Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84777
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorChih-Ting Chenen
dc.contributor.author陳緻庭zh_TW
dc.date.accessioned2023-03-19T22:25:09Z-
dc.date.copyright2022-09-05
dc.date.issued2022
dc.date.submitted2022-08-31
dc.identifier.citation[1] M.-S. Tsai; T.-L. Shen; H.-M. Wu; Y.-M. Liao; Y.-K. Liao; W.-Y. Lee; H.-C. Kuo; Y.-C. Lai; Y.-F. Chen. ACS Appl. Mater. Interfaces 2020, 12, 9755-9765. [2] P. Varga; J. Peto; A. Franko; D. Balla; D. Haja; F. Janky; G. Soos; D. Ficzere; M. Maliosz; L. Toka. Sensors 2020, 20, 828. [3] Y. Liu; M. Pharr; G. A. Salvatore. ACS Nano 2017, 11, 9614-9635. [4] X. Wang; Z. Liu; T. Zhang. Small 2017, 13, 1602790. [5] S. Mishra; Y.-S. Kim; J. Intarasirisawat; Y.-T. Kwon; Y. Lee; M. Mahmood; H.-R. Lim; R. Herbert; K. J. Yu; C. S. Ang; W.-H. Yeo. Sci. Adv. 2020, 6, No. eaay1729. [6] J. Kim; H. J. Shim; J. Yang; M. K. Choi; D. C. Kim; J. Kim; T. Hyeon; D.-H. Kim. Adv. Mater. 2017, 29, 1700217. [7] J. Tong; X. Shi; Y. Wang; L. Han; T. Zhai. Sci. China Inf. Sci. 2021, 64, 222401. [8] Y.-T. Hsu; C.-T. Tai; H.-M. Wu; C.-F. Hou; Y.-M. Liao; W.-C. Liao; G. Haider; Y.-C. Hsiao; C.-W. Lee; S.-W. Chang. ACS Nano 2019, 13, 8977-8985. [9] R. P. Wool. Soft Matter 2008, 4, 400-418. [10] A. S. Ahmed; R. V. Ramanujan. Sci. Rep. 2015, 5, 13773. [11] T.-P. Huynh; P. Sonar; H. Haick. Adv. Mater. 2017, 29, 1604973. [12] M. Khatib; T.-P. Huynh; Y. Deng; Y. D. Horev; W. Saliba; W. Wu; H. Haick. Small 2019, 15, 1803939. [13] B. C. Tee; C. Wang; R. Allen; Z. Bao. Nat Nanotechnol 2012, 7, 825-832. [14] Y. Zhao; Y. Zhang; H. Sun; X. Dong; J. Cao; L. Wang; Y. Xu; J. Ren; Y. Hwang; I. H. Son; X. Huang; Y. Wang; H. Peng. Angew. Chem. Int. Ed. 2016, 55, 14384-14388. [15] J. Ko; X. Wu; A. Surendran; B. T. Muhammad; W. L. Leong. ACS Appl. Mater. Interfaces 2020, 12, 33979-33988. [16] W. Nie; J.-C. Blancon; A. J. Neukirch; K. Appavoo; H. Tsai; M. Chhowalla; M. A. Alam; M. Y. Sfeir; C. Katan; J. Even; S. Tretiak; J. J. Crochet; G. Gupta; A. D. Mohite. Nat. Commun. 2016, 7, 11574. [17] S.-W. Hwang; D.-H. Kim; H. Tao; T.-i. Kim; S. Kim; K. J. Yu; B. Panilaitis; J.-W. Jeong; J.-K. Song; F. G. Omenetto; J. A. Rogers. Adv. Funct. Mater. 2013, 23, 4087-4093. [18] N. R. Hosseini; J.-S. Lee. Adv. Funct. Mater. 2015, 25, 5586-5592. [19] H. Zhu; Z. Xiao; D. Liu; Y. Li; N. J. Weadock; Z. Fang; J. Huang; L. Hu. Energy Environ. Sci. 2013, 6, 2105-2111. [20] Y. Lee; S. J. Kim; J. G. Yun; C. Kim; S. Y. Lee; B. Lee. Opt. Express 2018, 26, 32063-32073. [21] H. Zhu; X. Yin; L. Chen; Z. Zhu; X. Li. Opt. Lett. 2015, 40, 4595-4598. [22] T. U. Tumkur; L. Gu; J. K. Kitur; E. E. Narimanov; M. A. Noginov. Appl. Phys. Lett. 2012, 100, 161103. [23] A. J. Hoffman; L. Alekseyev; S. S. Howard; K. J. Franz; D. Wasserman; V. A. Podolskiy; E. E. Narimanov; D. L. Sivco; C. Gmachl. Nat. Mater. 2007, 6, 946-950. [24] J. Yao; Z. Liu; Y. Liu; Y. Wang; C. Sun; G. Bartal; A. M. Stacy; X. Zhang. Science 2008, 321, 930. [25] Z. Duan; X. Tang; Z. Wang; Y. Zhang; X. Chen; M. Chen; Y. Gong. Nat. Commun. 2017, 8, 14901. [26] H. Husu; R. Siikanen; J. Mäkitalo; J. Lehtolahti; J. Laukkanen; M. Kuittinen; M. Kauranen. Nano Lett. 2012, 12, 673-677. [27] A. Poddubny; I. Iorsh; P. Belov; Y. Kivshar. Nat. Photonics 2013, 7, 948-957. [28] D. Lu; J. J. Kan; E. E. Fullerton; Z. Liu. Nat. Nanotechnol. 2014, 9, 48-53. [29] O. Kidwai; S. V. Zhukovsky; J. E. Sipe. Phys. Rev. A: At., Mol., Opt. Phys. 2012, 85, 053842. [30] Z. Liu; H. Lee; Y. Xiong; C. Sun; X. Zhang. Science 2007, 315, 1686-1686. [31] N. Vasilantonakis; M. E. Nasir; W. Dickson; G. A. Wurtz; A. V. Zayats. Laser Photonics Rev. 2015, 9, 345-353. [32] R. Chandrasekar; Z. Wang; X. Meng; S. I. Azzam; M. Y. Shalaginov; A. Lagutchev; Y. L. Kim; A. Wei; A. V. Kildishev; A. Boltasseva; V. M. Shalaev. ACS Photonics 2017, 4, 674-680. [33] B. Wang; X. Zhang; F. J. García-Vidal; X. Yuan; J. Teng. Phys. Rev. Lett. 2012, 109, 073901. [34] K. V. Sreekanth; A. D. Luca; G. Strangi. Appl. Phys. Lett. 2013, 103, 023107. [35] A. Fang; T. Koschny; C. M. Soukoulis. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 245127. [36] C. Rizza; A. Ciattoni; E. Spinozzi; L. Columbo. Opt. Lett. 2012, 37, 3345-3347. [37] V. A. Podolskiy; E. E. Narimanov. Phys. Rev. B 2005, 71, 201101. [38] J. Elser; V. A. Podolskiy. Phys. Rev. Lett. 2008, 100, 066402. [39] H.-I. Lin; C.-C. Wang; K.-C. Shen; M. Y. Shalaginov; P. K. Roy; K. P. Bera; M. Kataria; C. R. Paul Inbaraj; Y.-F. Chen. npj Flex. Electron. 2020, 4, 20. [40] H.-I. Lin; K.-C. Shen; S.-Y. Lin; G. Haider; Y.-H. Li; S.-W. Chang; Y.-F. Chen. Sci. Rep. 2018, 8, 9469. [41] H.-I. Lin; H.-Y. Tan; Y.-M. Liao; K.-C. Shen; M. Y. Shalaginov; M. Kataria; C.-T. Chen; J.-W. Chang; Y.-F. Chen. ACS Appl. Mater. Interfaces 2021, 13, 49224-49231. [42] H.-I. Lin; K.-C. Shen; Y.-M. Liao; Y.-H. Li; P. Perumal; G. Haider; B. H. Cheng; W.-C. Liao; S.-Y. Lin; W.-J. Lin; T.-Y. Lin; Y.-F. Chen. ACS Photonics 2018, 5, 718-727. [43] H.-I. Lin; K. Yadav; K.-C. Shen; G. Haider; P. K. Roy; M. Kataria; T.-J. Chang; Y.-H. Li; T.-Y. Lin; Y.-T. Chen; Y.-F. Chen. ACS Appl. Mater. Interfaces 2019, 11, 1163-1173. [44] M. A. Baqir; P. K. Choudhury; Q. A. Naqvi. Optik 2021, 246, 167850. [45] P. Wang; A. V. Krasavin; F. N. Viscomi; A. M. Adawi; J. S. G. Bouillard; L. Zhang; D. J. Roth; L. Tong; A. V. Zayats. Laser Photonics Rev. 2018, 12, 1800179. [46] S. V. Zhukovsky; O. Kidwai; J. E. Sipe. Opt. Express 2013, 21, 14982-14987. [47] D. S. Wiersma. Nat. Phys. 2008, 4, 359-367. [48] F. Luan; B. Gu; A. S. L. Gomes; K.-T. Yong; S. Wen; P. N. Prasad. Nano Today 2015, 10, 168-192. [49] Y.-J. Lee; C.-Y. Chou; Z.-P. Yang; T. B. H. Nguyen; Y.-C. Yao; T.-W. Yeh; M.-T. Tsai; H.-C. Kuo. Nanoscale 2018, 10, 10403-10411. [50] X. Shi; Y.-M. Liao; H.-Y. Lin; P.-W. Tsao; M.-J. Wu; S.-Y. Lin; H.-H. Hu; Z. Wang; T.-Y. Lin; Y.-C. Lai; Y.-F. Chen. ACS Nano 2017, 11, 7600-7607. [51] C. Y. Su; C. F. Hou; Y. T. Hsu; H. Y. Lin; Y. M. Liao; T. Y. Lin; Y. F. Chen. ACS Appl. Mater. Interfaces 2020, 12, 49122-49129. [52] S.-W. Chang; W.-C. Liao; Y.-M. Liao; H.-I. Lin; H.-Y. Lin; W.-J. Lin; S.-Y. Lin; P. Perumal; G. Haider; C.-T. Tai. Sci. Rep. 2018, 8, 1-10. [53] B. Redding; M. A. Choma; H. Cao. Opt. Lett. 2011, 36, 3404-3406. [54] B. Redding; M. A. Choma; H. Cao. Nat. Photonics 2012, 6, 355-359. [55] M. Barredo-Zuriarrain; I. Iparraguirre; J. Fernández; J. Azkargorta; R. Balda. Laser Phys Lett 2017, 14, 106201. [56] L. Chen; R. Song; C. Lei; W. Yang; J. Hou. Opt. Express 2019, 27, 29781-29788. [57] H. Yi; S.-H. Lee; H. Ko; D. Lee; W.-G. Bae; T.-i. Kim; D. S. Hwang; H. E. Jeong. Adv. Funct. Mater. 2019, 29, 1902720. [58] R. C. Polson; Z. V. Vardeny. Appl. Phys. Lett. 2004, 85, 1289-1291. [59] T. G. Stavropoulos; A. Papastergiou; L. Mpaltadoros; S. Nikolopoulos; I. Kompatsiaris. Sensors 2020, 20, 2826. [60] S. So; J. Mun; J. Rho. ACS Appl. Mater. Interfaces 2019, 11, 24264-24268. [61]孫梓閔. 生物材料穿隧發光二極體與可拉伸半導體隨機雷射之光電特性研究. 國立臺灣大學, 2016. [62] M. S. Rodrigues; J. Borges; C. Lopes; R. M. S. Pereira; M. I. Vasilevskiy; F. Vaz. Applied Sciences 2021, 11, 5388. [63] H. Rabbani-Haghighi. 2011. [64] V. S. Letokhov. Journal of Experimental and Theoretical Physics 1968. [65]王俊喆. 軟性雙曲超穎材料:奈米光子元件的可撓性、可拉伸性與適應性. 國立臺灣大學, 2020. [66] A. V. Kildishev; A. Boltasseva; V. M. Shalaev. Science 2013, 339, 1232009. [67] O. Takayama; A. V. Lavrinenko. J. Opt. Soc. Am. B 2019, 36, F38-F48. [68] D. Chen; D. Wang; Y. Yang; Q. Huang; S. Zhu; Z. Zheng. Advanced Energy Materials 2017, 7, 1700890. [69] A. Elfalaky. IOSR J. Appl. Phys. 2015, 7, 37-45. [70] R. F. Nickerson. J. Appl. Polym. Sci. 1971, 15, 111-116. [71] V. de Zea Bermudez; P. P. de Almeida; J. F. Seita. J Chem Educ 1998, 75, 1410. [72] T.-L. Shen; H.-W. Hu; W.-J. Lin; Y.-M. Liao; T.-P. Chen; Y.-K. Liao; T.-Y. Lin; Y.-F. Chen. Sci. Adv. 2020, 6, eaba1705.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84777-
dc.description.abstract隨著可穿戴式元件的盛行,開發彈性可撓、可拉伸、可自修復日常使用設備的需求急劇擴大,可穿戴技術的發展儼然成為近年研究焦點。與此同時,日益迫切的環境問題也推動了發展可回收設備的需求。而在光電元件的研究領域中,以雙曲線色散著稱的超穎雙曲材料已被證明能夠強烈地促進光與物質的交互作用。然而,超穎雙曲材料的功能往往受限於其龐大的結構,阻礙了其應用前景。於本文,我們運用奈米球殼狀雙曲超穎奈米粒子結構製造出奈米粒子尺度的雙曲超穎材料元件,該元件具有包括可撓、可拉伸、可自修復及可回收的特性。其中,球殼狀雙曲超穎奈米粒子結構能夠強烈增強光與物質的交互作用,並可作為隨機雷射系統中優異的散射介質,並且,這樣的概念已通過本文中的模擬及實驗數據得到證明。本文研究中展示的雙曲超穎材料元件亦透過實驗驗證出其可撓、可拉伸及自修復的特性。此外,我們還根據元件性質展示出一種可行的回收方式。我們相信在本文展示出的奈米粒子尺度雙曲超穎材料元件能彌補傳統雙曲超穎材料元件的缺陷,並揭示奈米球殼狀雙曲超穎奈米粒子結構在各光電元件領域例如:可穿戴元件、物聯網健康檢測器級光通訊領域的巨大前景。zh_TW
dc.description.abstractOf late, tremendous research has been devoted to wearable technology to meet the next generation smart living life. Dramatically expanding demands for developing flexible, robust, self-recoverable and stretchable devices for daily usage have drawn much attention to the related researchers. At the same time, the growing importance of environmental issues urges the requirement of developing recyclable devices. Among research domain of optoelectronic devices, metamaterials with hyperbolic dispersion known as hyperbolic meta-materials (HMMs) have been proven enabling to strongly boost the light-matter interaction. However, the functionality of HMM is often limited by its gigantic structure and hinder the prospects for its applicability. Here, we design, fabricate and demonstrate the first fully nano-particle-based HMM device with multi-functionalities, including self-healing, stretchable and recyclable characteristics. The core-shell hyperbolic meta-nanoparticle (HMNP) structure is able to strongly enhance the light-matter interaction and serve as superior scattering media in a random lasing system. Our proof-of- concept has been demonstrated by simulations and experimental data where a large enhancement of random lasing performance can be observed while choosing the core-shell HMNPs as scatters rather than the reference gold nanoparticles. Interestingly, our designed core-shell HMNPs device enables to remain its functionality under the harsh situations of stretching and damaging. Additionally, a feasible recycling process has also been demonstrated. We then anticipate that our study shown here reveals great prospects for the development of core-shell HMNP devices in a variety of optoelectronic applications, such as wearable widget, IOT health detector, and optical communication by providing new ways of designing.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:25:09Z (GMT). No. of bitstreams: 1
U0001-3008202220303600.pdf: 11040560 bytes, checksum: 060723133bd000cd9869579a7b8d4548 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv Contents v List of Figures vii List of Table ix Chapter 1 Introduction 1 Chapter 2 Theoretical Background 5 2.1 Photoluminescence (PL) 5 2.2 Surface Plasmon effect 7 2.3 Random Laser 9 2.3.1 Traditional Laser to Random Laser 9 2.3.2 Characteristic of Random laser signal 11 2.4 Hyperbolic metamaterial (HMM) 13 2.4.1 Definition and characteristic 13 2.4.2 Calculation for Dispersion of Multi-Layer Structure 15 2.4.3 Light Enhancement of HMM 17 2.5 Self-Healing Materials 18 Chapter 3 Experimental Details 20 3.1 Fabrication of the sample 20 3.2 Random Laser Measurement 21 3.3 Transmission Electron Microscope (TEM) 23 3.4 Finite-Difference Time Domain Simulator 24 Chapter 4 Results and Discussion 26 4.1 Self-Healing HMM Device Proof of Concept 26 4.2 Emission Property 28 4.3 Simulation 30 4.4 Functionality 35 Chapter 5 Conclusion 41 References 42
dc.language.isoen
dc.subject自修復zh_TW
dc.subject雙曲超穎奈米粒子zh_TW
dc.subject可拉伸zh_TW
dc.subject雷射zh_TW
dc.subject可回收zh_TW
dc.subjectlaser actionen
dc.subjectcore-shell hyperbolic meta-nanoparticlesen
dc.subjectself-healingen
dc.subjectstretchableen
dc.subjectrecyclableen
dc.title可自修復、可撓、可回收之奈米球殼狀雙曲超穎奈米粒子低閥值光學元件zh_TW
dc.titleSelf-Healing, Stretchable and Recyclable Core-Shell Hyperbolic Meta-Nanoparticles Device for Low-Threshold Random Lasersen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈志霖(Ji-Lin Shen),許芳琪(Fang-Chi Hsu)
dc.subject.keyword雙曲超穎奈米粒子,自修復,可拉伸,可回收,雷射,zh_TW
dc.subject.keywordcore-shell hyperbolic meta-nanoparticles,self-healing,stretchable,recyclable,laser action,en
dc.relation.page44
dc.identifier.doi10.6342/NTU202202990
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
dc.date.embargo-lift2027-08-30-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-3008202220303600.pdf
  未授權公開取用
10.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved