Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84803
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃心豪(Hsin-Haou Huang)
dc.contributor.authorPo-Chen Laien
dc.contributor.author賴柏辰zh_TW
dc.date.accessioned2023-03-19T22:26:27Z-
dc.date.copyright2022-09-08
dc.date.issued2022
dc.date.submitted2022-08-31
dc.identifier.citation[1] V. G. Veselago, 'Electrodynamics of substances with simultaneously negative and,' Usp. fiz. nauk, vol. 92, no. 7, pp. 517-526, 1967. [2] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, 'Acoustic band structure of periodic elastic composites,' Physical review letters, vol. 71, no. 13, p. 2022, 1993. [3] Z. Liu et al., 'Locally resonant sonic materials,' science, vol. 289, no. 5485, pp. 1734-1736, 2000. [4] N. Fang et al., 'Ultrasonic metamaterials with negative modulus,' Nature materials, vol. 5, no. 6, pp. 452-456, 2006. [5] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, 'Composite acoustic medium with simultaneously negative density and modulus,' Physical review letters, vol. 104, no. 5, p. 054301, 2010. [6] F. Zangeneh-Nejad and R. Fleury, 'Active times for acoustic metamaterials,' Reviews in Physics, vol. 4, p. 100031, 2019. [7] H.-x. Sun, S.-y. Zhang, and X.-j. Shui, 'A tunable acoustic diode made by a metal plate with periodical structure,' Applied Physics Letters, vol. 100, no. 10, p. 103507, 2012. [8] Y. Li, J. Tu, B. Liang, X. Guo, D. Zhang, and J. Cheng, 'Unidirectional acoustic transmission based on source pattern reconstruction,' Journal of Applied Physics, vol. 112, no. 6, p. 064504, 2012. [9] H.-x. Sun and S.-y. Zhang, 'Enhancement of asymmetric acoustic transmission,' Applied Physics Letters, vol. 102, no. 11, p. 113511, 2013. [10] S. Zhang, Y. Zhang, Y. Guo, Y. Leng, W. Feng, and W. Cao, 'Realization of subwavelength asymmetric acoustic transmission based on low-frequency forbidden transmission,' Physical Review Applied, vol. 5, no. 3, p. 034006, 2016. [11] S. Zhang, Y. Zhang, W. Lu, B. Xu, and Y. Zhang, 'Subwavelength asymmetric transmission device for underwater acoustic waves with multiple incident directions,' Journal of Physics D: Applied Physics, vol. 52, no. 29, p. 295102, 2019. [12] H.-x. Sun, S.-q. Yuan, and S.-y. Zhang, 'Asymmetric acoustic transmission in multiple frequency bands,' Applied Physics Letters, vol. 107, no. 21, p. 213505, 2015. [13] A. Song, T. Chen, X. Wang, Y. Xi, and Q. Liang, 'Underwater unidirectional acoustic transmission through a plate with bilateral asymmetric gratings,' Modern Physics Letters B, vol. 32, no. 11, p. 1850133, 2018. [14] Y. Liu, X. Shen, X. Su, and C. Sun, 'Elastic metamaterials with low-frequency passbands based on lattice system with on-site potential,' Journal of Vibration and Acoustics, vol. 138, no. 2, 2016. [15] B. Li and K. Tan, 'Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial,' Journal of Applied Physics, vol. 120, no. 7, p. 075103, 2016. [16] B. Li, S. Alamri, and K. Tan, 'A diatomic elastic metamaterial for tunable asymmetric wave transmission in multiple frequency bands,' Scientific Reports, vol. 7, no. 1, pp. 1-14, 2017. [17] S. Alamri, B. Li, G. Mchugh, N. Garafolo, and K. Tan, 'Dissipative diatomic acoustic metamaterials for broadband asymmetric elastic-wave transmission,' Journal of Sound and Vibration, vol. 451, pp. 120-137, 2019. [18] J.-S. Chen, I.-L. Chang, W.-T. Huang, L.-W. Chen, and G.-H. Huang, 'Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials,' AIP Advances, vol. 6, no. 9, p. 095020, 2016. [19] A.-L. Song, T.-N. Chen, X.-P. Wang, and L.-L. Wan, 'Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal,' Journal of Applied Physics, vol. 120, no. 8, p. 085106, 2016. [20] H. Long, Y. Cheng, T. Zhang, and X. Liu, 'Wide-angle asymmetric acoustic absorber based on one-dimensional lossy Bragg stacks,' The Journal of the Acoustical Society of America, vol. 142, no. 1, pp. EL69-EL74, 2017. [21] L. Zeng, J. Zhang, Y. Liu, Y. Zhao, and N. Hu, 'Asymmetric transmission of elastic shear vertical waves in solids,' Ultrasonics, vol. 96, pp. 34-39, 2019. [22] N. H. Vo, T. M. Pham, K. Bi, and H. Hao, 'Model for analytical investigation on meta-lattice truss for low-frequency spatial wave manipulation,' Wave Motion, vol. 103, p. 102735, 2021. [23] Y. Noguchi, T. Yamada, M. Otomori, K. Izui, and S. Nishiwaki, 'An acoustic metasurface design for wave motion conversion of longitudinal waves to transverse waves using topology optimization,' Applied Physics Letters, vol. 107, no. 22, p. 221909, 2015. [24] X. Su and A. N. Norris, 'Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps,' The Journal of the Acoustical Society of America, vol. 139, no. 6, pp. 3386-3394, 2016. [25] J. Lan, Y. Li, and X. Liu, 'Broadband manipulation of refracted wavefronts by gradient acoustic metasurface with V-shape structure,' Applied Physics Letters, vol. 111, no. 26, p. 263501, 2017. [26] L. Cao, Z. Yang, and Y. Xu, 'Steering elastic SH waves in an anomalous way by metasurface,' Journal of Sound and Vibration, vol. 418, pp. 1-14, 2018. [27] X. Yang, J. M. Kweun, and Y. Y. Kim, 'Theory for perfect transmodal Fabry-Perot interferometer,' Scientific reports, vol. 8, no. 1, pp. 1-6, 2018. [28] M. S. Kim, W. R. Lee, Y. Y. Kim, and J. H. Oh, 'Transmodal elastic metasurface for broad angle total mode conversion,' Applied Physics Letters, vol. 112, no. 24, p. 241905, 2018. [29] X. Su, Z. Lu, and A. N. Norris, 'Elastic metasurfaces for splitting SV-and P-waves in elastic solids,' Journal of Applied Physics, vol. 123, no. 9, p. 091701, 2018. [30] H. Lee, J. K. Lee, H. M. Seung, and Y. Y. Kim, 'Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering,' Journal of the Mechanics and Physics of Solids, vol. 112, pp. 577-593, 2018. [31] J. Qian, Y. Wang, S.-q. Yuan, H.-x. Sun, and X.-j. Liu, 'Reflected acoustic wavefront manipulation by an ultrathin metasurface based on three-dimensional generalized Snell’s law,' Applied Physics Express, vol. 12, no. 9, p. 094001, 2019. [32] Z. Chen, F. Yan, M. Negahban, and Z. Li, 'Resonator-based reflective metasurface for low-frequency underwater acoustic waves,' Journal of Applied Physics, vol. 128, no. 5, p. 055305, 2020. [33] S. W. Lee and J. H. Oh, 'Single-layer elastic metasurface with double negativity for anomalous refraction,' Journal of Physics D: Applied Physics, vol. 53, no. 26, p. 265301, 2020. [34] S.-M. Yuan et al., 'Tunable multifunctional fish-bone elastic metasurface for the wavefront manipulation of the transmitted in-plane waves,' Journal of Applied Physics, vol. 128, no. 22, p. 224502, 2020. [35] S.-M. Yuan, A.-L. Chen, and Y.-S. Wang, 'Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation,' Journal of Sound and Vibration, vol. 470, p. 115168, 2020. [36] X. Li, Y. Chen, X. Zhang, and G. Huang, 'Shaping elastic wave mode conversion with a piezoelectric-based programmable meta-boundary,' Extreme Mechanics Letters, vol. 39, p. 100837, 2020. [37] A. Chen, Q. Tang, H. Wang, S. Zhao, and Y. Wang, 'Multifunction switching by a flat structurally tunable acoustic metasurface for transmitted waves,' Science China Physics, Mechanics & Astronomy, vol. 63, no. 4, pp. 1-10, 2020. [38] J. Guo and J. Zhou, 'An ultrathin acoustic carpet cloak based on resonators with extended necks,' Journal of Physics D: Applied Physics, vol. 53, no. 50, p. 505501, 2020. [39] J. Xie, S. Liang, J. Liu, P. Tang, and S. Wen, 'Near‐zero‐sidelobe optical subwavelength asymmetric focusing lens with dual‐layer metasurfaces,' Annalen der Physik, vol. 532, no. 7, p. 2000035, 2020. [40] S. W. Lee, H. M. Seung, W. Choi, M. Kim, and J. H. Oh, 'Broad-angle refractive transmodal elastic metasurface,' Applied Physics Letters, vol. 117, no. 21, p. 213502, 2020. [41] H.-T. Zhou, W.-X. Fu, Y.-F. Wang, and Y.-S. Wang, 'High-efficiency Ultrathin Nonlocal Waterborne Acoustic Metasurface,' Physical Review Applied, vol. 15, no. 4, p. 044046, 2021. [42] G. Liao, C. Luan, Z. Wang, J. Liu, X. Yao, and J. Fu, 'Acoustic wave filtering strategy based on gradient acoustic metamaterials,' Journal of Physics D: Applied Physics, vol. 54, no. 33, p. 335301, 2021. [43] Z. Lin, W. Xu, C. Xuan, W. Qi, and W. Wang, 'Modular elastic metasurfaces with mass oscillators for transmitted flexural wave manipulation,' Journal of Physics D: Applied Physics, vol. 54, no. 25, p. 255303, 2021. [44] M. Yang and P. Sheng, 'Sound absorption structures: From porous media to acoustic metamaterials,' Annual Review of Materials Research, vol. 47, pp. 83-114, 2017. [45] J. Choi, I. Jung, and C.-Y. Kang, 'A brief review of sound energy harvesting,' Nano energy, vol. 56, pp. 169-183, 2019. [46] X. Duan et al., 'Sound absorption of a flexible micro-perforated panel absorber based on PVDF piezoelectric film,' Applied Acoustics, vol. 88, pp. 84-89, 2015. [47] J. Li, X. Zhou, G. Huang, and G. Hu, 'Acoustic metamaterials capable of both sound insulation and energy harvesting,' Smart Materials and Structures, vol. 25, no. 4, p. 045013, 2016. [48] Z. Zhou, W. Qin, and P. Zhu, 'Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester,' Energy, vol. 126, pp. 527-534, 2017. [49] M. Yuan, Z. Cao, J. Luo, and R. Ohayon, 'Acoustic metastructure for effective low-frequency acoustic energy harvesting,' Journal of Low Frequency Noise, Vibration and Active Control, vol. 37, no. 4, pp. 1015-1029, 2018. [50] X. Wang, J. Xu, J. Ding, C. Zhao, and Z. Huang, 'A compact and low-frequency acoustic energy harvester using layered acoustic metamaterials,' Smart Materials and Structures, vol. 28, no. 2, p. 025035, 2019. [51] S. M. Ivansson, 'Sound absorption by viscoelastic coatings with periodically distributed cavities,' The Journal of the Acoustical Society of America, vol. 119, no. 6, pp. 3558-3567, 2006. [52] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, 'Sound transmission through a periodically voided soft elastic medium submerged in water,' Wave Motion, vol. 70, pp. 101-112, 2017. [53] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, 'Acoustic performance of gratings of cylindrical voids in a soft elastic medium with a steel backing,' The Journal of the Acoustical Society of America, vol. 141, no. 6, pp. 4694-4704, 2017. [54] C. Ye, X. Liu, F. Xin, and T. J. Lu, 'Influence of hole shape on sound absorption of underwater anechoic layers,' Journal of Sound and Vibration, vol. 426, pp. 54-74, 2018. [55] J. Mei, X. Zhang, and Y. Wu, 'Ultrathin metasurface with high absorptance for waterborne sound,' Journal of Applied Physics, vol. 123, no. 9, p. 091710, 2018. [56] D. Zhao, H. Zhao, H. Yang, and J. Wen, 'Optimization and mechanism of acoustic absorption of Alberich coatings on a steel plate in water,' Applied Acoustics, vol. 140, pp. 183-187, 2018. [57] N. Gao and Y. Zhang, 'A low frequency underwater metastructure composed by helix metal and viscoelastic damping rubber,' Journal of Vibration and Control, vol. 25, no. 3, pp. 538-548, 2019. [58] M. Tao, H. Ye, and X. Zhao, 'Acoustic performance prediction of anechoic layer using identified viscoelastic parameters,' Journal of Vibration and Control, vol. 25, no. 6, pp. 1164-1178, 2019. [59] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, 'Acoustic performance of periodic steel cylinders embedded in a viscoelastic medium,' Journal of Sound and Vibration, vol. 443, pp. 652-665, 2019. [60] J. Zhong, H. Zhao, H. Yang, Y. Wang, J. Yin, and J. Wen, 'Theoretical requirements and inverse design for broadband perfect absorption of low-frequency waterborne sound by ultrathin metasurface,' Scientific reports, vol. 9, no. 1, pp. 1-11, 2019. [61] G. S. Sharma, A. Skvortsov, I. MacGillivray, and N. Kessissoglou, 'Sound absorption by rubber coatings with periodic voids and hard inclusions,' Applied Acoustics, vol. 143, pp. 200-210, 2019. [62] H. Zhong, Y. Gu, B. Bao, Q. Wang, and J. Wu, '2D underwater acoustic metamaterials incorporating a combination of particle-filled polyurethane and spiral-based local resonance mechanisms,' Composite Structures, vol. 220, pp. 1-10, 2019. [63] J. Zhong, H. Zhao, H. Yang, J. Yin, and J. Wen, 'On the accuracy and optimization application of an axisymmetric simplified model for underwater sound absorption of anechoic coatings,' Applied Acoustics, vol. 145, pp. 104-111, 2019. [64] K. Shi, G. Jin, R. Liu, T. Ye, and Y. Xue, 'Underwater sound absorption performance of acoustic metamaterials with multilayered locally resonant scatterers,' Results in Physics, vol. 12, pp. 132-142, 2019. [65] Y. Feng, J. Qiao, and L. Li, 'Acoustic behavior of composites with gradient impedance,' Materials & Design, vol. 193, p. 108870, 2020. [66] G. Jin, K. Shi, T. Ye, J. Zhou, and Y. Yin, 'Sound absorption behaviors of metamaterials with periodic multi-resonator and voids in water,' Applied Acoustics, vol. 166, p. 107351, 2020. [67] S. Wang, B. Hu, and Y. Du, 'Sound absorption of periodically cavities with gradient changes of radii and distances between cavities in a soft elastic medium,' Applied Acoustics, vol. 170, p. 107501, 2020. [68] Z. Wang, Y. Huang, X. Zhang, L. Li, M. Chen, and D. Fang, 'Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb,' Journal of Sound and Vibration, vol. 479, p. 115375, 2020. [69] N. Gao and K. Lu, 'An underwater metamaterial for broadband acoustic absorption at low frequency,' Applied Acoustics, vol. 169, p. 107500, 2020. [70] D. Lee, Y. Jang, J. Park, I. S. Kang, J. Li, and J. Rho, 'Underwater stealth metasurfaces composed of split-orifice–conduit hybrid resonators,' Journal of Applied Physics, vol. 129, no. 10, p. 105103, 2021. [71] H. Zhong, Y. Tian, N. Gao, K. Lu, and J. Wu, 'Ultra-thin composite underwater honeycomb-type acoustic metamaterial with broadband sound insulation and high hydrostatic pressure resistance,' Composite Structures, vol. 277, p. 114603, 2021. [72] C. Yu, M. Duan, W. He, F. Xin, and T. J. Lu, 'Underwater anechoic layer with parallel metallic plate insertions: theoretical modelling,' Journal of Micromechanics and Microengineering, vol. 31, no. 7, p. 074002, 2021. [73] Y. Zhang and L. Cheng, 'Ultra-thin and broadband low-frequency underwater acoustic meta-absorber,' International Journal of Mechanical Sciences, vol. 210, p. 106732, 2021. [74] L. B. Wang, C. Z. Ma, and J. H. Wu, 'A thin meta-structure with multi-order resonance for underwater broadband sound absorption in low frequency,' Applied Acoustics, vol. 179, p. 108025, 2021. [75] T. Wang, J. Liu, and M. Chen, 'Underwater sound absorption of a meta-absorption layer with double negativity,' Applied Acoustics, vol. 181, p. 108182, 2021. [76] H. Wu, H. Zhang, and C. Hao, 'Reconfigurable spiral underwater sound-absorbing metasurfaces,' Extreme Mechanics Letters, vol. 47, p. 101361, 2021. [77] X. Jia, G. Jin, K. Shi, C. Bu, and T. Ye, 'A hybrid acoustic structure for low-frequency and broadband underwater sound absorption,' Journal of Low Frequency Noise, Vibration and Active Control, p. 14613484221081846, 2022.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84803-
dc.description.abstract本文以週期性排列空隙水下吸音材為基礎,考慮雙橡膠在不同斜面角度下對吸音係數的影響,將斜面雙橡膠的概念和週期性排列空隙水下吸音材相結合,提出一種新的水下吸音材設計方向,來提升有效吸音頻寬。本文首先對幾何參數進行討論,得到一組在四千到九千赫茲間具有吸音係數大於0.7的單橡膠水下吸音材參數,加入斜面雙橡膠概念後使吸音係數大於0.7的頻寬拓展至三千赫茲到九千赫茲。提出等效模型能計算出吸音係數峰值所在的頻率,降低參數討論時的繁瑣性,此等效模型亦能用於斜面雙橡膠水下吸音材設計。考量到水下吸音材在受靜水壓後造成的形變和應力集中問題對具有最佳有效吸音頻寬的模型進行調整,雖然有效吸音頻寬相較未調整前略微變窄,但吸音材的應力集中與形變情形有所降低,且整體有效吸音頻寬相較單橡膠設計仍有拓寬。最後將調整後的斜面雙橡膠吸音材設計從二維模型轉變為三維模型,考慮不同空隙形狀,以甜甜圈形的空隙和二維結果最為相近。同時聲源以不同角度入射吸音材探討吸音性能的改變,以更符合實際使用場景。本文提出一種水下吸音材設計的新思路,具斜面雙橡膠水下吸音材能夠提升低頻的吸音性能,拓寬水下吸音材的有效吸音頻寬。同時考慮到實際應用的各種情況對設計的吸音材進行討論,說明本文提出的設計具有實際應用的潛力。zh_TW
dc.description.abstractBased on the underwater absorber with periodic voids. We consider the influence of absorption coefficient by double-rubber with different inclined plane angles. This paper combines the concept of double-rubber with inclined plane and periodic voids underwater absorber, proposing a new underwater absorber design. The design improve the effective sound absorption bandwidth. In this paper, the geometric parameters are first discussed, and a group of geometric parameters with absorption coefficient greater than 0.7 between 4kHz and 9kHz are obtained. Combing the concept of double-rubber with inclined plane, the bandwidth of absorption coefficient greater than 0.7 is enlarged that the bandwidth is between 3kHz and 9kHz. The frequency of the absorption coefficient peaks can be calculated through the effective model, which can reduce the complexity of parameters discussion. This effective model can also be used for the design of double rubber underwater absorber with inclined plane. Considering the influence of hydrostatic pressure for the deformation and stress concentration of the underwater absorber, the model with widest effective absorption bandwidth would be adjusted. Although the absorption bandwidth is slightly narrower than before the adjustment, the stress concentration and deformation situation are reduced. The overall absorption bandwidth is still wider than the single rubber design. Finally, the adjusted design of the double-rubber absorber with inclined plane was transformed from two-dimensional model to three-dimensional model. Considering different void shapes, the absorption coefficient of doughnut-shaped voids is the most similar to the two-dimensional result. The change of absorption coefficient by oblique sound incidence is also considered. This paper proposes a new idea for the design of underwater absorber. The design of double-rubber with inclined plane can improve the low frequency absorption performance. At the same time, the absorber is in consideration of various situations of application, which indicates that the design proposed in this paper has the potential to be used as an underwater absorber.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:26:27Z (GMT). No. of bitstreams: 1
U0001-3008202214323000.pdf: 5261534 bytes, checksum: fb368f02f068118c253d88423fbf3b1d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xi 第1章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的 1 1.3 重要性與貢獻 2 1.4 名詞對照與符號說明 2 1.4.1 英文專有名詞與中文翻譯對照 2 1.4.2 符號說明表 4 第2章 文獻回顧 7 2.1 超穎材料 7 2.2 吸音超穎材料 11 2.3 水下吸音材 13 第3章 研究方法 18 3.1 研究架構與流程 18 3.2 聲波方程式 18 3.2.1 狀態方程式 19 3.2.2 連續方程式 19 3.2.3 尤拉方程式 20 3.2.4 線性波傳方程式 21 3.3 波傳現象與吸音係數計算 23 3.3.1 平面波傳與聲阻抗 23 3.3.2 轉移函數法 26 3.3.3 吸音係數 28 3.4 有限元素數模擬 29 3.4.1 有限元素模擬設定 29 3.4.2 幾何參數討論模型 30 3.4.3 橡膠B不同斜面角度之模型 31 3.4.4 具斜面雙橡膠水下吸音材 32 3.4.5 靜水壓與模型調整 33 3.4.6 三維模型 35 第4章 結果 37 4.1 有限元素模擬設定結果 37 4.1.1 理論計算與模擬相互比較結果 37 4.2 幾何參數討論結果 38 4.2.1 單位晶格常數 38 4.2.2 厚度 39 4.2.3 空隙和水表面的距離 40 4.2.4 空隙半徑 42 4.2.5 標準組模態振型 44 4.2.6 等效模型 45 4.2.7 Model A幾何參數 52 4.3 橡膠B不同斜面角度之模型結果 53 4.3.1 Model B模型吸音係數結果 53 4.4 Model C模型結果 54 4.4.1 Model C模型吸音係數結果 54 4.5 模型調整結果 59 4.5.1 模型調整吸音係數結果 59 4.5.2 靜水壓模擬結果 60 4.5.3 最終設計選擇 61 4.6 三維模型結果 62 4.6.1 球形空隙結果 62 4.6.2 圓柱形空隙結果 63 4.6.3 甜甜圈形空隙結果 64 第5章 討論 66 5.1 幾何參數結果討論 66 5.2 Model B結果討論 66 5.2.1 Model B裡的剪切波 66 5.2.2 橡膠B損耗因子 67 5.3 Model C結果討論 68 5.3.1 Model C模態振型 68 5.3.2 等效模型應用於Model C之討論 70 5.4 靜水壓模擬和模型調整結果討論 74 5.4.1 模型調整吸音係數結果討論 74 5.5 三維模型結果討論 75 5.5.1 Model E模態振型 75 5.6 斜向入射 76 5.6.1 斜向入射模型 76 5.6.2 斜向入射結果 78 5.6.3 斜向入射結果討論 79 第6章 結論與未來展望 83 6.1 結論 83 6.2 未來展望 84 參考文獻 85
dc.language.isozh-TW
dc.subject靜水壓zh_TW
dc.subject斜面雙橡膠設計zh_TW
dc.subject等效模型zh_TW
dc.subject斜向入射zh_TW
dc.subject水下吸音材zh_TW
dc.subjectoblique incidenceen
dc.subjectunderwater absorberen
dc.subjecteffective modelen
dc.subjectdouble rubber with inclined planeen
dc.subjecthydrostatic pressureen
dc.title具斜面雙橡膠水下吸音材設計與分析zh_TW
dc.titleThe Design and Analysis for Underwater Acoustic Absorber of Double Rubber with Inclined Planeen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王昭男(Chao-Nan Wang),楊舜涵(Shun-Han Yang),黃勝翊(Hseng-Ji Hunag)
dc.subject.keyword水下吸音材,等效模型,斜面雙橡膠設計,靜水壓,斜向入射,zh_TW
dc.subject.keywordunderwater absorber,effective model,double rubber with inclined plane,hydrostatic pressure,oblique incidence,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202202970
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
dc.date.embargo-lift2027-08-31-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-3008202214323000.pdf
  未授權公開取用
5.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved