請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84771完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范致豪(Chihhao Fan) | |
| dc.contributor.author | Hao-Chien Cheng | en |
| dc.contributor.author | 鄭浩謙 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:24:51Z | - |
| dc.date.copyright | 2022-10-19 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-02 | |
| dc.identifier.citation | Achan, J., Talisuna, A. O., Erhart, A., Yeka, A., Tibenderana, J. K., Baliraine, F. N., Rosenthal, P. J., & D'Alessandro, U. (2011). Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malaria journal, 10(1), 1-12. Ahile, U. J., Wuana, R. A., Itodo, A. U., Sha'Ato, R., & Dantas, R. F. (2020). A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: Current trends, knowledge gap and future studies. Science of The Total Environment, 710, 134872. Ahmadzadeh, S., & Dolatabadi, M. (2018). Removal of acetaminophen from hospital wastewater using electro-Fenton process. Environmental earth sciences, 77(2), 1-11. Ahmed, S., Mofijur, M., Nuzhat, S., Chowdhury, A. T., Rafa, N., Uddin, M. A., Inayat, A., Mahlia, T., Ong, H. C., & Chia, W. Y. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of hazardous materials, 125912. Antignac, J.-P., Marchand, P., Le Bizec, B., & Andre, F. (2002). Identification of ractopamine residues in tissue and urine samples at ultra-trace level using liquid chromatography–positive electrospray tandem mass spectrometry. Journal of chromatography B, 774(1), 59-66. Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557-572. Bacon, P., Spalton, D., & Smith, S. (1988). Blindness from quinine toxicity. British journal of ophthalmology, 72(3), 219-224. Bhandari, A., Surampalli, R. Y., Adams, C. D., Champagne, P., Ong, S. K., Tyagi, R., & Zhang, T. C. (2009). CONTAMINANTS OF EMERGING ENVIRONMENTAL CONCERN. Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical reviews, 109(12), 6570-6631. Catalano, D., Odore, R., Amedeo, S., Bellino, C., Biasibetti, E., Miniscalco, B., Perona, G., Pollicino, P., Savarino, P., & Tomassone, L. (2012). Physiopathological changes related to the use of ractopamine in swine: Clinical and pathological investigations. Livestock Science, 144(1-2), 74-81. Chang, C., Xu, G., Bai, Y., Zhang, C., Li, X., Li, M., Liu, Y., & Liu, H. (2013). Online coupling of capillary electrophoresis with direct analysis in real time mass spectrometry. Analytical chemistry, 85(1), 170-176. Chaves, F. P., Gomes, G., Della-Flora, A., Dallegrave, A., Sirtori, C., Saggioro, E. M., & Bila, D. M. (2020). Comparative endocrine disrupting compound removal from real wastewater by UV/Cl and UV/H2O2: Effect of pH, estrogenic activity, transformation products and toxicity. Science of The Total Environment, 746, 141041. Cheeseman, K., & Slater, T. (1993). An introduction to free radical biochemistry. British medical bulletin, 49(3), 481-493. Cheng, F., Zhou, P., Liu, Y., Huo, X., Zhang, J., Yuan, Y., Zhang, H., Lai, B., & Zhang, Y. (2021). Graphene oxide mediated Fe (III) reduction for enhancing Fe (III)/H2O2 Fenton and photo-Fenton oxidation toward chloramphenicol degradation. Science of The Total Environment, 797, 149097. Churchwell, M. I., Holder, C. L., Little, D., Preece, S., Smith, D. J., & Doerge, D. R. (2002). Liquid chromatography/electrospray tandem mass spectrometric analysis of incurred ractopamine residues in livestock tissues. Rapid Communications in Mass Spectrometry, 16(13), 1261-1265. Clarke, R. M., & Cummins, E. (2015). Evaluation of “classic” and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Human and Ecological Risk Assessment: An International Journal, 21(2), 492-513. Comninellis, C., Kapalka, A., Malato, S., Parsons, S. A., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(6), 769-776. Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145-155. Cruz, A., Couto, L., Esplugas, S., & Sans, C. (2017). Study of the contribution of homogeneous catalysis on heterogeneous Fe (III)/alginate mediated photo-Fenton process. Chemical Engineering Journal, 318, 272-280. De Laat, J., & Gallard, H. (1999). Catalytic decomposition of hydrogen peroxide by Fe (III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environmental science & technology, 33(16), 2726-2732. Deng, J., Shao, Y., Gao, N., Xia, S., Tan, C., Zhou, S., & Hu, X. (2013). Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chemical Engineering Journal, 222, 150-158. Dolatabadi, M., & Ahmadzadeh, S. (2019). A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-Fenton process; optimization by response surface methodology. Water Science and Technology, 80(4), 685-694. Duan, X., Yang, S., Wacławek, S., Fang, G., Xiao, R., & Dionysiou, D. D. (2020). Limitations and prospects of sulfate-radical based advanced oxidation processes. Journal of Environmental Chemical Engineering, 8(4), 103849. Dyson, E., Proudfoot, A., Prescott, L., & Heyworth, R. (1985). Death and blindness due to overdose of quinine. Br Med J (Clin Res Ed), 291(6487), 31-33. Fan, C., Tsui, L., & Liao, M.-C. (2011). Parathion degradation and its intermediate formation by Fenton process in neutral environment. Chemosphere, 82(2), 229-236. Fenton, H. J. H. (1894). LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899-910. Gözmen, B., Oturan, M. A., Oturan, N., & Erbatur, O. (2003). Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent. Environmental science & technology, 37(16), 3716-3723. Garbinato, C., Schneider, S. E., Sachett, A., Decui, L., Conterato, G. M., Müller, L. G., & Siebel, A. M. (2020). Exposure to ractopamine hydrochloride induces changes in heart rate and behavior in zebrafish embryos and larvae. Environmental Science and Pollution Research, 27(17), 21468-21475. Ghanbari, F., & Martínez-Huitle, C. A. (2019). Electrochemical advanced oxidation processes coupled with peroxymonosulfate for the treatment of real washing machine effluent: a comparative study. Journal of Electroanalytical Chemistry, 847, 113182. Ghernaout, D., & Elboughdiri, N. (2019). Water Reuse: Emerging Contaminants Elimination—Progress and Trends. Open Access Library Journal, 6(12), 1-9. Giannakis, S. (2019). A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: surface functionalization, biomass treatment, combatting cancer and other medical uses. Applied Catalysis B: Environmental, 248, 309-319. Grassi, M., Kaykioglu, G., Belgiorno, V., & Lofrano, G. (2012). Removal of emerging contaminants from water and wastewater by adsorption process. In Emerging compounds removal from wastewater (pp. 15-37). Springer. Große, M., Ruetalo, N., Businger, R., Rheber, S., Setz, C., Rauch, P., Auth, J., Brysch, E., Schindler, M., & Schubert, U. (2020). Evidence that quinine exhibits antiviral activity against SARS-CoV-2 infection in vitro. Guo, B., Xu, T., Zhang, L., & Li, S. (2020). A heterogeneous fenton-like system with green iron nanoparticles for the removal of bisphenol A: Performance, kinetics and transformation mechanism. Journal of Environmental Management, 272, 111047. Guo, Q., Wicks, J., Yen, C.-N., Scheffler, T., Richert, B., Schinckel, A., Grant, A., & Gerrard, D. (2021). Ractopamine changes in pork quality are not mediated by changes in muscle glycogen or lactate accumulation postmortem. Meat Science, 174, 108418. Gutteridge, J. M., & Halliwell, B. (1989). 1 Iron toxicity and oxygen radicals. Bailliere's clinical haematology, 2(2), 195-256. He, D., Cheng, Y., Zeng, Y., Luo, H., Luo, K., Li, J., Pan, X., Barceló, D., & Crittenden, J. C. (2020). Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: Theoretical and experimental studies. Chemosphere, 240, 124979. Huang, Y.-H., Huang, Y.-F., Chang, P.-S., & Chen, C.-Y. (2008). Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. Journal of hazardous materials, 154(1-3), 655-662. Huang, Y.-H., Su, H.-T., & Lin, L.-W. (2009). Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes. Journal of environmental sciences, 21(1), 35-40. Ikehata, K., & Li, Y. (2018). Ozone-based processes. In Advanced Oxidation Processes for Waste Water Treatment (pp. 115-134). Elsevier. Jiang, C.-c., & Zhang, J.-f. (2007). Progress and prospect in electro-Fenton process for wastewater treatment. Journal of Zhejiang University-SCIENCE A, 8(7), 1118-1125. Kanakaraju, D., Glass, B. D., & Oelgemöller, M. (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. Journal of environmental management, 219, 189-207. Kang, Y. W., & Hwang, K.-Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water research, 34(10), 2786-2790. Klamerth, N., Malato, S., Maldonado, M., Aguera, A., & Fernández-Alba, A. (2010). Application of photo-fenton as a tertiary treatment of emerging contaminants in municipal wastewater. Environmental science & technology, 44(5), 1792-1798. Koppenol, W. (1993). The centennial of the Fenton reaction. Free Radical Biology and Medicine, 15(6), 645-651. Kudláček, K., Nesměrák, K., Štícha, M., Kozlík, P., & Babica, J. (2017). Historical injection solutions of quinine analyzed by HPLC/MS. Monatshefte Für Chemie-Chemical Monthly, 148(9), 1613-1618. Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J.-M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39(1), 75-90. Liang, C., & Su, H.-W. (2009). Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & engineering chemistry research, 48(11), 5558-5562. Liddle, C., Graham, G., Christopher, R., Bhuwapathanapun, S., & Duffield, A. (1981). Identification of new urinary metabolites in man of quinine using methane chemical ionization gas chromatography-mass spectrometry. Xenobiotica, 11(2), 81-87. Lin, A. Y.-C., Lin, C.-F., Chiou, J.-M., & Hong, P. A. (2009). O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. Journal of hazardous materials, 171(1-3), 452-458. Liu, Y., & Adewuyi, Y. G. (2016). A review on removal of elemental mercury from flue gas using advanced oxidation process: chemistry and process. Chemical Engineering Research and Design, 112, 199-250. Ma, J., Ding, Y., Chi, L., Yang, X., Zhong, Y., Wang, Z., & Shi, Q. (2021). Degradation of benzotriazole by sulfate radical-based advanced oxidation process. Environmental technology, 42(2), 238-247. Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics sonochemistry, 17(6), 990-1003. Mandaric, L., Celic, M., Marcé, R., & Petrovic, M. (2015). Introduction on emerging contaminants in rivers and their environmental risk. In Emerging Contaminants in River Ecosystems (pp. 3-25). Springer. Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water research, 139, 118-131. Noguera-Oviedo, K., & Aga, D. S. (2016). Lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of hazardous materials, 316, 242-251. Oturan, N., & Oturan, M. A. (2018). Electro-Fenton process: Background, new developments, and applications. In Electrochemical Water and Wastewater Treatment (pp. 193-221). Elsevier. Pai, C.-W., Leong, D., Chen, C.-Y., & Wang, G.-S. (2020). Occurrences of pharmaceuticals and personal care products in the drinking water of Taiwan and their removal in conventional water treatment processes. Chemosphere, 256, 127002. Pernak, J., Rzemieniecki, T., Klejdysz, T., Qu, F., & Rogers, R. D. (2020). Conversion of Quinine Derivatives into Biologically Active Ionic Liquids: Advantages, Multifunctionality, and Perspectives. ACS Sustainable Chemistry & Engineering, 8(25), 9263-9267. Poynton, H. C., & Vulpe, C. D. (2009). Ecotoxicogenomics: emerging technologies for emerging contaminants 1. JAWRA Journal of the American Water Resources Association, 45(1), 83-96. Reyhani, A., McKenzie, T. G., Fu, Q., & Qiao, G. G. (2019). Fenton‐Chemistry‐Mediated Radical Polymerization. Macromolecular rapid communications, 40(18), 1900220. Shrivas, K., & Wu, H.-F. (2007). Quantitative bioanalysis of quinine by atmospheric pressure-matrix assisted laser desorption/ionization mass spectrometry combined with dynamic drop-to-drop solvent microextraction. Analytica chimica acta, 605(2), 153-158. Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A., & Panizza, M. (2014). Electrochemical advanced oxidation processes: today and tomorrow. A review. Environmental Science and Pollution Research, 21(14), 8336-8367. Tang, Z., Liu, Y., He, M., & Bu, W. (2019). Chemodynamic therapy: tumour microenvironment‐mediated Fenton and Fenton‐like reactions. Angewandte Chemie International Edition, 58(4), 946-956. Umar, M., Aziz, H. A., & Yusoff, M. S. (2010). Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste management, 30(11), 2113-2121. van Tholen, L. (2021). Bisphenol A as the possible additive leaching from nylon and inhibiting the growth of lung organoids Vicente, F., Rosas, J., Santos, A., & Romero, A. (2011). Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process. Chemical Engineering Journal, 172(2-3), 689-697. Wang, F., Qi, X., Mao, L., & Mao, J. (2021). Aligned ferric oxide/graphene with strong coupling effect for high-performance anode. ACS Applied Energy Materials, 4(1), 331-340. Wang, Z., Qiu, W., Pang, S.-y., Zhou, Y., Gao, Y., Guan, C., & Jiang, J. (2019). Further understanding the involvement of Fe (IV) in peroxydisulfate and peroxymonosulfate activation by Fe (II) for oxidative water treatment. Chemical Engineering Journal, 371, 842-847. Wang, Z., Shao, Y., Gao, N., & An, N. (2018). Degradation kinetic of dibutyl phthalate (DBP) by sulfate radical-and hydroxyl radical-based advanced oxidation process in UV/persulfate system. Separation and Purification Technology, 195, 92-100. Wardenier, N., Liu, Z., Nikiforov, A., Van Hulle, S. W., & Leys, C. (2019). Micropollutant elimination by O3, UV and plasma-based AOPs: An evaluation of treatment and energy costs. Chemosphere, 234, 715-724. Whitman, W. B. (2017). Bacteria and the fate of estrogen in the environment. Cell chemical biology, 24(6), 652-653. Xu, X.-R., & Li, X.-Z. (2010). Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and Purification Technology, 72(1), 105-111. Xu, Y., Lin, Z., & Zhang, H. (2016). Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H2O2. Chemical Engineering Journal, 285, 392-401. Ye, Z., Qu, Z., Ma, S., Luo, S., Chen, Y., Chen, H., Chen, Y., Zhao, Z., Chen, M., & Ge, X. (2019). A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol. Science of The Total Environment, 685, 976-985. Yuan, R., Ramjaun, S. N., Wang, Z., & Liu, J. (2011). Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. Journal of hazardous materials, 196, 173-179. Yuan, S., Gou, N., Alshawabkeh, A. N., & Gu, A. Z. (2013). Efficient degradation of contaminants of emerging concerns by a new electro-Fenton process with Ti/MMO cathode. Chemosphere, 93(11), 2796-2804. Zhang, M.-h., Dong, H., Zhao, L., Wang, D.-x., & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110-121. Zhang, Y., & Zhou, M. (2019). A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. Journal of hazardous materials, 362, 436-450. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84771 | - |
| dc.description.abstract | 近年來,新興污染物被定義為「尚未確定或確認」、「不受管制」和「對人類健康和環境構成風險」的化學污染物。現有污水處理廠和淨水廠的處理單元也無法有效去除這類污染物(Mandaric et al., 2015)。在台灣,人們特別關注這個問題,因為台灣在 2020 年初通過了含有萊克多巴胺的美國牛肉進口。此外,由於疫情的爆發,許多學者致力於開發 covid-19 的藥物,然而奎寧是治療covid-19的藥物之一。不幸的是,這兩種化合物都是新興污染物。雖然這些污染物進入環境水體的濃度很低,但長時間暴露後會對生態系統產生不良影響。因此,本研究將實施高級氧化程序來降解目標化合物,透過芬頓降解程序與過硫酸鹽的高級氧化程序作為處理方式並同時比較兩種方法在處理目標污染物的處理效率,並在實驗同時改變催化劑,比較同相催化(硫酸亞鐵)與異相催化(四氧化三鐵)對於目標污染物移除比例的影響;此外,本實驗亦會加入石墨烯與腐植酸作為螯合劑,比較加入螯合劑對於整體反應機制的影響;最後,本研究以會將操作環境調整至中性環境,並模擬在中性偏酸的環境下,芬頓法與過硫酸鹽氧化法的操作可行性。此外,本研究將使用質譜儀來定義氧化程序實驗過程中的中間產物。並將結果輸入計算軟體中,計算生態結構活性關係,以確認降解反應可以解決環境中污染物的生物毒性。 在本研究結果顯示,同相催化與異相催化的比較中可以發現以亞鐵離子作為催化劑的同相催化效果明顯比四氧化三鐵好;加入螯合劑也可以增加整體的反應結果,尤其是在加入石墨烯作為螯合劑時,整體的反應速率與降解效果皆有顯著的提升;在酸性環境下,亞鐵離子更具活性,在中性環境時,亞鐵離子大多轉換為活性不高的鐵離子,因此整體降解效果不如酸性條件,然而,在四氧化三鐵催化實驗中改變pH值,整體結果差異不大,顯示在pH值偏中性或是波動較大的環境中,四氧化三鐵作為高級氧化程序的催化劑有更高的可行性;最後將兩種新興污染物的降解途徑和質譜結果輸入EPI Suite的軟體中,得到目標污染物降解的中間產物的生物毒性,可以發現污染物大多都被降解,整體生物毒性有所下降,因此可以推測芬頓法與過硫酸鹽氧化法在作為污染物降解程序為一種可行的方法。 | zh_TW |
| dc.description.abstract | Emerging pollutants are defined as chemical pollutants that “have not yet been identified or confirmed”, “are unregulated” and “pose a risk to human health and the environment” (Mandaric et al., 2015). This type of pollutant also cannot be effectively removed by the treatment units of existing sewage treatment plants and water purification plants. In Taiwan, people are particularly concerned about this issue because Taiwan passed U.S. beef, containing ractopamine, imports in early 2020. Moreover, due to the outbreak of the epidemic, many scholars have devoted themselves to developing medicines for covid-19. And quinine is one of the medicines for covid-19. Unfortunately, both of these compounds are emerging contaminants. Although the concentrations of these pollutants entering the environmental water body are very low, after a long period of exposure will have a bad impact on the ecosystem. Therefore, this study will implement an advanced oxidation procedure To degrade the target compound, the Fenton degradation process and the advanced oxidation process of persulfate were used as treatment methods and the treatment efficiency of the two methods in treating the target pollutants was compared at the same time, and the catalyst was changed in the experiment at the same time, and the homogeneous catalysis (ferrous sulfate) was compared. ) and heterogeneous catalysis (iron tetroxide) on the removal ratio of target pollutants; in addition, graphene and humic acid will be added as chelating agents in this experiment to compare the effect of adding chelating agents on the overall reaction mechanism; The study will adjust the operating environment to a neutral environment and simulate the operational feasibility of the Fenton method and the persulfate oxidation method in a neutral-to-acidic environment. In addition, this study will use a mass spectrometer to define the oxidation program experiment Intermediate products in the process. And input the results into the calculation software to calculate the ecological structure-activity relationship to confirm that the degradation reaction can solve the biological toxicity of pollutants in the environment. The results of this study showed that in the comparison of homogeneous catalysis and heterogeneous catalysis, it can be found that the homogeneous catalysis effect of ferrous ions as the catalyst is better than that of ferric ferrous oxide. Adding a chelating agent can also increase the overall reaction result, especially when adding graphene as a chelating agent, the overall reaction rate and degradation efficiency are significantly improved. In an acidic environment, ferrous ions are more active. While in a neutral environment, ferrous ions are mostly converted into less active iron ions. Therefore, the overall degradation effect is not as good as the acidic condition. However, in the ferric ferrous oxide catalysis experiment. Changing the pH value only caused little difference, showing that in the environment with a neutral pH value or a large fluctuation, the ferric ferrous oxide as a high-grade catalyst of the advanced oxidation procedure has higher feasibility. Finally, the degradation pathways and mass spectrometry results of the two emerging pollutants are input into the software of EPI Suite to obtain the biological toxicity, and it can be found that most of the pollutants are removed. Therefore, it can be speculated that the Fenton process and the sulfate radical-based advanced oxidation process are feasible methods in the degradation process of pollutants. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:24:51Z (GMT). No. of bitstreams: 1 U0001-3108202223511800.pdf: 10645432 bytes, checksum: 67f3895c0b3e7f7bb6a58c0e52e0a1aa (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 中文摘要 iii Abstract v Table of contents viii List of Figures xi List of Table xiv 1. Introduction 1 1.1 Motivation 1 1.2 Purpose 3 2. Literature Review 4 2.1 Emerging Contaminants 4 2.1.1 Ractopamine 5 2.1.2 Quinine 6 2.2 Traditional Treatment of Wastewater 6 2.2.1 Biological Treatment 7 2.2.2 Physical Treatment 9 2.2.3 Chemical Treatment 9 2.3 Advanced Oxidation Process 10 2.3.1 Ozone-based advanced oxidation processes 11 2.3.2 UV-based advanced oxidation processes 12 2.3.3 Electrochemical-based advanced oxidation processes 13 2.3.4 Physical advanced oxidation processes 14 2.3.5 Catalytic advanced oxidation processes 16 2.4 Fenton Process 16 2.4.1 Fenton process 17 2.4.2 Photo-Fenton process 20 2.4.3 Electro-Fenton process 23 2.5 Sulfate Radical-based Advanced Oxidation Process 25 2.6 Factor effect on degradation efficiency 27 3. Material and Methods 29 3.1 Experimental Framework 29 3.2 Medicines and Equipment 31 3.3 Experiment Procedures 32 3.3.1 Preparation for starting the experiment 32 3.3.2 The procedure of determining the concentrations and mechanisms of target pollutants 34 3.3.3 The methods to measure the pH and redox potential 36 4. Results and Discussion 36 4.1 The effect of the Fenton Process on the removal efficiency of ractopamine 36 4.1.1 The effect of different catalysts on the removal efficiency 36 4.1.2 The effect of different chelating agents on the removal efficiency 38 4.1.3 The effect of different pH environments on the removal efficiency 43 4.2 The effect of sulfate radical-based advanced oxidation process on the removal efficiency of ractopamine 44 4.2.1 The effect of different catalysts on the removal efficiency 44 4.2.2 The effect of different chelating agents on the removal efficiency 45 4.2.3 The effect of different pH environments on the removal efficiency 49 4.3 The effect of different oxidants on the removal efficiency of ractopamine 50 4.4 The effect of the Fenton Process on the removal efficiency of quinine 56 4.4.1 The effect of different catalysts on the removal efficiency 56 4.4.2 The effect of different chelating agents on the removal efficiency 57 4.4.3 The effect of different pH environments on the removal efficiency 61 4.5 The effect of sulfate radical-based advanced oxidation process on the removal efficiency of quinine 62 4.5.1 The effect of different catalysts on the removal efficiency 62 4.5.2 The effect of different chelating agents on the removal efficiency 63 4.5.3 The effect of different pH environments on the removal efficiency 68 4.6 The effect of different oxidants on the removal efficiency of quinine 69 4.7 Comparing the toxicities of the emerging contaminants using ECOSAR 75 5. Conclusion 78 Reference 81 Appendix I 90 Appendix II Kinetics Models 103 Appendix III Biotovicity 109 Appendix VI 口試委員意見回覆單 114 | |
| dc.language.iso | zh-TW | |
| dc.subject | 螯合劑 | zh_TW |
| dc.subject | 高級氧化程序 | zh_TW |
| dc.subject | 新興污染物 | zh_TW |
| dc.subject | 萊克多巴胺 | zh_TW |
| dc.subject | 奎寧 | zh_TW |
| dc.subject | 氧化劑 | zh_TW |
| dc.subject | Advanced oxidation process | en |
| dc.subject | Quinine | en |
| dc.subject | Ractopamine | en |
| dc.subject | Chelating agents | en |
| dc.subject | Oxidants | en |
| dc.subject | Emerging Contaminants | en |
| dc.title | 鐵驅動的高級氧化過程降解新興污染物奎寧和萊克多巴胺:共存螯合劑對處理效率的影響 | zh_TW |
| dc.title | Degradation of Emerging Contaminants of Quinine and Ractopamine by Iron-driven Advanced Oxidation Processes: Impact of Co-existing Chelating Agents on Treatment Efficiency | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王尚禮(Shang-Li Wang),潘述元(Shu-Yuan Pan) | |
| dc.subject.keyword | 新興污染物,高級氧化程序,氧化劑,螯合劑,萊克多巴胺,奎寧, | zh_TW |
| dc.subject.keyword | Emerging Contaminants,Advanced oxidation process,Oxidants,Chelating agents,Ractopamine,Quinine, | en |
| dc.relation.page | 116 | |
| dc.identifier.doi | 10.6342/NTU202203041 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-02 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3108202223511800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
