prasad Neha, K.; Seiple Ian, B.; Cirz Ryan, T.; Rosenberg Oren, S. Leaks in the Pipeline: a Failure Analysis of Gram-Negative Antibiotic Development from 2010 to 2020. Antimicrobial Agents and Chemotherapy 2022, 66 (5), e00054-00022. (8) Pendleton, J. N.; Gorman, S. P.; Gilmore, B. F. Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-infective Therapy 2013, 11 (3), 297-308. (9) Gonzalez-Ferrer, S.; Peñaloza Hernán, F.; Budnick James, A.; Bain William, G.; Nordstrom Hayley, R.; Lee Janet, S.; Van Tyne, D.; Ottemann Karen, M. Finding Order in the Chaos: Outstanding Questions in Klebsiella pneumoniae Pathogenesis. Infection and Immunity 2021, 89 (4), e00693-00620. (10) Stewart, A. C.; Bethel, C. R.; VanPelt, J.; Bergstrom, A.; Cheng, Z.; Miller, C. G.; Williams, C.; Poth, R.; Morris, M.; Lahey, O.; et al. Clinical Variants of New Delhi Metallo-β-Lactamase Are Evolving To Overcome Zinc Scarcity. ACS Infectious Diseases 2017, 3 (12), 927-940. (11) Joseph, L.; Merciecca, T.; Forestier, C.; Balestrino, D.; Miquel, S. From Klebsiella pneumoniae Colonization to Dissemination: An Overview of Studies Implementing Murine Models. Microorganisms 2021, 9 (6). (12) Markovska, R.; Marteva-Proevska, Y.; Velinov, T.; Pavlov, I.; Kaneva, R.; Boyanova, L. Detection of different colistin resistance mechanisms among multidrug resistant Klebsiella pneumoniae isolates in Bulgaria. Acta Microbiologica et Immunologica Hungarica 2022. (13) Chen, C. H.; Bepler, T.; Pepper, K.; Fu, D.; Lu, T. K. Synthetic molecular evolution of antimicrobial peptides. Current Opinion in Biotechnology 2022, 75, 102718. (14) Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Medicinal Research Reviews 2022, 42 (4), 1377-1422. (15) Yu, L.; Li, K.; Zhang, J.; Jin, H.; Saleem, A.; Song, Q.; Jia, Q.; Li, P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS Applied Bio Materials 2022, 5 (2), 366-393. (16) Nayab, S.; Aslam, M. A.; Rahman, S. u.; Sindhu, Z. u. D.; Sajid, S.; Zafar, N.; Razaq, M.; Kanwar, R.; Amanullah. A Review of Antimicrobial Peptides: Its Function, Mode of Action and Therapeutic Potential. International Journal of Peptide Research and Therapeutics 2022, 28 (1), 46. (17) Falco, A.; Adamek, M.; Pereiro, P.; Hoole, D.; Encinar, J. A.; Novoa, B.; Mallavia, R. The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases. Marine Drugs 2022, 20 (6), 363. (18) Noga, E. J.; Ullal, A. J.; Corrales, J.; Fernandes, J. M. O. Application of antimicrobial polypeptide host defenses to aquaculture: Exploitation of downregulation and upregulation responses. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2011, 6 (1), 44-54. (19) Silphaduang, U.; Noga, E. J. Peptide antibiotics in mast cells of fish. Nature 2001, 414 (6861), 268-269. (20) Raju, S. V.; Sarkar, P.; Kumar, P.; Arockiaraj, J. Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. International Journal of Peptide Research and Therapeutics 2021, 27 (1), 91-107. (21) Peng, K.-C.; Lee, S.-H.; Hour, A.-L.; Pan, C.-Y.; Lee, L.-H.; Chen, J.-Y. Five Different Piscidins from Nile Tilapia, Oreochromis niloticus: Analysis of Their Expressions and Biological Functions. PLOS ONE 2012, 7 (11), e50263. (22) Pan, C.-Y.; Tsai, T.-Y.; Su, B.-C.; Hui, C.-F.; Chen, J.-Y. Study of the Antimicrobial Activity of Tilapia Piscidin 3 (TP3) and TP4 and Their Effects on Immune Functions in Hybrid Tilapia (Oreochromis spp.). PLOS ONE 2017, 12 (1), e0169678. (23) Lakshmaiah Narayana, J.; Huang, H.-N.; Wu, C.-J.; Chen, J.-Y. Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: in vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model. Oncotarget 2015, 6 (15). (24) Pan, C.-Y.; Chen, J.-C.; Chen, T.-L.; Wu, J.-L.; Hui, C.-F.; Chen, J.-Y. Piscidin is Highly Active against Carbapenem-Resistant Acinetobacter baumannii and NDM-1-Producing Klebsiella pneumonia in a Systemic Septicaemia Infection Mouse Model. Marine Drugs 2015, 13 (4), 2287-2305. (25) Huang, H.-N.; Chan, Y.-L.; Wu, C.-J.; Chen, J.-Y. Tilapia Piscidin 4 (TP4) Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice. Marine Drugs 2015, 13 (5), 2813-2833. (26) Liu, C. W.; Su, B. C.; Chen, J. Y. Tilapia Piscidin 4 (TP4) Reprograms M1 Macrophages to M2 Phenotypes in Cell Models of Gardnerella vaginalis-Induced Vaginosis. Front Immunol 2021, 12, 773013. (27) Ting, C. H.; Chen, Y. C.; Wu, C. J.; Chen, J. Y. Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget 2016, 7 (26), 40329-40347. (28) Su, B.-C.; Pan, C.-Y.; Chen, J.-Y. Antimicrobial Peptide TP4 Induces ROS-Mediated Necrosis by Triggering Mitochondrial Dysfunction in Wild-Type and Mutant p53 Glioblastoma Cells. Cancers 2019, 11 (2), 171. (29) Hazam, P. K.; Chen, J.-Y. Therapeutic utility of the antimicrobial peptide Tilapia Piscidin 4 (TP4). Aquaculture Reports 2020, 17, 100409. (30) Huang, J.; Hao, D.; Chen, Y.; Xu, Y.; Tan, J.; Huang, Y.; Li, F.; Chen, Y. Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an α-helical antibacterial peptide against bacteria. Peptides 2011, 32 (7), 1488-1495. (31) Rydlo, T.; Rotem, S.; Mor, A. Antibacterial Properties of Dermaseptin S4 Derivatives under Extreme Incubation Conditions. Antimicrobial Agents and Chemotherapy 2006, 50 (2), 490-497. (32) Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. European Journal of Pharmacology 2009, 625 (1), 190-194. (33) Haney, E. F.; Hancock, R. E. W. Peptide design for antimicrobial and immunomodulatory applications. Peptide Science 2013, 100 (6), 572-583. (34) Rotem, S.; Mor, A. Antimicrobial peptide mimics for improved therapeutic properties. Biochimica et Biophysica Acta (BBA) - Biomembranes 2009, 1788 (8), 1582-1592. (35) Kim, Y. S.; Cha, H. J. Disperse distribution of cationic amino acids on hydrophilic surface of helical wheel enhances antimicrobial peptide activity. Biotechnology and Bioengineering 2010, 107 (2), 216-223. (36) Schmidtchen, A.; Pasupuleti, M.; Malmsten, M. Effect of hydrophobic modifications in antimicrobial peptides. Advances in Colloid and Interface Science 2014, 205, 265-274. (37) Xu, W.; Zhu, X.; Tan, T.; Li, W.; Shan, A. Design of Embedded-Hybrid Antimicrobial Peptides with Enhanced Cell Selectivity and Anti-Biofilm Activity. PLOS ONE 2014, 9 (6), e98935. (38) Sierra, J. M.; Viñas, M. Future prospects for Antimicrobial peptide development: peptidomimetics and antimicrobial combinations. Expert Opinion on Drug Discovery 2021, 16 (6), 601-604. (39) Ong, Z. Y.; Wiradharma, N.; Yang, Y. Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Advanced Drug Delivery Reviews 2014, 78, 28-45. (40) Ajish, C.; Yang, S.; Kumar, S. D.; Kim, E. Y.; Min, H. J.; Lee, C. W.; Shin, S.-H.; Shin, S. Y. A novel hybrid peptide composed of LfcinB6 and KR-12-a4 with enhanced antimicrobial, anti-inflammatory and anti-biofilm activities. Scientific Reports 2022, 12 (1), 4365. (41) Hazam, P. K.; Phukan, C.; Akhil, R.; Singh, A.; Ramakrishnan, V. Antimicrobial effects of syndiotactic polypeptides. Scientific Reports 2021, 11 (1), 1823. (42) Zeng, B.; Chai, J.; Deng, Z.; Ye, T.; Chen, W.; Li, D.; Chen, X.; Chen, M.; Xu, X. Functional Characterization of a Novel Lipopolysaccharide-Binding Antimicrobial and Anti-Inflammatory Peptide in Vitro and in Vivo. Journal of Medicinal Chemistry 2018, 61 (23), 10709-10723. (43) He, S.; Yang, Z.; Yu, W.; Li, J.; Li, Z.; Wang, J.; Shan, A. Systematically Studying the Optimal Amino Acid Distribution Patterns of the Amphiphilic Structure by Using the Ultrashort Amphiphiles. Frontiers in Microbiology 2020, 11, Original Research. (44) Wiegand, I.; Hilpert, K.; Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols 2008, 3 (2), 163-175. (45) Schwalbe, R., Steele-Moore, L., & Goodwin, A.C. (Eds.). (2007). Antimicrobial Susceptibility Testing Protocols (1st ed.). CRC Press. https://doi.org/10.1201/9781420014495 (46) Mourtada, R.; Herce, H. D.; Yin, D. J.; Moroco, J. A.; Wales, T. E.; Engen, J. R.; Walensky, L. D. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nature Biotechnology 2019, 37 (10), 1186-1197. (47) Elliott, A. G.; Huang, J. X.; Neve, S.; Zuegg, J.; Edwards, I. A.; Cain, A. K.; Boinett, C. J.; Barquist, L.; Lundberg, C. V.; Steen, J.; et al. An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. Nature Communications 2020, 11 (1), 3184. (48) Dong, N.; Chou, S.; Li, J.; Xue, C.; Li, X.; Cheng, B.; Shan, A.; Xu, L. Short Symmetric-End Antimicrobial Peptides Centered on β-Turn Amino Acids Unit Improve Selectivity and Stability. Frontiers in Microbiology 2018, 9, Original Research. (49) Zhu, Y.; Shao, C.; Li, G.; Lai, Z.; Tan, P.; Jian, Q.; Cheng, B.; Shan, A. Rational Avoidance of Protease Cleavage Sites and Symmetrical End-Tagging Significantly Enhances the Stability and Therapeutic Potential of Antimicrobial Peptides. Journal of Medicinal Chemistry 2020, 63 (17), 9421-9435. (50) Jia, F.; Wang, J.; Peng, J.; Zhao, P.; Kong, Z.; Wang, K.; Yan, W.; Wang, R. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochimica et Biophysica Sinica 2017, 49 (10), 916-925. (51) Saporito, P.; Mojsoska, B.; Løbner Olesen, A.; Jenssen, H. Antibacterial mechanisms of GN-2 derived peptides and peptoids against Escherichia coli. Biopolymers 2019, 110 (6), e23275. (52) Hazam, P. K.; Cheng, C.-C.; Hsieh, C.-Y.; Lin, W.-C.; Hsu, P.-H.; Chen, T.-L.; Lee, Y.-T.; Chen, J.-Y. Development of Bactericidal Peptides against Multidrug-Resistant Acinetobacter baumannii with Enhanced Stability and Low Toxicity. International Journal of Molecular Sciences 2022, 23 (4), 2191. (53) Au - Clementi, E. A.; Au - Marks, L. R.; Au - Roche-Håkansson, H.; Au - Håkansson, A. P. Monitoring Changes in Membrane Polarity, Membrane Integrity, and Intracellular Ion Concentrations in Streptococcus pneumoniae Using Fluorescent Dyes. JoVE 2014, (84), e51008. (54) Kwon, J. Y.; Kim, M. K.; Mereuta, L.; Seo, C. H.; Luchian, T.; Park, Y. Mechanism of action of antimicrobial peptide P5 truncations against Pseudomonas aeruginosa and Staphylococcus aureus. AMB Express 2019, 9 (1), 122. (55) Ma, B.; Fang, C.; Lu, L.; Wang, M.; Xue, X.; Zhou, Y.; Li, M.; Hu, Y.; Luo, X.; Hou, Z. The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo-β-lactamase. Nature Communications 2019, 10 (1), 3517. (56) De Oliveira, D. M.; Forde, B. M.; Kidd, T. J.; Harris, P. N.; Schembri, M. A.; Beatson, S. A.; Paterson, D. L.; Walker, M. J. Antimicrobial resistance in ESKAPE pathogens. Clinical microbiology reviews 2020, 33 (3), e00181-00119. (57) Lakshmaiah Narayana, J.; Chen, J.-Y. Antimicrobial peptides: Possible anti-infective agents. Peptides 2015, 72, 88-94. (58) Tang, W.-H.; Wang, C.-F.; Liao, Y.-D. Fetal bovine serum albumin inhibits antimicrobial peptide activity and binds drug only in complex with α1-antitrypsin. Scientific Reports 2021, 11 (1), 1267. (59) Eckert, R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiology 2011, 6 (6), 635-651. (60) Yan, Y.; Li, Y.; Zhang, Z.; Wang, X.; Niu, Y.; Zhang, S.; Xu, W.; Ren, C. Advances of peptides for antibacterial applications. Colloids and Surfaces B: Biointerfaces 2021, 202, 111682. (61) Pedron, C. N.; de Oliveira, C. S.; da Silva, A. F.; Andrade, G. P.; da Silva Pinhal, M. A.; Cerchiaro, G.; da Silva Junior, P. I.; da Silva, F. D.; Torres, M. D. T.; Oliveira, V. X. The effect of lysine substitutions in the biological activities of the scorpion venom peptide VmCT1. European Journal of Pharmaceutical Sciences 2019, 136, 104952. (62) Azuma, E.; Choda, N.; Odaki, M.; Yano, Y.; Matsuzaki, K. Improvement of Therapeutic Index by the Combination of Enhanced Peptide Cationicity and Proline Introduction. ACS Infectious Diseases 2020, 6 (8), 2271-2278. (63) Lu, J.; Xu, H.; Xia, J.; Ma, J.; Xu, J.; Li, Y.; Feng, J. D- and Unnatural Amino Acid Substituted Antimicrobial Peptides With Improved Proteolytic Resistance and Their Proteolytic Degradation Characteristics. Frontiers in Microbiology 2020, 11, Original Research. (64) Lakshmaiah Narayana, J.; Golla, R.; Mishra, B.; Wang, X.; Lushnikova, T.; Zhang, Y.; Verma, A.; Kumar, V.; Xie, J.; Wang, G. Short and Robust Anti-Infective Lipopeptides Engineered Based on the Minimal Antimicrobial Peptide KR12 of Human LL-37. ACS Infectious Diseases 2021, 7 (6), 1795-1808. (65) Oren, Z.; Ramesh, J.; Avrahami, D.; Suryaprakash, N.; Shai, Y.; Jelinek, R. Structures and mode of membrane interaction of a short α helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. European Journal of Biochemistry 2002, 269 (16), 3869-3880. (66) Oren, Z.; Shai, Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Peptide Science 1998, 47 (6), 451-463. (67) Greenfield, N. J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nature Protocols 2006, 1 (6), 2527-2535. (68) Chang, T.-W.; Wei, S.-Y.; Wang, S.-H.; Wei, H.-M.; Wang, Y.-J.; Wang, C.-F.; Chen, C.; Liao, Y.-D. Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4. PLOS ONE 2017, 12 (10), e0186442. (69) Tripathi, A. K.; Kumari, T.; Tandon, A.; Sayeed, M.; Afshan, T.; Kathuria, M.; Shukla, P. K.; Mitra, K.; Ghosh, J. K. Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat. Acta Biomaterialia 2017, 57, 170-186. (70) Zai, Y.; Ying, Y.; Ye, Z.; Zhou, M.; Ma, C.; Shi, Z.; Chen, X.; Xi, X.; Chen, T.; Wang, L. Broad-Spectrum Antimicrobial Activity and Improved Stability of a D-Amino Acid Enantiomer of DMPC-10A, the Designed Derivative of Dermaseptin Truncates. Antibiotics 2020, 9 (9), 627. (71) Nguyen, L. T.; Chau, J. K.; Perry, N. A.; de Boer, L.; Zaat, S. A.; Vogel, H. J. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One 2010, 5 (9). (72) Han, S.; Mallampalli, R. K. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections. Ann Am Thorac Soc 2015, 12 (5), 765-774. (73) Di, Y. P.; Lin, Q.; Chen, C.; Montelaro, R. C.; Doi, Y.; Deslouches, B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Science Advances 2020, 6 (18), eaay6817. (74) Mohamed, M. F.; Brezden, A.; Mohammad, H.; Chmielewski, J.; Seleem, M. N. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Scientific Reports 2017, 7 (1), 6953. (75) Clifton, L. A.; Skoda, M. W. A.; Le Brun, A. P.; Ciesielski, F.; Kuzmenko, I.; Holt, S. A.; Lakey, J. H. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models. Langmuir 2015, 31 (1), 404-412. (76) Hancock, R. E. W.; Chapple, D. S. Peptide Antibiotics. Antimicrobial Agents and Chemotherapy 1999, 43 (6), 1317-1323. (77) Wood, S. J.; Miller, K. A.; David, S. A. Anti-endotoxin agents. 1. Development of a fluorescent probe displacement method optimized for the rapid identification of lipopolysaccharide-binding agents. Comb Chem High Throughput Screen 2004, 7 (3), 239-249. (78) Benfield, A. H.; Henriques, S. T. Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms. Front Med Technol 2020, 2, 610997. (79) Gabernet, G.; Müller, A. T.; Hiss, J. A.; Schneider, G. Membranolytic anticancer peptides. MedChemComm 2016, 7 (12), 2232-2245. (80) Liu, C.-W.; Hsieh, C.-Y.; Chen, J.-Y. Investigations on the Wound Healing Potential of Tilapia Piscidin (TP)2-5 and TP2-6. Marine Drugs 2022, 20 (3), 205. (81) Ryan, M. J.; Johnson, G.; Kirk, J.; Fuerstenberg, S. M.; Zager, R. A.; Torok-Storb, B. HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney International 1994, 45 (1), 48-57. (82) Rajasekaran, G.; Dinesh Kumar, S.; Nam, J.; Jeon, D.; Kim, Y.; Lee, C. W.; Park, I.-S.; Shin, S. Y. Antimicrobial and anti-inflammatory activities of chemokine CXCL14-derived antimicrobial peptide and its analogs. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019, 1861 (1), 256-267. (83) Rice, A.; Wereszczynski, J. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017, 1859 (10), 1941-1950. (84) Tait, J. R.; Bilal, H.; Kim, T. H.; Oh, A.; Peleg, A. Y.; Boyce, J. D.; Oliver, A.; Bergen, P. J.; Nation, R. L.; Landersdorfer, C. B. Pharmacodynamics of ceftazidime plus tobramycin combination dosage regimens against hypermutable Pseudomonas aeruginosa isolates at simulated epithelial lining fluid concentrations in a dynamic in vitro infection model. Journal of Global Antimicrobial Resistance 2021, 26, 55-63. (85) Van Wilder, A.; Bruyneel, L.; Decock, C.; Ten Haaf, N.; Peetermans, W. E.; Debaveye, Y.; Vanhaecht, K.; Spriet, I. Timeliness of administration of amoxicillin-clavulanic acid and meropenem in a large tertiary care centre. International Journal of Clinical Pharmacy 2021, 43 (6), 1651-1659. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84809 | - |
dc.description.abstract | 抗菌胜肽 (Antimicrobial peptides, AMPs) 對細菌外膜的物理性破壞機制,被認為是可以當作多重抗藥性細菌的替代藥物候選物。但天然AMPs在臨床應用上,卻因其對生理環境的不穩定而失活。所幸經許多研究的累積得知,AMPs的螺旋性、陽離子和疏水面的兩性結構為其活性的主因之一。因此我們利用從Oreochromis niloticus分離出的Tilapia piscidin 4 (TP4),經過胺基酸的替換修飾,透過Lysine (K) 提高其正電荷的同時也調整親疏水性的平衡,並將第13個胺基酸替換成Proline (P),再分別把不同位置上的L-胺基酸替換成鏡像異構物 (D-胺基酸) 以提升穩定性,進而合成出三種不同的TP4異手性 (Heterochiral) 衍生物TP4-α、TP4-β和TP4-γ。三種AMPs皆對多數細菌有良好的抗菌活性,特別在對抗NDM-1 Klebsiella pneumoniae時展現出最好的活性,並大大的改善了原本TP4極差的細胞選擇性和在生理條件下的不穩定,像是獲得極低的溶血性,或是在人類血清、不同的生理鹽類濃度、pH 7.4-10的環境下都能維持抗菌活性的穩定,並且不受不同溫度和蛋白酶的影響,同時也能從Circular dichroism (CD) 的二級結構光譜圖證實其結構的穩定。除此之外,利用不同螢光探針的殺菌機制研究可知,TP4-α、TP4-β和TP4-γ皆會和Lipopolysaccharide (LPS) 做結合,接著造成細菌外膜破裂、細胞膜去極化和增加內膜的滲透性,最終導致細菌死亡,同時也可以透過電子顯微鏡證實細菌表面的破洞和膜的破損。雖然在細胞毒性方面沒有得到改善,但可以利用和不同種類的抗生素做搭配形成優秀的協同作用,除了可以降低劑量的使用和成本外,還可以增強兩種藥物的藥效,甚至擴大抗菌的範圍。總體來說,或許TP4的異手性衍生物可利用和其他藥物做搭配的方式,更進一步的應用於抗NDM-1 K. pneumoniae或廣譜藥物的發展。 | zh_TW |
dc.description.abstract | Antimicrobial peptides (AMPs) are physiological defense molecules that counter pathogenic consequences. AMPs act through physical interaction followed by bacterial membrane lysis. They are thought to be potential alternatives of clinical antibiotics due to reported activity against multidrug resistant (MDR) pathogens. However, the clinical application of natural AMPs are limited due to their instability in physiological conditions. Therefore, we modified a natural AMP known as Tilapia piscidin 4 (TP4) to develop a series of novel molecules with enhanced stability and notable activity, while maintaining minimal toxicity in in Vivo condition. We performed amino acid substitution, followed by chiral alteration, that resulted in development of heterochiral derivatives of TP4 (TP4-α, TP4-β and TP4-γ). All three AMPs displayed notable antibacterial activity. These peptides were significantly potential against MDR species like NDM-1 Klebsiella pneumoniae. The modified peptides showed negligible hemolysis and enhanced stability when compared with the TP4, which is known to be toxic and unstable in physiological conditions. The hybrid peptides showed notable activity in presence of physiological ions, varying pH and temperature and even in presence of physiological enzymes. The stability of its structure was confirmed from the secondary structure spectrum of circular dichroism (CD). The modified peptides act through lipopolysaccharide (LPS) binding, cause the rupture of the bacterial outer membrane, the depolarization of the cell membrane, and increase the permeability of the inner membrane. The holes on the bacterial surface and membrane were confirmed under the electron microscope. Although the cytotoxicity has not been improved, these peptides show synergistic activity with clinical antibiotics. This could be an innovative way to repurpose old antibiotics against MDR species and reduce the dosage and cost. Hence, we conclude that informed amino acid substitution with heterochiral construct can be employed to develop potential AMPs that may be useful for clinical applications in near future. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:26:46Z (GMT). No. of bitstreams: 1 U0001-2608202209010200.pdf: 7567474 bytes, checksum: b72c472764080273409c359fbd7bea7b (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 目錄 口試委員會審定書 i 誌謝 ⅱ 中文摘要 ⅲ Abstract ⅳ 縮寫表 ⅵ 目錄 ⅻ 圖目錄 ⅹⅴ 表目錄 ⅹⅵ 第一章 緒論 1 1-1 抗藥性細菌的危機 1 1-2 新德里金屬-β-內醯胺酶1(New Delhi metallo-beta-lactamase 1, NDM-1)克雷白氏肺炎菌 1 1-3 抗菌胜肽 (Antimicrobial Peptide, AMP) 2 1-4 Tilapia piscidin 4 (TP4) 3 1-5 抗菌胜肽面臨的阻礙 4 1-6 抗菌胜肽的設計優化 4 第二章 材料與方法 6 2-1 材料 6 2-1-1 微生物菌株 6 2-1-2 細胞株 7 2-1-3 化學藥品和胜肽 7 2-1-4 商業化驗試劑 9 2-1-5 耗材 10 2-1-6 儀器和軟體 11 2-2 方法 12 2-2-1 圓二色旋光光譜分析 (Circular Dichroism Spectroscopic Analysis) 12 2-2-2菌種培養條件 (Strains Culture Conditions) 13 2-2-2-1培養基製備 13 2-2-2-1-1 細菌 13 2-2-2-1-2 抗藥性細菌 13 2-2-2-1-3 真菌 14 2-2-2-2 菌種繼代與定量 (Strains Subculture and Quantification) 14 2-2-2-2-1 細菌 14 2-2-2-2-2 真菌 15 2-2-3 抗菌活性分析 (Antimicrobial Activity Assays) 15 2-2-3-1 細菌 15 2-2-3-2 真菌 16 2-2-4 溶血活性分析 (Hemolytic Activity Assays) 16 2-2-5 在人類血清和肺表面物質中的抗菌活性測試 (Antimicrobial Activity Tests in Presence of Human Serum and Lung Surfactant) 17 2-2-6 在生理鹽類、酸鹼和溫度中的抗菌活性測試 (Antimicrobial Activity Tests in Presence of Physiological Salts, Acid, Alkali, and Heat) 17 2-2-7 在蛋白酶中的穩定性測試 (Stability Tests in Presence of Protease) 18 2-2-8 殺菌動力學 (Time-killing Kinetics) 18 2-2-9 殺菌機制研究 (Antimicrobial Mechanism Research) 18 2-2-9-1 脂多醣結合分析 (Lipopolysaccharide Binding Assays) 18 2-2-9-2 外膜滲透性分析 (Outer Membrane Permeability Assays) 19 2-2-9-3 細胞膜去極化 (Cytoplasmic Membrane Depolarization) 19 2-2-9-4 內膜滲透性分析 (Inner Membrane Permeability Assays) 20 2-2-9-5 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 20 2-2-9-6 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 21 2-2-10 細胞培養條件 (Cell Culture Conditions) 21 2-2-10-1 培養液製備 21 2-2-10-2 細胞繼代與定量 (Cell Subculture and Quantification) 22 2-2-11 細胞存活分析 (Cell Viability Assays) 23 2-2-11-1 CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay (MTS) 24 2-2-11-2 AlamerBlue TM Cell Viability Reagent 24 2-2-11-3 Cytotoxicity Detection Kit PLUS (Lactate Dehydrogenase, LDH) 25 2-2-12藥物協同作用分析 (Synergistic Effect Assays) 25 2-2-13統計分析 (Statistical Analysis) 26 第三章 結果 27 3-1 新型抗菌胜肽的設計和特性 (Design and Characterization of Novel Antimicrobial Peptides) 27 3-2 圓二色旋光光譜分析 (Circular Dichroism Spectroscopic Analysis) 30 3-3 抗菌活性分析 (Antimicrobial Activity Assays) 36 3-4 溶血活性分析 (Hemolytic Activity Assays) 39 3-5 在人類血清和肺表面物質中的抗菌活性測試 (Antimicrobial Activity Tests in Presence of Human Serum and Lung Surfactant) 40 3-6 在生理鹽類、酸鹼和溫度中的抗菌活性測試 (Antimicrobial Activity Tests in Presence of Physiological Salts, Acid, Alkali, and Heat) 43 3-7 在蛋白酶中的穩定性測試 (Stability Tests in Presence of Protease) 47 3-8 殺菌動力學 (Time-killing Kinetics) 48 3-9 殺菌機制研究 (Antimicrobial Mechanism Research) 49 3-10 細胞存活分析 (Cell Viability Assays) 56 3-11 藥物協同作用分析 (Synergistic Effect Assays) 61 第四章 討論 69 第五章 結論 76 參考文獻 77 附錄 85 圖目錄 Figure 1. AMPs的螺旋輪狀圖。 29 Figure 2. TP4的CD二級結構和穩定性。 32 Figure 3. TP4-α的CD二級結構和穩定性。 33 Figure 4. TP4-β的CD二級結構和穩定性。 34 Figure 5. TP4-γ的CD二級結構和穩定性。 35 Figure 6. AMPs對人類紅血球 (hRBCs) 的溶血活性。 39 Figure 7. AMPs對NDM-1 K. pneumoniae (ATCC BAA-2473)的殺菌動力學。 49 Figure 8. AMPs對NDM-1 K. pneumoniae (ATCC BAA-2473) 的初步抗菌機制。 52 Figure 9. 利用SEM分別對經AMPs處理和未處理的NDM-1 K. pneumoniae (ATCC BAA-2473) 進行細菌表面起伏的形態學觀察。 53 Figure 10. 利用TEM分別對經AMPs處理和未處理的NDM-1 K. pneumoniae (ATCC BAA-2473) 進行細菌超微結構的剖面形態學觀察。 55 Figure 11. AMPs對人類角質細胞 Human keratinocyte (HaCaT) cell的細胞存活率。 58 Figure 12. AMPs對人類近端腎小管細胞 (Normal human kidney proximal tubular (HK-2) cell)的細胞存活率。 59 Figure 13. AMPs對老鼠巨噬細胞 (Murine macrophage cell, Raw 264.7) 的細胞存活率。 60 Supplementary Figure 1. TP4-α的RP-HPLC純化層析圖與ESIMS質譜鑑定結果。 85 Supplementary Figure 2. TP4-β的RP-HPLC純化層析圖與ESIMS質譜鑑定結果。 85 Supplementary Figure 3. TP4-γ的RP-HPLC純化層析圖與ESIMS質譜鑑定結果。 86 Supplementary Figure 4. 不同濃度的AMPs對NDM-1 K. pneumoniae (ATCC BAA-2473) 的殺菌動力學。 88 Supplementary Figure 5. 不同濃度的AMPs對NDM-1 K. pneumoniae (ATCC BAA-2473) 的膜去極化和內膜通透性影響。 89 表目錄 Table 1. AMP sequences and physicochemical properties of TP4 and its heterochiral derivatives. 29 Table 2. MIC and MBC of the AMPs or antibiotics against Gram negative bacteria. 37 Table 3. MIC and MBC of the AMPs or antibiotics against Gram positive bacteria & fungi. 38 Table 4. MIC and MBC of the AMPs or antibiotics in 50 % human serum. 42 Table 5. MIC and MBC of the AMPs in 5 % Lung Surfactant. 42 Table 6. MIC and MBC of the AMPs against NDM-1 K. pneumoniae (ATCC BAA-2473) in presence of physiological salts. 45 Table 7. MIC and MBC of the pre-incubation AMPs against NDM-1 K. pneumoniae (ATCC BAA-2473). 45 Table 8. MIC and MBC of the AMPs against NDM-1 K. pneumoniae (ATCC BAA-2473) in presence of acid and alkali. 46 Table 9. MIC and MBC of the AMPs against NDM-1 K. pneumoniae (ATCC BAA-2473) in proteinase. 47 Table 10. FIC index of heterochiral peptides in combined with antibiotics or TP4 against A. baumannii BCRC 10591. 63 Table 11. FIC index of heterochiral peptides in combined with antibiotics or TP4 against P. aeruginosa ATCC 19660. 64 Table 12. FIC index of heterochiral peptides in combined with antibiotics or TP4 against NDM-1 K. pneumoniae (ATCC BAA-2473). 65 Table 13. FIC index of heterochiral peptides in combined with antibiotics or TP4 against E. aerogenes BCRC 15630. 66 Table 14. FIC index of heterochiral peptides in combined with antibiotics or TP4 against E. coli BCRC 10675. 67 Table 15. FIC index of heterochiral peptides in combined with antibiotics or TP4 against S. aureus BCRC 10780. 68 Supplementary Table 1. Comparison of GM values change in control & human serum. 86 Supplementary Table 2. MIC and MBC of the antibiotics against NDM-1 K. pneumoniae (ATCC BAA-2473) in presence of physiological salts. 87 Supplementary Table 3. MIC and MBC of the pre-incubation antibiotics against NDM-1 K. pneumoniae (ATCC BAA-2473). 87 Supplementary Table 4. MIC and MBC of the antibiotics against NDM-1 K. pneumoniae (ATCC BAA-2473) in presence of acid and alkali. 88 | |
dc.language.iso | zh-TW | |
dc.title | 探討經由 D-胺基酸取代之新型抗菌胜肽 Tilapia piscidin 4 衍生物的殺菌活性和穩定性 | zh_TW |
dc.title | Investigation of Bactericidal Activity and Stability of Novel D-Amino Acid Substituted Antimicrobial Peptides Derived from Tilapia piscidin 4 | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李宗徽(Tzong-Huei Lee) | |
dc.contributor.oralexamcommittee | 陳威戎(Wei-Jung Chen),劉哲文(Je-Wen Liou),潘婕玉(Chieh-Yu Pan) | |
dc.subject.keyword | 抗菌胜肽,Tilapia piscidin 4 (TP4),鏡像異構物,穩定性,多重抗藥性,NDM-1克雷白氏肺炎菌,協同作用, | zh_TW |
dc.subject.keyword | Antimicrobial peptides,Tilapia piscidin 4 (TP4),D-form enantiomer,Stability,Multidrug resistance,NDM-1 K. pneumoniae,Synergistic effect, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU202202839 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-31 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
dc.date.embargo-lift | 2025-08-31 | - |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2608202209010200.pdf 目前未授權公開取用 | 7.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。