Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成(Chien-Cheng Chang)
dc.contributor.authorYi-Xian Yangen
dc.contributor.author楊譯賢zh_TW
dc.date.accessioned2023-03-19T22:26:02Z-
dc.date.copyright2022-08-31
dc.date.issued2022
dc.date.submitted2022-08-31
dc.identifier.citation1. Atwoli, L,Baqui AH, Benfield T, Bosurgi R, Godlee F, Hancocks S, Horton R, Laybourn-Langton L, Monteiro CA, Norman I, Patrick K, Praities N, Olde Rikkert MGM, Rubin EJ, Sahni P, Smith R, Talley N, Turale S, Vázquez D. Call for emergency action to limit global temperature increases, restore biodiversity, and protect health: Wealthy nations must do much more, much faster. Nutrition Reviews, 2021. 79(11): p. 1183-1185. 2. Cronshaw, I., World Energy Outlook 2014 projections to 2040: natural gas and coal trade, and the role of China. Australian Journal of Agricultural and Resource Economics, 2015. 59(4): p. 571-585. 3. Petrova-Koch, V., Milestones of solar conversion and photovoltaics, in High-Efficient Low-Cost Photovoltaics. 2020, Springer. p. 1-7. 4. Zaidi, B., Introductory chapter: Introduction to photovoltaic effect. Solar Panels and Photovoltaic Materials, 2018: p. 1-8. 5. Miles, R., K. Hynes, and I. Forbes, Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Progress in crystal growth and characterization of materials, 2005. 51(1-3): p. 1-42. 6. Szabo, L., The history of using solar energy, in 2017 International Conference on Modern Power Systems (MPS). 2017. p. 1-8. 7. Raut, K.H., H.N. Chopde, and D.W. Deshmukh, A review on comparative studies of diverse generation in solar cell. International Journal of Electrical Engineering and Ethics, 2018. 1(3): p. 1-9. 8. Sharma, S., K.K. Jain, and A. Sharma, Solar cells: in research and applications—a review. Materials Sciences and Applications, 2015. 6(12): p. 1145. 9. Yan, J. and B.R. Saunders, Third-generation solar cells: a review and comparison of polymer: fullerene, hybrid polymer and perovskite solar cells. Rsc Advances, 2014. 4(82): p. 43286-43314. 10. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012. 338(6107): p. 643-647. 11. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society, 2009. 131(17): p. 6050-6051. 12. Kumar, N.S. and K.C.B. Naidu, A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021. 7(5): p. 940-956. 13. Christians, J.A., P.A. Miranda Herrera, and P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society, 2015. 137(4): p. 1530-1538. 14. Y. Rong, L. Liu, A. Mei, X. Li, H. Han, Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015. 5(20): p. 1501066. 15. Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Angew., Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition, 2017. 56(5): p. 1190-1212. 16. H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie, Y. Liu, Organic‐Salt‐Assisted Crystal Growth and Orientation of Quasi‐2D Ruddlesden–Popper Perovskites for Solar Cells with Efficiency over 19%. Advanced Materials, 2020. 32(33): p. 2001470. 17. Kim, B. and S.I. Seok, Molecular aspects of organic cations affecting the humidity stability of perovskites. Energy & Environmental Science, 2020. 13(3): p. 805-820. 18. Changyong Lan, Ziyao Zhou, Renjie Wei, Johnny C. Ho, Two-dimensional perovskite materials: from synthesis to energy-related applications. Materials today energy, 2019. 11: p. 61-82. 19. Chang, YH., Lin, JC., Chen, YC, Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale research letters, 2018. 13(1): p. 1-7. 20. S. Zhao, M. Qin, H. Wang, J. Xie, F. Xie, J. Chen, X. Lu, K. Yan, J. Xu, Cascade Type‐II 2D/3D Perovskite Heterojunctions for Enhanced Stability and Photovoltaic Efficiency. Solar RRL, 2020. 4(10): p. 2000282. 21. Adam H. Slavney, Rebecca W. Smaha, Ian C. Smith, Adam Jaffe, Daiki Umeyama, and Hemamala I. Karunadasa, Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers. Inorganic chemistry, 2017. 56(1): p. 46-55. 22. J. Wang, J. Dong, F. Lu, C. Sun, Q. Zhang and N. Wang, Two-dimensional lead-free halide perovskite materials and devices. Journal of Materials Chemistry A, 2019. 7(41): p. 23563-23576. 23. Hussain, C.M., Handbook of nanomaterials for industrial applications. 2018: Elsevier. 24. Dambhare, M.V., B. Butey, and S. Moharil. Solar photovoltaic technology: A review of different types of solar cells and its future trends. in Journal of Physics: Conference Series. 2021. IOP Publishing. 25. NREL, “best research cell efficienties, “ ed. National Renewable Energy Laboratory, Golden, CO., 2022. 26. Rose, G., De novis quibusdam fossilibus quae in montibus Uraliis inveniuntur. 1839: typis AG Schadii. 27. K. Ji, M. Anaya, A. Abfalterer and S. D. Stranks, Halide Perovskite Light‐Emitting Diode Technologies. Advanced Optical Materials, 2021. 9(18): p. 2002128. 28. V. L. Guerra, P. Kovaříček, V. Valeš, K. Drogowska, T. Verhagen, J. Vejpravova, Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene. Nanoscale, 2018. 10(7): p. 3198-3211. 29. J. Qiu, Y. Zheng, Y. Xia, L. Chao, Y. Chen and W. Huang, Rapid crystallization for efficient 2D Ruddlesden–Popper (2DRP) perovskite solar cells. Advanced Functional Materials, 2019. 29(47): p. 1806831. 30. Xing, G,B.Wu,X,M.Li,B. Du,Q.Wei. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature communications, 2017. 8(1): p. 1-9. 31. X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Ruddlesden–popper perovskites: synthesis and optical properties for optoelectronic applications. Advanced Science, 2019. 6(22): p. 1900941. 32. Ruddlesden, S. and P. Popper, New compounds of the K2NiF4 type. Acta Crystallographica, 1957. 10(8): p. 538-539. 33. Gangadharan, D.T. and D. Ma, Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells. Energy & Environmental Science, 2019. 12(10): p. 2860-2889. 34. J. Calabrese, N. Jones, R. Harlow, N. Herron, D. Thorn and Y. Wang, Preparation and characterization of layered lead halide compounds. Journal of the American Chemical Society, 1991. 113(6): p. 2328-2330. 35. V.M.Goldschmidt, Die Gesetze der Krystallochemie. Die Naturwissenschaften 1926. 14(21): p. 477-485. 36. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 2016. 28(1): p. 284-292. 37. S. Ramos-Terron, A. D. Jodlowski, C. Verdugo-Escamilla, L. Camacho and G. de Miguel, Relaxing the Goldschmidt Tolerance Factor: Sizable Incorporation of the Guanidinium Cation into a Two-Dimensional Ruddlesden–Popper Perovskite. Chemistry of Materials, 2020. 32(9): p. 4024-4037. 38. L. Lang, J.-H. Yang, H.-R. Liu, H. Xiang and X. Gong, First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A, 2014. 378(3): p. 290-293. 39. Cheng, Z. and J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm, 2010. 12(10): p. 2646-2662. 40. E.-B. Kim, M. S. Akhtar, H.-S. Shin, S. Ameen and M. K. Nazeeruddin, A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021. 48: p. 100405. 41. T. J. Jacobsson, M. Pazoki, A. Hagfeldt and T. Edvinsson, Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH3NH3SrI3. The Journal of Physical Chemistry C, 2015. 119(46): p. 25673-25683. 42. H. Ren, S. Yu, L. Chao, Y. Xia, Y. Sun, S. Zuo., Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nature Photonics, 2020. 14(3): p. 154-163. 43. L. Zhang, Q. Kang, Y. Song, D. Chi, S. Huang and G. He, Grain Boundary Passivation with Dion–Jacobson Phase Perovskites for High‐Performance Pb–Sn Mixed Narrow‐Bandgap Perovskite Solar Cells. Solar RRL, 2021. 5(4): p. 2000681. 44. P. Liu, N. Han, W. Wang, R. Ran, W. Zhou and Z. Shao, High‐quality ruddlesden–popper perovskite film formation for high‐performance perovskite solar cells. Advanced Materials, 2021. 33(10): p. 2002582. 45. X, Tian.Y. Zhang,R. Zheng,D. Wei and J.liu, Two-dimensional organic–inorganic hybrid Ruddlesden–Popper perovskite materials: preparation, enhanced stability, and applications in photodetection. Sustainable Energy & Fuels, 2020. 4(5): p. 2087-2113. 46. O. Nazarenko, M. R. Kotyrba, S. Yakunin, M. Aebli, G. Rainò, B. M. Benin, Guanidinium-formamidinium lead iodide: a layered perovskite-related compound with red luminescence at room temperature. Journal of the American Chemical Society, 2018. 140(11): p. 3850-3853. 47. JW. E. I. Jing, W. Qiu-wen, S. U. N. Xiang-yu and L. I. Hong-bo, Research progress of quasi-two-dimensional perovskite solar cells. Chinese Optics, 2021. 14(1): p. 100-116. 48. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 2016. 28(8): p. 2852-2867. 49. Ortiz‐Cervantes, C., P. Carmona‐Monroy, and D. Solis‐Ibarra, Two‐dimensional halide perovskites in solar cells: 2D or not 2D? ChemSusChem, 2019. 12(8): p. 1560-1575. 50. Rühle, S., Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar energy, 2016. 130: p. 139-147. 51. Kitazawa, N., Excitons in two-dimensional layered perovskite compounds:(C6H5C2H4NH3) 2Pb (Br, I) 4 and (C6H5C2H4NH3) 2Pb (Cl, Br) 4. Materials Science and Engineering: B, 1997. 49(3): p. 233-238. 52. T. M. Koh, K. Thirumal, H. S. Soo and N. Mathews, Multidimensional perovskites: a mixed cation approach towards ambient stable and tunable perovskite photovoltaics. ChemSusChem, 2016. 9(18): p. 2541-2558. 53. C.-H. Li, M.-Y. Liao, C.-H. Chen and C.-C. Chueh, Recent progress of anion-based 2D perovskites with different halide substitutions. Journal of Materials Chemistry C, 2020. 8(13): p. 4294-4302. 54. H. Wang, C. C. Chan, M. Chu, J. Xie, S. Zhao, X. Guo, Interlayer cross‐linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling. Solar RRL, 2020. 4(4): p. 1900578. 55. C. Liang, D. Zhao, Y. Li, X. Li, S. Peng, G. Shao, Ruddlesden–Popper perovskite for stable solar cells. Energy & Environmental Materials, 2018. 1(4): p. 221-231. 56. Y. Xu, M. Wang, Y. Lei, Z. Ci and Z. Jin, Crystallization kinetics in 2D perovskite solar cells. Advanced Energy Materials, 2020. 10(43): p. 2002558. 57. J. Liu, J. Leng, K. Wu, J. Zhang and S. Jin, Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. Journal of the American Chemical Society, 2017. 139(4): p. 1432-1435. 58. Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application. Journal of Materials Chemistry A, 2019. 7(23): p. 13860-13872. 59. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp and M. G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015. 137(24): p. 7843-7850. 60. C. Zuo, H. J. Bolink, H. Han, J.Huang, D. Cahen and L.Ding, Advances in perovskite solar cells. Advanced Science, 2016. 3(7): p. 1500324. 61. Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, Challenges for commercializing perovskite solar cells. Science, 2018. 361(6408): p. eaat8235. 62. H. Li, F. Li, Z. Shen, S.-T. Han, J. Chen, C. Dong, Photoferroelectric perovskite solar cells: Principles, advances and insights. Nano Today, 2021. 37: p. 101062. 63. Mora-Seró, I., How do perovskite solar cells work? Joule, 2018. 2(4): p. 585-587. 64. Qi, B. and J. Wang, Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 2013. 15(23): p. 8972-8982. 65. Chikate, B.V., Y. Sadawarte, and B. Sewagram, The factors affecting the performance of solar cell. International journal of computer applications, 2015. 1(1): p. 0975-8887. 66. Jao, M.-H., H.-C. Liao, and W.-F. Su, Achieving a high fill factor for organic solar cells. Journal of Materials Chemistry A, 2016. 4(16): p. 5784-5801. 67. I. C. Smith, E. T. Hoke, D. Solis‐Ibarra, M. D. McGehee and H. I. Karunadasa, A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability. Angewandte Chemie International Edition, 2014. 53(42): p. 11232-11235. 68. H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016. 536(7616): p. 312-316. 69. R. Quintero-Bermudez, A. Gold-Parker, A. H. Proppe, R. Munir, Z. Yang, S. O. Kelley, Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature materials, 2018. 17(10): p. 900-907. 70. Bartók-Pįrtay, A., The Gaussian Approximation Potential: an interatomic potential derived from first principles quantum mechanics. 2010: Springer Science & Business Media. 71. A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles and G. J. Tucker, Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. Journal of Computational Physics, 2015. 285: p. 316-330. 72. Born, M. and J.R. Oppenheimer, On the quantum theory of molecules. Сборник статей к мультимедийному электронному учебно-методическому комплексу по дисциплине «физика атома и атомных явлений»/отв. ред. Шундалов МБ; БГУ, Физический факультет, 1927. 73. Fock, V., Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 1930. 61(1): p. 126-148. 74. Matsen, F.A. and A.A. Cantu, Spin-free quantum chemistry. VII. The Slater determinant. The Journal of Physical Chemistry, 1969. 73(8): p. 2488-2494. 75. Kohn, W., A.D. Becke, and R.G. Parr, Density functional theory of electronic structure. The Journal of Physical Chemistry, 1996. 100(31): p. 12974-12980. 76. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864. 77. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133. 78. Kohn, W. and L. Sham, Quantum density oscillations in an inhomogeneous electron gas. Physical Review, 1965. 137(6A): p. A1697. 79. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800. 80. Schwerdtfeger, P., The pseudopotential approximation in electronic structure theory. ChemPhysChem, 2011. 12(17): p. 3143-3155. 81. M. C. Payne, M. P. Teter, D. C. Allan, T. Arias and a. J. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of modern physics, 1992. 64(4): p. 1045. 82. Blöchl, P.E., Projector augmented-wave method. Physical review B, 1994. 50(24): p. 17953. 83. Feynman, R.P., Forces in molecules. Physical review, 1939. 56(4): p. 340. 84. Bloch, F., Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für physik, 1929. 52(7): p. 555-600. 85. Schultz, P.A., Local electrostatic moments and periodic boundary conditions. Physical Review B, 1999. 60(3): p. 1551. 86. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 1996. 6(1): p. 15-50. 87. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical review B, 1976. 13(12): p. 5188. 88. Alder, B.J. and T.E. Wainwright, Studies in molecular dynamics. I. General method. The Journal of Chemical Physics, 1959. 31(2): p. 459-466. 89. A. P. Bartók, M. C. Payne, R. Kondor and G. Csányi, Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Physical review letters, 2010. 104(13): p. 136403. 90. Verlet, L., Computer' experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 1967. 159(1): p. 98. 91. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 2017: Oxford university press. 92. Gibbs, J.W., On the equilibrium of heterogeneous substances. 1879. 93. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 1984. 81(1): p. 511-519. 94. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical review A, 1985. 31(3): p. 1695. 95. Metropolis, N. and S. Ulam, The monte carlo method. Journal of the American statistical association, 1949. 44(247): p. 335-341. 96. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines. The journal of chemical physics, 1953. 21(6): p. 1087-1092. 97. LeSar, R., Introduction to computational materials science: fundamentals to applications. 2013: Cambridge University Press. 98. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. De Freitas, Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 2015. 104(1): p. 148-175. 99. Brochu, E., V.M. Cora, and N. De Freitas, A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010. 100. Grado, L.L., M.D. Johnson, and T.I. Netoff, Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease. PLoS computational biology, 2018. 14(12): p. e1006606. 101. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995. 117(1): p. 1-19. 102. Mitzi, D.B., Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3) 2MI4 (M= Ge, Sn, Pb). Chemistry of materials, 1996. 8(3): p. 791-800. 103. A. Fraccarollo, V. Cantatore, G. Boschetto, L. Marchese and M. Cossi, Ab initio modeling of 2D layered organohalide lead perovskites. The Journal of Chemical Physics, 2016. 144(16): p. 164701. 104. Momma, K. and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of applied crystallography, 2011. 44(6): p. 1272-1276. 105. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 2010. 132(15): p. 154104. 106. Egger, D.A. and L. Kronik, Role of dispersive interactions in determining structural properties of organic–inorganic halide perovskites: insights from first-principles calculations. The journal of physical chemistry letters, 2014. 5(15): p. 2728-2733. 107. Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and simulation in materials science and engineering, 2009. 18(1): p. 015012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84795-
dc.description.abstract近年來,二維R-P鈣鈦礦材料是光電和光伏應用領域中具有前途的替代品,無機層與有機層的交互擺列構成了量子阱,賦予了更多樣化的化學性質。而有機陽離子的引入有效地將無機八面體的離子晶格與周圍的水分子隔離開來,使得它在環境條件下相對於三維對應物,具有更出色的穩定性而引起了廣泛的研究。而二維R-P材料之激子結合能和帶隙與陰離子無機層的層數直接相關,其值皆會隨著鈣鈦礦層數的增加而減少。 二維R-P鈣鈦礦的化學式為(R-NH3)2A(n-1)BnX3n+1,近期實驗表明,對於選定的正丁基銨(n-Butylammonium,BA)與苯乙胺(Phenethylamine,PEA)與陽離子比率,合成物的鈣鈦礦層數分佈並不均勻,若將此材料應用於太陽能電池上,其分佈對於提高元件的效率來說至關重要,而不同的有機陽離子也會對鈣鈦礦造成不一樣的影響,於是吾人嘗試利用多尺度原子模擬來探討不同有機陽離子之層與層之間的分佈關係。 對於多尺度原子模擬而言,以量子力學為理論基礎的第一原理計算(Ab initio calculation)雖然可以算出最準確的原子間受力,但缺點是是需要耗費大量的時間以及計算資源,且計算的範圍僅限於幾百顆原子內。古典分子動力學可以考慮大範圍原子尺度的系統,能夠處理第一原理較難解決的問題,但需要一組能充分描述材料特性的勢能函數。於是本研究利用第一原理先獲得一些二維R-P鈣鈦礦以PEA及BA為有機陽離子的訓練資料,再搭配機器學習擬合出能夠精確描述大範圍系統的Spectral Neighbor Analysis Potential(SNAP)勢能函數,並用於進行分子動力學模擬。 之後將完成訓練的勢能函數與訓練集和驗證集進行比較,在能量與原子受力方面都與第一原理的計算結果相符,並且可以在正則系綜下的分子動力學模擬過程中穩定運作,這代表訓練出來的SNAP勢能函數與第一原理相比,除了擁有較高的計算效率,還可以準確的預估更高層數鈣鈦礦結構的化學環境及進行結構最佳化。最後利用Metropolis蒙地卡羅結合分子動力學進行大規模的層交換模擬,並在不同的溫度及初始結構下,分析PEA與BA為間隔物之鈣鈦礦層分佈及其對二維R-P鈣鈦礦光電效率的影響。zh_TW
dc.description.abstractIn recent years, 2D R-P perovskite materials are promising alternatives in optoelectronic and photovoltaic applications, where the alternating arrangement of inorganic and organic layers constitutes a quantum well structures, endowed with more diverse chemical properties. The introduction of organic cations effectively isolates the ionic lattice of the inorganic octahedron from the surrounding water molecules, making it more stable than 3D perovskites under ambient conditions, which has attracted extensive research. Besides, the binding energy and band gap of R-P perovskite materials are directly associate to the number of anionic inorganic perovskite layers, and their values both decrease with the increase of the number of perovskite layers. The 2D R-P perovskite has the chemical formula (R-NH3)2A(n-1)BnX3n+1, and recent experiments have shown that for a selected ratio of phenethylamine (PEA) to n-butylammonium (BA) cations, the synthetic distribution of perovskite layers is not uniform. If this material is applied to solar cells, its distribution is decisive for increasing the efficiency of the element, and different organic cations will also have different effects on perovskite,so we try to use multi-scale atomic simulation to explore the distribution relationship between layers of different organic cations. For multi-scale atomic simulation, although Ab initio calculation based on quantum mechanics can calculate the most accurate interatomic force, the fly in the ointment is that it can be time-consuming and computing resources, and calculations are limited to a few hundred atoms. Classical molecular dynamics can consider a wide range of atomic-scale systems and can deal with problems that are difficult to solve in Ab initio calculation, but requires a set of potential energy functions that can fully describe the properties of materials. Therefore, in our research uses the Ab initio calculation to obtain some training data of 2D R-P perovskite with PEA and BA as organic cations, and then uses machine learning to fit the Spectral Neighbor Analysis Potential (SNAP) potential energy function that can accurately describe the large-scale system, and used to perform molecular dynamics simulations. The trained potential energy function is then compared with the validation set and training set, which are identical to ab initio calculations in terms of energies and atomic forces, and can operate stably during the molecular dynamics simulation process under the canonical ensemble, This means that compared with the Ab initio, the trained SNAP potential energy function not only has higher computational efficiency, but also can accurately predict the chemical environment and optimize the structure of higher-layer perovskite structures. Finally, Finally, a large-scale layer exchange simulation was performed using Metropolis Monte Carlo combined with molecular dynamics, and at different temperatures and initial structures, the distribution of perovskite layers with PEA and BA as spacers and their effect on the photoelectric efficiency of 2D R-P perovskites were analyzed.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:26:02Z (GMT). No. of bitstreams: 1
U0001-3108202211110500.pdf: 6661890 bytes, checksum: 7701cdf8c765f11ed4e4325727e4b564 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 R-P相鈣鈦礦性質介紹 4 1.2.1 材料結構 4 1.2.2 形成與製備方法 7 1.2.3 帶隙(Band gap)與量子阱(Quantum well)結構 9 1.2.4 設備配置與性能 11 1.3 研究動機 13 1.4 文獻回顧 14 第二章 理論介紹與計算方法 20 2.1 第一原理分子動力學計算 20 2.1.1 簡介 20 2.1.2 薛丁格方程式 20 2.1.4 密度泛函理論(Density Functional Theory,DFT) 23 2.1.5 交換相關能(Electron Exchange-Correlation Energy) 25 2.1.6 自洽場方程式(Self-consistent field Equation) 27 2.1.7 贋勢(Pseudopotential) 28 2.1.8 平面波投影方法(Project augmented waves,PAW) 29 2.1.9 費曼-海爾曼定理(Feynman-Hellmann theorem) 30 2.1.10 布洛赫理論(Bloch theorem) 30 2.1.11 VASP(Vienna Ab-initio Simmulation Package) 32 2.2 分子動力學(Molecular dynamics) 33 2.2.1 簡介 33 2.2.2 勢能函數 33 2.2.3 牛頓運動方程式與積分法 35 2.2.4 系綜(ensemble) 38 2.2.5 諾斯-胡佛恆溫法(Nosé–Hoover thermostat) 40 2.3 蒙地卡羅方法(Monte Carlo method) 42 2.3.1 簡介 42 2.3.2 系綜平均(Ensemble averages) 42 2.3.3 Metropolis算法(Metropolis algorithm) 43 2.4 優化方法 45 2.4.1 貝葉斯優化(Bayesian optimization) 45 2.4.2 共軛梯度法(Conjugate gradient method) 49 第三章 模擬流程與SNAP勢能計算 50 3.1 R-P鈣鈦礦建模 51 3.2 VASP設定及結構最佳化(Structure optimization) 52 3.3 SNAP勢能訓練 54 3.3.1 簡介 54 3.3.2 訓練流程 54 3.3.3 貝葉斯最佳化參數設定 56 3.3.4 訓練集生成 57 3.3.5 SNAP勢能計算 58 3.4 蒙地卡羅 58 第四章 結果與討論 62 4.1 簡介 62 4.2 SNAP勢能初始訓練 62 4.2.1 VASP第一原理計算 63 4.2.2 初始訓練結果 65 4.3 訓練集擴展與SNAP再訓練 66 4.3.1 訓練集擴展 66 4.3.2 訓練結果及勢能驗證 69 4.3.3 PEA與BA分子動力學穩定性測試 72 4.4 蒙地卡羅層分佈結果 74 4.4.1 PEA之層分佈計算 74 4.4.2 BA之層分佈計算 76 4.4.3 結論 78 第五章 結論與未來展望 79 5.1 結論 79 5.2 未來展望 79 參考文獻 81
dc.language.isozh-TW
dc.subject分子動力學zh_TW
dc.subject二維R-P鈣鈦礦zh_TW
dc.subjectSNAP勢能zh_TW
dc.subject第一原理zh_TW
dc.subject機器學習zh_TW
dc.subject密度泛函理論zh_TW
dc.subjectMetropolis蒙地卡羅zh_TW
dc.subject2D R-P perovskitesen
dc.subjectMolecular dynamicsen
dc.subjectMetropolis Monte Carloen
dc.subjectDensity functional theoryen
dc.subjectMachine learningen
dc.subjectAb initio calculationen
dc.subjectSNAP potentialen
dc.title利用SNAP勢能和蒙地卡羅模擬二維R-P鈣鈦礦形貌與其對元件性能可能的影響zh_TW
dc.titleMorphology and possible effects on device performance of 2D R-P perovskites by using SNAP potential and Monte Carlo simulationsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee包淳偉(Chun-Wei Pao),張家歐(Chia-Ou Chang),陳瑞琳(Ruey-Lin Chern),周佳靚(Chia-Ching Chou)
dc.subject.keyword二維R-P鈣鈦礦,SNAP勢能,第一原理,機器學習,密度泛函理論,Metropolis蒙地卡羅,分子動力學,zh_TW
dc.subject.keyword2D R-P perovskites,SNAP potential,Ab initio calculation,Machine learning,Density functional theory,Metropolis Monte Carlo,Molecular dynamics,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202203004
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2022-08-31-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-3108202211110500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved