請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84781
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊嘉揚(Jia-Yang Juang) | |
dc.contributor.author | Yu-Chen Yen | en |
dc.contributor.author | 顏宇晨 | zh_TW |
dc.date.accessioned | 2023-03-19T22:25:20Z | - |
dc.date.copyright | 2022-09-07 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-31 | |
dc.identifier.citation | 參考文獻 [1] B. Bar-On et al., 'Structural origins of morphing in plant tissues,' Applied Physics Letters, vol. 105, 2014 [2] D. Hodick and A. Sievers, 'On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis),' Planta, vol. 179, pp. 32-42, 1989 [3] A. G. Volkov, J. C. Foster, T. A. Ashby, R. K. Walker, J. A. Johnson, and V. S. Markin, 'Mimosa pudica: Electrical and mechanical stimulation of plant movements,' Plant, Cell & Environment, vol. 33, pp. 163-73, 2010 [4] K. Song et al., 'Journey of water in pine cones,' Scientific Reports, vol. 5, p. 9963, 2015 [5] H. Hofhuis et al., 'Morphomechanical innovation drives explosive seed dispersal,' Cell, vol. 166, pp. 222-33, 2016 [6] X. Noblin, S. Yang, and J. Dumais, 'Surface tension propulsion of fungal spores,' Journal of Experimental Biology, vol. 212, pp. 2835-43, 2009 [7] A. Boudaoud, 'An introduction to the mechanics of morphogenesis for plant biologists,' Trends in Plant Science, vol. 15, pp. 353-60, 2010 [8] V. Mirabet, P. Das, A. Boudaoud, and O. Hamant, 'The role of mechanical forces in plant morphogenesis,' Annual Review of Plant Biology, vol. 62, pp. 365-85, 2011 [9] S. Li and K. W. Wang, 'Plant-inspired adaptive structures and materials for morphing and actuation: A review,' Bioinspiration & Biomimetics, vol. 12, p. 011001, 2016 [10] R. Baumgartner et al., 'A lesson from plants: High-speed soft robotic actuators,' Advanced Science (Weinheim, Baden-Württemberg, Germany), vol. 7, p. 1903391, 2020 [11] W. Wang, C. Li, M. Cho, and S. H. Ahn, 'Soft tendril-inspired grippers: Shape morphing of programmable polymer-paper bilayer composites,' ACS Applied Materials & Interfaces, vol. 10, pp. 10419-10427, 2018 [12] S. Li, Y. Zhang, and J. Liu, 'Seed ejection mechanism in an Oxalis species,' Scientific Reports, vol. 10, p. 8855, 2020 [13] B. H. Kim et al., 'Three-dimensional electronic microfliers inspired by wind-dispersed seeds,' Nature, vol. 597, pp. 503-510, 2021 [14] A. Ahmed, S. Arya, V. Gupta, H. Furukawa, and A. Khosla, '4D printing: Fundamentals, materials, applications and challenges,' Polymer, vol. 228, 2021 [15] J. Choi, O. C. Kwon, W. Jo, H. J. Lee, and M.-W. Moon, '4D printing technology: A review,' 3D Printing and Additive Manufacturing, vol. 2, pp. 159-167, 2015 [16] S. Tibbits, C. McKnelly, C. Olguin, D. Dikovsky, and S. Hirsch, '4D printing and universal transformation,' 2014 [17] S. Tibbits, '4D printing: Multi‐material shape change,' Architectural Design, vol. 84, pp. 116-121, 2014 [18] Q. Zhang, K. Zhang, and G. Hu, 'Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique,' Scientific Reports, vol. 6, p. 22431, 2016 [19] J. A. Hiltz, 'Shape Memory Polymers - Literature Review,' Defense Technical Information Center, Canada, 2002. [20] X. Wu, W. Huang, Y. Zhao, Z. Ding, C. Tang, and J. Zhang, 'Mechanisms of the shape memory effect in polymeric materials,' Polymers, vol. 5, pp. 1169-1202, 2013 [21] T. Xie, 'Recent advances in polymer shape memory,' Polymer, vol. 52, pp. 4985-5000, 2011 [22] C. A. Harper, Handbook of Plastics, Elastomers, and Composites. USA: McGraw-Hill Education, 2002. [23] X. Luo and P. T. Mather, 'Preparation and characterization of shape memory elastomeric composites,' Macromolecules, vol. 42, pp. 7251-7253, 2009 [24] T. Takahashi, N. Hayashi, and S. Hayashi, 'Structure and properties of shape-memory polyurethane block copolymers,' Journal of Applied Polymer Science, vol. 60, pp. 1061-1069, 1996 [25] M. R. Saeb, Y. Mohammadi, T. S. Kermaniyan, P. Zinck, and F. J. Stadler, 'Unspoken aspects of chain shuttling reactions: Patterning the molecular landscape of olefin multi-block copolymers,' Polymer, vol. 116, pp. 55-75, 2017 [26] L. Sun et al., 'Heating-responsive shape-memory effect in thermoplastic polyurethanes with low melt-flow index,' Macromolecular Chemistry and Physics, vol. 215, pp. 2430-2436, 2014 [27] M. Bodaghi, A. R. Damanpack, and W. H. Liao, 'Triple shape memory polymers by 4D printing,' Smart Materials and Structures, vol. 27, 2018 [28] M. Mehrpouya, H. Vahabi, S. Janbaz, A. Darafsheh, T. R. Mazur, and S. Ramakrishna, '4D printing of shape memory polylactic acid (PLA),' Polymer, vol. 230, 2021 [29] Q. Zhao, H. J. Qi, and T. Xie, 'Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,' Progress in Polymer Science, vol. 49-50, pp. 79-120, 2015 [30] M. Behl and A. Lendlein, 'Shape-memory polymers,' Materials Today, vol. 10, pp. 20-28, 2007 [31] J. Zhang et al., 'Self-healable and recyclable triple-shape PPDO–PTMEG co-network constructed through thermoreversible Diels–Alder reaction,' Polymer Chemistry, vol. 3, 2012 [32] T. Xie, 'Tunable polymer multi-shape memory effect,' Nature, vol. 464, pp. 267-70, 2010 [33] M. Zare, M. P. Prabhakaran, N. Parvin, and S. Ramakrishna, 'Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications,' Chemical Engineering Journal, vol. 374, pp. 706-720, 2019 [34] K. K. Westbrook et al., 'Two-way reversible shape memory effects in a free-standing polymer composite,' Smart Materials and Structures, vol. 20, 2011 [35] S. Tibbits, 'The emergence of “4D printing”,' in TED conference, 2013. [36] J. Wu et al., 'Multi-shape active composites by 3D printing of digital shape memory polymers,' Scientific Reports, vol. 6, p. 24224, 2016 [37] B. An et al., 'Thermorph: Democratizing 4D printing of self-folding materials and interfaces,' presented at the Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018. [38] T. van Manen, S. Janbaz, and A. A. Zadpoor, 'Programming 2D/3D shape-shifting with hobbyist 3D printers,' Materials Horizons, vol. 4, pp. 1064-1069, 2017 [39] J. W. Boley et al., 'Shape-shifting structured lattices via multimaterial 4D printing,' Proceedings of the National Academy of Sciences of the United States of America, vol. 116, pp. 20856-20862, 2019 [40] F. Momeni, S. M.Mehdi Hassani.N, X. Liu, and J. Ni, 'A review of 4D printing,' Materials & Design, vol. 122, pp. 42-79, 2017 [41] L. Ionov, 'Hydrogel-based actuators: Possibilities and limitations,' Materials Today, vol. 17, pp. 494-503, 2014 [42] Z. L. Wu et al., 'Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses,' Nature Communications, vol. 4, p. 1586, 2013 [43] J. Yin et al., 'Precisely defining local gradients of stimuli-responsive hydrogels for complex 2D-to-4D shape evolutions,' Small, vol. 18, p. e2104440, 2022 [44] S. J. Jeon, A. W. Hauser, and R. C. Hayward, 'Shape-morphing materials from stimuli-responsive hydrogel hybrids,' Accounts of Chemical Research, vol. 50, pp. 161-169, 2017 [45] E. Siefert, E. Reyssat, J. Bico, and B. Roman, 'Bio-inspired pneumatic shape-morphing elastomers,' Nature Materials, vol. 18, pp. 24-28, 2019 [46] X. Kuang, K. Chen, C. K. Dunn, J. Wu, V. C. F. Li, and H. J. Qi, '3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing,' ACS Applied Materials & Interfaces, vol. 10, pp. 7381-7388, 2018 [47] Z. Ding, C. Yuan, X. Peng, T. Wang, H. J. Qi, and M. L. Dunn, 'Direct 4D printing via active composite materials,' Science Advances, vol. 3, p. e1602890, 2017 [48] Y. Forterre, J. M. Skotheim, J. Dumais, and L. Mahadevan, 'How the Venus flytrap snaps,' Nature, vol. 433, pp. 421-425, 2005 [49] I. Burgert and P. Fratzl, 'Actuation systems in plants as prototypes for bioinspired devices,' Philosophical Transactions of the Royal Society A, vol. 367, pp. 1541-57, 2009 [50] S. Armon, E. Efrati, R. Kupferman, and E. Sharon, 'Geometry and mechanics in the opening of chiral seed pods,' Science, vol. 333, pp. 1726-1730, 2011 [51] S. J. Gerbode, J. R. Puzey, A. G. McCormick, and L. Mahadevan, 'How the cucumber tendril coils and overwinds,' Science, vol. 337, pp. 1087-1091, 2012 [52] M. F. Ashby, 'Technology of the 1990s: Advanced materials and predictive design,' Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 322, pp. 393-407, 1997 [53] S. A. Wainwright, J. Gosline, W. Biggs, and J. D. Currey, Mechanical Design In Organisms. London: Princeton University Press, 1982. [54] U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, 'Bioinspired structural materials,' Nature Materials, vol. 14, pp. 23-36, 2015 [55] F. J. Martin-Martinez, K. Jin, D. Lopez Barreiro, and M. J. Buehler, 'The rise of hierarchical nanostructured materials from renewable sources: Learning from nature,' ACS Nano, vol. 12, pp. 7425-7433, 2018 [56] K. Oliver, A. Seddon, and R. S. Trask, 'Morphing in nature and beyond: A review of natural and synthetic shape-changing materials and mechanisms,' Journal of Materials Science, vol. 51, pp. 10663-10689, 2016 [57] R. F. Gibson, Principles of Composite Material Mechanics. Florida: CRC press, 2016. [58] G. H. Staab, 'Laminate Analysis,' in Laminar Composites, 2015, pp. 189-284. [59] N. Takeda and S. Ogihara, 'Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates,' Composites Science and Technology, vol. 52, pp. 309-318, 1994 [60] R. Luterbacher, R. S. Trask, and I. P. Bond, 'Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications,' Smart Materials and Structures, vol. 25, 2016 [61] M. Seale and N. Nakayama, 'From passive to informed: Mechanical mechanisms of seed dispersal,' New Phytologist, vol. 225, pp. 653-658, 2020 [62] D. Lentink, W. B. Dickson, J. L. van Leeuwen, and M. H. Dickinson, 'Leading-edge vortices elevate lift of autorotating plant seeds,' Science, vol. 324, pp. 1438-40, 2009 [63] M. Horbens, M. Eder, and C. Neinhuis, 'A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties,' Acta Biomaterialia, vol. 28, pp. 13-22, 2015 [64] Q. Chen, S. N. Gorb, E. Gorb, and N. Pugno, 'Mechanics of plant fruit hooks,' Journal of The Royal Society Interface, vol. 10, p. 20120913, 2013 [65] Y. Abraham and R. Elbaum, 'Hygroscopic movements in Geraniaceae: The structural variations that are responsible for coiling or bending,' New Phytologist, vol. 199, pp. 584-594, 2013 [66] M. Hayashi, K. L. Feilich, and D. J. Ellerby, 'The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis),' Journal of Experimental Botany, vol. 60, pp. 2045-53, 2009 [67] D. Evangelista, S. Hotton, and J. Dumais, 'The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae),' Journal of Experimental Biology, vol. 214, pp. 521-9, 2011 [68] J. Rabault, R. A. Fauli, and A. Carlson, 'Curving to fly: Synthetic adaptation unveils optimal flight performance of whirling fruits,' Physical Review Letters, vol. 122, p. 024501, 2019 [69] Y. Endo, J. Sakamoto, Y. Kashiwano, H. Yokota, S. Nakamura, and E. Kinoshita, 'A biomechanical study on burst mechanisms of plant fruit: Stress analysis of pericarps before bursting,' Journal of the Mechanical Behavior of Biomedical Materials, vol. 3, pp. 512-9, 2010 [70] T. Beer and M. Swaine, 'On the theory of explosively dispersed seeds,' New Phytologist, vol. 78, pp. 681-694, 1977 [71] M. Hayashi, S. P. Gerry, and D. J. Ellerby, 'The seed dispersal catapult of Cardamine parviflora (Brassicaceae) is efficient but unreliable,' American Journal of Botany, vol. 97, pp. 1595-601, 2010 [72] R. D. Deegan, 'Finessing the fracture energy barrier in ballistic seed dispersal,' Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 5166-9, 2012 [73] A. L. Routier-Kierzkowska and R. S. Smith, 'Measuring the mechanics of morphogenesis,' Current Opinion in Plant Biology, vol. 16, pp. 25-32, 2013 [74] L. J. Gibson, 'The hierarchical structure and mechanics of plant materials,' Journal of The Royal Society Interface, vol. 9, pp. 2749-66, 2012 [75] H. Vogler, D. Felekis, B. J. Nelson, and U. Grossniklaus, 'Measuring the mechanical properties of plant cell walls,' Plants (Basel), vol. 4, pp. 167-82, 2015 [76] E. Chanliaud and M. J. Gidley, 'In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites,' The Plant Journal, vol. 20, pp. 25-35, 1999 [77] D. J. Cosgrove, 'Wall extensibility: Its nature, measurement and relationship to plant cell growth,' New Phytologist, vol. 124, pp. 1-23, 1993 [78] C. Hawes, A. Osterrieder, I. A. Sparkes, and T. Ketelaar, 'Optical tweezers for the micromanipulation of plant cytoplasm and organelles,' Current Opinion in Plant Biology, vol. 13, pp. 731-5, 2010 [79] J. Zlatanova and S. H. Leuba, 'Magnetic tweezers: A sensitive tool to study DNA and chromatin at the single-molecule level,' Biochemistry and Cell Biology, vol. 81, pp. 151-9, 2003 [80] A. Geitmann, 'Experimental approaches used to quantify physical parameters at cellular and subcellular levels,' American Journal of Botany, vol. 93, pp. 1380-90, 2006 [81] D. C. Lin, E. K. Dimitriadis, and F. Horkay, 'Robust strategies for automated AFM force curve analysis--I. Non-adhesive indentation of soft, inhomogeneous materials,' Journal of Biomechanical Engineering, vol. 129, pp. 430-40, 2007 [82] P. Milani et al., 'In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy,' The Plant Journal, vol. 67, pp. 1116-23, 2011 [83] A. Peaucelle, S. A. Braybrook, L. Le Guillou, E. Bron, C. Kuhlemeier, and H. Hofte, 'Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis,' Current Biology, vol. 21, pp. 1720-6, 2011 [84] A. L. Routier-Kierzkowska et al., 'Cellular force microscopy for in vivo measurements of plant tissue mechanics,' Plant Physiology, vol. 158, pp. 1514-22, 2012 [85] D. Tabor, The Hardness of Metals. New York: Oxford University Press, 2000. [86] H. Hertz, 'Ueber die berührung fester elastischer körper,' 1882 [87] I. N. Sneddon, 'The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,' International Journal of Engineering Science, vol. 3, pp. 47-57, 1965 [88] W. C. Oliver and G. M. Pharr, 'An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,' Journal of Materials Research, vol. 7, pp. 1564-1583, 1992 [89] K. M. Mussert, W. P. Vellinga, A. Bakker, and S. Van Der Zwaag, 'A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061 - Al2O3 MMC,' Journal of Materials Science, vol. 37, pp. 789-794, 2002 [90] M. Aoki and J. Y. Juang, 'Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling,' Royal Society Open Science, vol. 5, p. 171962, 2018 [91] 徐亦賢, '3D列印之超彈性材料蒲松比精密量測與4D列印之平面網格變形──面具製作搭配反向設計,' 機械工程學研究所, 國立臺灣大學, 2021. [92] SMP Technologies Incorporation. Shape Memory Polymer │SMP Technologies Inc. Available: http://www.smptechno.com/index_en.html [93] INPLUS.TW. 3D列印線材中的變形金剛 Available: https://inplus.tw/archives/5863 [94] R. A. Auras, L.-T. Lim, S. E. Selke, and H. Tsuji, Poly (lactic acid): Synthesis, Structures, Properties, Processing, and Applications. New Work: Wiley, 2011. [95] MTS Systems Corporation. Landmark® Servohydraulic Test Systems Available: https://www.mts.com/en/products/materials/dynamic-materials-test-systems/landmark-servohydraulic [96] Weiss Technik. Tensile Test–Temperature Chamber, TensileEvent Available: https://www.weiss-technik.com/en/products/produkte-detail/tensile-test-temperature-chamber-tensileevent [97] Y. Lindekens. Brief Description of The Reichert-Jung Hn-40 Sledge Microtome Available: http://www.microscopy-uk.org.uk/mag/indexmag.html?http://www.microscopy-uk.org.uk/mag/artmar07/yl-para3.html [98] Brucher Hysitron. Hysitron TI 980 Nanoindenter Available: https://www.bruker.com/en/products-and-solutions/test-and-measurement/nanomechanical-test-systems/hysitron-ti-980-nanoindenter.html [99] Phenom. Phenom Desktop SEM Available: https://phenom-world.com/microscopes/phenom-pro [100] Phantom. PCC Software Available: https://www.phantomhighspeed.com/resourcesandsupport/phantomresources/pccsoftware [101] 蔡青芳, '種子傳播機制—以風力傳播與開裂傳播為例,' 機械工程學研究所, 國立台灣大學, 2022. [102] Z. Liu, Z. Zhang, and R. O. Ritchie, 'Structural orientation and anisotropy in biological materials: Functional designs and mechanics,' Advanced Functional Materials, vol. 30, 2020 [103] W. Gindl and T. Schöberl, 'The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements,' Composites Part A: Applied Science and Manufacturing, vol. 35, pp. 1345-1349, 2004 [104] T. T. Kozlowski, Seed Biology: Importance, Development, and Germination. New York: Elsevier, 2012. [105] C. Dawson, J. F. V. Vincent, and A.-M. Rocca, 'How pine cones open,' Nature, vol. 390, pp. 668-668, 1997 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84781 | - |
dc.description.abstract | 洋紫荊(Bauhinia blackeana)常作為行道樹與園藝景觀來進行栽培,其果實以果莢的型式存在,並以如爆炸般的方式進行開裂將能量傳予種子以進行散播。根據野外觀察,洋紫荊果莢與其他豆科植物不同之處,在於開裂後果莢以「內捲」之型態存在,經過一段時間後則會翻轉成為「外翻」之姿態,具有兩種截然不同的型態,而目前並無研究針對此現象背後的力學機制進行探討。為了解洋紫荊果莢形成兩種獨特的螺旋型態的機制,本研究分別針對其分層結構、機械性質以及收縮方向進行觀察與量測,並將上述的實驗結果透過製作合成模型(Synthetic model)驗證果莢具有兩種螺旋型態的機制。 過去針對植物型態變化的研究多以水凝膠或是矽膠以灌模的方式製作合成模型,而灌模的過程繁雜,需另外製作模具使製作的時間成本高。而本研究藉由4D列印的方式製作合成模型,4D列印為3D列印技術的延伸,於3D列印中添加智能材料使模型受外界刺激後能再次變形,因此能藉由製造簡單的結構變形為複雜的結構,能夠節省許多的時間。此外由於受環境刺激後開始變形的概念與果莢型態變化的原理類似,所以適合以4D列印的方式進行型態模擬。本研究使用熔融沉積式(Fused deposition modeling, FDM)的3D列印機搭配PLA與形狀記憶線材SMP55進行4D列印模型的製作,並針對不同列印參數進行實驗與觀察該列印參數對模型變形的影響,最後以果莢的各項分析結果與列印參數對應以做出合成模型來驗證洋紫荊果莢的變形機制。 由實驗結果得知,洋紫荊果莢由內到外分別由纖維細胞、厚壁細胞、薄壁細胞以及外果皮厚壁細胞四種細胞組成,彼此之間的排列方向與收縮方向相互垂直,同時透過4D列印模型的類比成功模擬出洋紫荊果莢的兩種型態,確立了洋紫荊果莢的螺旋型態與其對應的形成機制:內捲為完整的四層結構,並且其螺旋方向由纖維細胞之收縮主導;由於薄壁細胞與厚壁細胞的分離使厚壁細胞得以收縮,而厚壁細胞的主要收縮方向與纖維細胞垂直,因此果莢形成螺旋方向相反的外翻型態,此時便轉換成由厚壁細胞主導。此外,本研究針對洋紫荊果莢於開裂時的能量進行探討,能量轉換效率範圍為4.81%至58.42%。轉換效率範圍雖廣,但與其他文獻之果實相比仍為較有效率之種子傳播方式,同時也透過4D列印的方式模擬出類似於果莢爆炸開裂的模式,於近乎瞬間即完成開裂過程。 | zh_TW |
dc.description.abstract | Bauhinia blackeana is often cultivated as a street tree and for horticultural landscaping, and its fruit is in the form of seed pods that burst explosively, also called pod-shatter, to transfer energy to the seeds for dispersal. According to field observations, the difference between the seed pods of B. blackeana and other leguminous plants is that the seed pods maintain the form of 'inversion' after pod-shatter, and after a while, they transform into the form of 'eversion,' which means that the seed pods have two distinct helical shapes. However, no study in the literature has explored this phenomenon so far. To understand the underlying mechanics of the formation of two unique helical shapes of B. blackeana seed pods, we conducted a combined experimental and numerical study. We first measured the layered structure, mechanical properties, and shrinkage ratio of each layer of B. blackeana seed pods. We then created 4D-printed synthetic models that mimic the actual seed pod’s mechanical structure and properties, reproducing the two distinct helical shapes and providing insights into the formation mechanism. Past studies on plant shape transformation used hydrogel or silicone to make synthetic models by filling a mold. However, the filling process requires additional molds and is complicated and time-consuming. In this study, synthetic models were made by 4D printing. 4D printing is an extension of 3D printing technology. Smart materials are added to 3D printing so the model can be deformed again after being stimulated by heat. Therefore, 4D printing can save significant time by manufacturing simple structures and deforming them into complex ones. In addition, the concept of deformation after being stimulated by the environment is similar to the principle of seed pods shape transformation; it is suitable for shape simulation by 4D printing. A fused deposition modeling (FDM) 3D printer was used with PLA and a shape memory filament SMP55 to make a 4D printing model, and experiments were carried out for different printing parameters to observe the effect of the printing parameters on the deformation of the model. Finally, the analysis results of the seed pods correspond to the printing parameters to make a synthetic model to verify the deformation mechanism of the seed pods of B. blackeana. Our experimental results show that the seed pods of B. blackeana are composed of four layers of cells: fiber cells, sclerenchyma cells, parenchyma cells, and exocarp sclerenchyma cells. The arrangement and shrinkage directions of the tissues are perpendicular to each other. Furthermore, the analogy through 4D printing successfully simulates the two helical shapes of B. blackeana seed pods and confirms the corresponding mechanism of these two helical shapes: the 'inversion' is a complete four-layer structure, and its helical direction is dominated by the shrinkage of fiber cells. Because the separation of parenchyma cells and sclerenchyma cells allows sclerenchyma cells to shrink, and the main shrinkage direction of sclerenchyma cells is perpendicular to the fiber cells, the seed pods form 'eversion' with opposite helical directions. At this time, the 'eversion' is dominated by sclerenchyma cells. In addition, this study investigated the energy conversion of B. blackeana seed pods pod-shatter, and the energy conversion efficiency ranged from 4.81% to 58.42%. Although the conversion efficiency varies widely, it is still a more efficient way of seed dispersal than other plant species that utilize a similar mechanism. Moreover, we also demonstrate that the pod-shatter process of the 4D-printed models can occur and be complete within a short time, similar to actual seed pods in the field. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:25:20Z (GMT). No. of bitstreams: 1 U0001-3108202214494800.pdf: 9618988 bytes, checksum: c8238f670dc2fbc75c5fc02e5327a59e (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 目錄 誌謝 I 摘要 III ABSTRACT V 目錄 VII 表目錄 X 圖目錄 XI 符號表 XVI 第1章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 3 第2章 相關理論與文獻回顧 4 2.1 形狀記憶聚合物 4 2.1.1 玻璃轉化現象 4 2.1.2 形狀記憶效應的機制 5 2.2 4D列印 9 2.3 植物組織與結構分析 12 2.3.1 層板之複合材料力學 14 2.4 果莢開裂之能量分析 19 2.5 細胞機械性質量測 21 2.5.1 奈米壓痕試驗 23 2.6 實驗室研究回顧 26 2.6.1 利用挫屈成形之薄壁封閉結構 26 2.6.2 4D列印之平面網格變形─面具製作搭配反向設計 26 第3章 實驗方法與使用工具 28 3.1 4D列印 28 3.1.1 3D列印 28 3.1.2 SMP55 (Shape Memory Polymer 55) 30 3.1.3 PLA (Polyactic Acid) 31 3.1.4 A4列印紙 32 3.1.5 加熱方式 33 3.1.6 控溫拉伸試驗 35 3.2 果莢分層結構分析 36 3.2.1 果莢試片製作 38 3.2.2 奈米壓痕試驗 41 3.2.3 掃描式電子顯微鏡 43 3.2.4 細胞收縮試驗 44 3.3 果莢開裂實驗 46 3.3.1 實驗流程與架設 46 3.3.2 高速攝影機 47 3.3.3 種子與果莢速度分析 49 3.3.4 果莢瓣壓縮試驗 50 3.4 LS-DYNA 52 第4章 結果與討論 53 4.1 4D列印參數對變形影響 53 4.1.1 列印速度 54 4.1.2 列印角度 55 4.1.3 長寬比 57 4.1.4 填充率 59 4.1.5 SMP55與PLA橡膠態機械性質量測 62 4.2 果莢分層結構分析 64 4.2.1 微結構觀察 65 4.2.2 細胞機械性質之量測 70 4.2.3 細胞收縮量測 74 4.2.4 4D列印合成模型 80 4.2.5 有限元素模擬型態 88 4.2.6 果莢變形機制確立 91 4.3 果莢開裂實驗 92 4.3.1 瓣內儲存能量 92 4.3.2 種子動能與瓣動能 92 4.3.3 能量轉換效率 94 第5章 結論與未來展望 98 5.1 結論 98 5.2 未來展望 100 參考文獻 101 表目錄 表 2.1 機械性質量測方法的優缺點[75] 22 表 3.1 Creator Pro與Creator 3規格比較 29 表 3.2 常見3D列印材料列印參數比較表 31 表 3.3 拉伸試片列印參數與尺寸 36 表 3.4 探針參數表 42 表 3.5 高速攝影機之規格 48 表 4.1 SMP55之楊氏係數平均值與標準差 62 表 4.2 PLA之楊氏係數平均值與標準差 62 表 4.3 奈米壓痕試驗之統計表 72 表 4.4 果莢細胞之簡化楊氏係數與真實材料楊氏係數 73 表 4.5 細胞收縮率之平均收縮率與標準差 77 表 4.6 果莢型態4D列印合成模型之參數 81 表 4.7 果莢開裂4D列印合成模型之參數 85 表 4.8 收縮率與熱膨脹係數之換算 88 表 4.9 三種細胞母群體收縮率之平均值推測 90 表 4.10 果莢各能量之平均與標準差 93 表 4.11 能量轉換效率之比較 97 圖目錄 圖 2.1 聚合物楊氏係數與溫度關係圖[22] 5 圖 2.2 形狀記憶效應機制示意圖[28] 6 圖 2.3 形狀記憶效應步驟圖[29] 7 圖 2.4 編程示意圖(a)熱編程(b)冷編程[27] 7 圖 2.5 單向與雙向形狀記憶效應示意圖[34] 8 圖 2.6 四種雙向形狀記憶效應方式[33] 8 圖 2.7 3D列印與4D列印的差異[40] 9 圖 2.8 低維模型轉換為高維(a)一維結構型態轉換[17] (b)仿生花朵形狀變換[18] (c)高斯人臉曲面變形[39] 9 圖 2.9 光聚合時長不同使凝膠結構變化[43] 10 圖 2.10 各式3D列印應用於4D列印 (a)FDM [37] (b)DIW [46] (c)Polyjet [47] 11 圖 2.11 植物的形狀變化(a)捕蠅草的閉合[48] (b)松果鱗片的閉合[4] (c)小黃瓜鬚的捲曲[51] (d)碎米薺果實的開裂種子傳播[5] 12 圖 2.12 龍牙花果莢多尺度結構分析示意圖[1] 13 圖 2.13 自然界中之複合材料(a)骨頭(b)竹子[54] 14 圖 2.14 具方向性(±45°)之板層堆疊為層板示意圖[57] 15 圖 2.15 層板單元所受之應力[57] 16 圖 2.16 層板幾何與編號之關係圖[57] 16 圖 2.17 層板受負載之方向(a)單位長度受的力(b)單位長度受的力矩[58] 17 圖 2.18 (a)風力傳播種子[68] (b)勾狀結構種子[64] (c)爆炸傳播種子[69] 19 圖 2.19 植物細胞機械性質量測尖端尺度與量測力量比較[84] 22 圖 2.20 奈米壓痕試驗負載與位移關係圖[89] 25 圖 2.21 利用挫屈成形之薄壁封閉結構[90] 26 圖 2.22 4D列印之平面網格變形(a)二微平面網格設計(b)三維人臉模型 (c)作為設計目標的三個能面[91] 27 圖 3.1 3D列印機。分別為Creator Pro (左)與Creator 3 (右) 29 圖 3.2 SMP楊氏係數—溫度曲線圖[92] 30 圖 3.3 形狀記憶示意圖[93] 30 圖 3.4 解剖顯微鏡拍攝之表面形貌(a) 3D列印膠帶(b) A4列印紙 32 圖 3.5 列印於紙上之示意圖 33 圖 3.6 實驗架設與兩種加熱方式(a)實驗架設(b)熱水(c)蒸氣 34 圖 3.7 控溫拉伸試驗機 35 圖 3.8 洋紫荊果莢照片(a)完整未開裂之樣貌(b)開裂後之樣貌 37 圖 3.9 果莢分層結構示意圖與方向定義 37 圖 3.10 果莢切片流程示意圖 38 圖 3.11 Reichert-Jung Hn40切片機[97] 39 圖 3.12 奈米壓痕試片(左)水平纖維方向試片(右)垂直纖維方向試片 39 圖 3.13 微結構觀察之試片 40 圖 3.14 奈米壓痕試驗機(Hysitron公司,型號TI 980 TriboIndenter) [98] 41 圖 3.15 奈米壓痕位移與時間函數 42 圖 3.16 實際果莢奈米壓痕畫面,以內果皮試片為例 42 圖 3.17 掃描式電子顯微鏡(Phenom公司,型號G2 Pro) [99] 43 圖 3.18 細胞解離步驟與收縮實驗示意圖 45 圖 3.19 左側果莢紅框為絨毛層,右側為刮除絨毛層後之果莢切片 45 圖 3.20 果莢細段樣本於解離液中之變化 45 圖 3.21 果莢開裂實驗示意圖 47 圖 3.22 (a) Phantom V7.3高速攝影機與Vivitar鏡頭(b) Phantom V310與Nikon鏡頭 48 圖 3.23 Tracker分析軟體介面 49 圖 3.24 果莢於壓縮前之型態 50 圖 3.25 (a) MTS Criterion Model 42靜態材料試驗機(b)果莢壓縮實驗架設 51 圖 3.26 果莢瓣的壓縮力量與位移曲線圖 51 圖 4.1 3D列印下產生預應力之示意圖 53 圖 4.2 SMP55與PLA之應變與列印速度曲線圖 54 圖 4.3 (a)列印角度示意圖(b) SMP55不同列印角度之變形 55 圖 4.4 不同列印角度之有限元素模擬 56 圖 4.5 列印角度試片示意圖(單位:mm) (a)上視(b)等角視圖(c)彎曲角度 56 圖 4.6 PLA列印角度與試片彎曲角度曲線圖 57 圖 4.7 不同長度與寬度之SMP55對彎曲角度影響曲線圖 58 圖 4.8 試片彎曲之極限(左)長寬比15:10之試片(右)長寬比20:10之試片 58 圖 4.9 (a)捲曲試片尺寸示意圖(b)SMP55之列印角度示意圖 59 圖 4.10 螺旋試片的參數示意圖 59 圖 4.11 螺旋捲曲試片之實際照片 60 圖 4.12 SMP55填充率與螺旋間距與旋轉圈數之關係曲線圖 60 圖 4.13 (a)驅動部分之變形狀況(b)列印樣式對擴張方向應變之影響[38] 61 圖 4.14 拉伸之列印方向與拉伸試片示意圖 63 圖 4.15 模擬驗證實驗量測楊氏係數(黑線為實驗數據平均,紅線為模擬) 63 圖 4.16 果莢外果皮脆化脫落現象 64 圖 4.17 洋紫荊果莢兩種螺旋型態(a)內捲(b)外翻 65 圖 4.18 光學顯微鏡下之影像結果與細胞形貌示意圖 67 圖 4.19 SEM之影像(左)內果皮方向之試片(右)外果皮方向之試片 68 圖 4.20 SEM影像下內捲果莢與外翻果莢之差異 69 圖 4.21 洋紫荊果莢分層結構之示意圖 70 圖 4.22 奈米壓痕光學顯微鏡下外果皮試片之影像 71 圖 4.23 內果皮與外果皮之壓痕方向示意圖 71 圖 4.24 材料楊氏係數Es之盒狀圖 73 圖 4.25 細胞之示意圖(左)外果皮厚壁(中)厚壁細胞(右)纖維細胞 74 圖 4.26 纖維細胞收縮前後之長條圖(左)軸向(右)徑向 75 圖 4.27 厚壁細胞收縮前後之長條圖(左)軸向(右)徑向 75 圖 4.28 外果皮厚壁細胞收縮前後之長條圖(左)軸向(右)徑向 75 圖 4.29 洋紫荊果莢分層細胞之主要收縮方向示意圖 76 圖 4.30 纖維素纖素(cm)與細胞軸向(la)之排列方向(a)纖維細胞(b)厚壁細胞[105] 76 圖 4.31 纖維細胞徑向收縮率之長條圖 78 圖 4.32 厚壁細胞軸向收縮率之長條圖 78 圖 4.33 外果皮厚壁細胞徑向收縮率之長條圖 79 圖 4.34 果莢型態4D列印合成模型與果莢對照示意圖 80 圖 4.35 4D列印合成模型(a)兩片分開(b)頂端黏合對接 81 圖 4.36 4D列印合成模型內捲之型態與真實果莢內捲型態之比較 82 圖 4.37 剝除4D列印模型對應之外果皮分層模擬外果皮脫離 83 圖 4.38 4D列印合成模型外翻之型態與真實果莢外翻型態之比較 84 圖 4.39 果莢開裂4D列印合成模型與果莢對照示意圖 85 圖 4.40 邊緣接合設計概念(a)實際紙張接合(b)紙張邊界接合示意圖 86 圖 4.41 開裂果莢設計(a)設計草圖(b)左右接合後實際模型 86 圖 4.42 果莢開裂4D列印合成模型開裂結果圖 87 圖 4.43 四層模型27個收縮率組合之有限元素模擬型態結果圖[101] 89 圖 4.44 雙層模型4個收縮率組合之有限元素模擬型態結果圖[101] 90 圖 4.45 真實果莢與4D列印合成模型及模擬之型態對照 91 圖 4.46 果莢各能量之盒狀圖 93 圖 4.47 能量轉換效率之盒狀圖 94 圖 4.48 不同儲存方式之能量轉換效率 95 圖 4.49 果莢長度對能量轉換效率 95 圖 4.50 種子與果莢相連之種柄 96 | |
dc.language.iso | zh-TW | |
dc.title | 受洋紫荊果莢螺旋型態啟發之4D列印形狀變換 | zh_TW |
dc.title | Shape Transformation Via 4D Printing Inspired By Bauhinia blackeana Seed Pods | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡佳霖(Jia-Lin Tsai),李春穎(Chun-Ying Lee) | |
dc.subject.keyword | 果莢,3D列印,4D列印,形狀變換,仿生結構, | zh_TW |
dc.subject.keyword | Seed pods,3D printing,4D printing,shape transformation,biomimetic structure, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU202203021 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-31 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3108202214494800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。