請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8475完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
| dc.contributor.author | Ting-An Chen | en |
| dc.contributor.author | 陳庭安 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:55:19Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.available | 2021-05-20T00:55:19Z | - |
| dc.date.copyright | 2020-09-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning, 3(1):1–122, 2011. Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing neural networks with the hashing trick. In International conference on machine learning, pages 2285–2294, 2015. Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017. François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258, 2017. Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more complicated network with less inference complexity. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5840–5848, 2017. Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-Rodriguez, Shuang Li, Hongyuan Zha, and Le Song. Coevolve: A joint point process model for information diffusion and network evolution. The Journal of Machine Learning Research, 18(1): 1305–1353, 2017. Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 1440–1448, 2015. Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015. Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural network. In Advances in neural information processing systems, pages 1135–1143, 2015. Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1):83–90, 1971. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating deep convolutional neural networks. arXiv preprint arXiv: 1808.06866, 2018. Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4340– 4349, 2019. Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 1389–1397, 2017. Yiming Hu, Siyang Sun, Jianquan Li, Xingang Wang, and Qingyi Gu. A novel channel pruning method for deep neural network compression. arXiv preprint arXiv: 1805.11394, 2018. Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang, and G Edward Suh. Channel gating neural networks. In Advances in Neural Information Processing Systems, pages 1884–1894, 2019. Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708, 2017. Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In Proceedings of the European conference on computer vision (ECCV), pages 304–320, 2018. Farkhondeh Kiaee, Christian Gagné, and Mahdieh Abbasi. Alternating direction method of multipliers for sparse convolutional neural networks. arXiv preprint arXiv:1611.01590, 2016. Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012. Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016. Jiashi Li, Qi Qi, Jingyu Wang, Ce Ge, Yujian Li, Zhangzhang Yue, and Haifeng Sun. Oicsr: Out-in-channel sparsity regularization for compact deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7046–7055, 2019. Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang. Accelerating convolutional networks via global dynamic filter pruning. In IJCAI, pages 2425–2432, 2018. Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doermann. Towards optimal structured cnn pruning via generative adversarial learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2790–2799, 2019. Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer vision, pages 21–37. Springer, 2016. Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient convolutional networks through network slimming. In Proceedings of the IEEE International Conference on Computer Vision, pages 2736– 2744, 2017. Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440, 2015. Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE international conference on computer vision, pages 5058–5066, 2017. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in natural images with unsupervised feature learning. 2011. Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded fpga platform for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 26–35, 2016. Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, 2016. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. Vladislav Sovrasov. Flops counter for convolutional networks in pytorch framework. https://github.com/sovrasov/flops-counter.pytorch/tree/master/ptflops, 2020. Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In Advances in neural information processing systems, pages 2377–2385, 2015. Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 65–74, 2017. Junsong Wang, Qiuwen Lou, Xiaofan Zhang, Chao Zhu, Yonghua Lin, and Deming Chen. Design flow of accelerating hybrid extremely low bit-width neural network in embedded fpga. In 2018 28th International Conference on Field Programmable Logic and Applications (FPL), pages 163–1636. IEEE, 2018. Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning method for accelerating deep convolutional neural networks. In Advances in Neural Information Processing Systems, pages 2130–2141, 2019. Linyun Yu, Peng Cui, Fei Wang, Chaoming Song, and Shiqiang Yang. From micro to macro: Uncovering and predicting information cascading process with behavioral dynamics. In 2015 IEEE International Conference on Data Mining, pages 559–568. IEEE, 2015. Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9194–9203, 2018. Ali Zarezade, Ali Khodadadi, Mehrdad Farajtabar, Hamid R Rabiee, and Hongyuan Zha. Correlated cascades: Compete or cooperate. In Thirty-First AAAI Conference on Artificial Intelligence, 2017. Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun. Efficient and accurate approximations of nonlinear convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1984–1992, 2015. Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. Variational convolutional neural network pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2780–2789, 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8475 | - |
| dc.description.abstract | 通道剪枝(Channel pruning)為一模型壓縮的方法以加速卷積神經網路 (Convolutional neural networks, CNNs)。然而,近期研究決定結構重要性時並無考慮特徵之冗餘性,以及濾波器於接續數層卷積層之遞減影響。因此本文提出一個兩階段剪枝框架,DOMINOS。在不損失過多準確率下,首先衡量結構重要性以有效移除冗餘模型結構。確立輕量化的模型架構後,DOMINOS 進一步使用注意力機制加以強調富含預測資訊的結構。本文定義 feature representativeness 用以衡量特徵的獨特性,以及定義 domino influences 用以表示濾波器於接續卷積神經網路層逐層衰減的影響,並使用存活分析當中的韋伯機率模型衡量該影響。此外,本文設計了一個 channel-to-block 剪枝方法有效移除模型當中不重要的塊(blocks)以解決連結層輸出特徵之通道數不一致的問題。實驗結果顯示 CNN 模型基於本文所提出的剪枝框架,在不失過多準確率情況下,大幅減少浮點數運算量以及參數量,其效果顯著超出近期相關研究之成果。 | zh_TW |
| dc.description.abstract | Channel pruning is a model compression approach to accelerate convolutional neural networks (CNNs). Nevertheless, previous approaches determined the structure’s importance without considering the redundancy of features and the decaying influences of filters on the subsequent layers. In this thesis, therefore, we propose a two-stage pruning framework, DOMINOS, to first effectively remove redundant structures without a significant accuracy loss by leveraging the structure's importance. After identifying the lightweight architecture, DOMINOS applies the attention mechanism to focus on the informative structures for prediction. We define feature representativeness to measure the uniqueness of feature patterns and domino influences to represent the decaying influences of filters on the subsequent CNN layers by leveraging Weibull probabilistic models in survival analysis. Moreover, we devise a channel-to-block pruning approach to efficiently remove unimportant blocks to solve the mismatch of channel sizes for output feature maps in linked layers. Experimental results manifest that CNN models under DOMINOS pruning framework achieve prominent reductions in flops and parameters without compromising the accuracy, significantly outperforming the state-of-the-art. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:55:19Z (GMT). No. of bitstreams: 1 U0001-2906202022384800.pdf: 1179212 bytes, checksum: 5573b522a7ffc9a44a0e22c25d3f47ef (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv Contents v List of Figures vii List of Tables viii 1 Introduction 1 2 Related work 4 3 Problem formulation 6 4 DOMINOS pruning framework 8 4.1 Dominant structure pruning (DSP) 9 4.1.1 Feature representativeness 9 4.1.2 Domino influences 9 4.1.3 Filter importance learning 11 4.1.4 Channel-to-block design 13 4.2 Attentive structure learning (ASL) 15 4.2.1 Channel-level pruning 15 4.2.2 Block-level pruning 15 4.3 Pruning process of DOMINOS framework 16 4.3.1 Channel-level pruning process 16 4.3.2 Block-level pruning process 16 5 Experiments 20 5.1 Implementation details 20 5.2 Overall comparisons 21 5.3 Ablation study 24 5.3.1 Effect of filter importance learning 24 5.3.1.1 CIFAR-10 24 5.3.1.2 CIFAR-100 25 5.3.1.3 SVHN 27 5.3.2 Pruning results 27 5.3.2.1 Evaluation metrics 27 5.3.2.2 Block-level pruning 28 5.3.2.3 Channel-level pruning 30 6 Conclusion 33 Bibliography 34 | |
| dc.language.iso | en | |
| dc.title | 綜觀模型架構之代表性: 基於濾波器重要性學習之注意力機制通道剪枝 | zh_TW |
| dc.title | Dominance in an Overall Sight: Attentive Channel Pruning via Filter Importance Learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 楊得年(De-Nian Yang) | |
| dc.contributor.oralexamcommittee | 戴志華(Chih-Hua Tai),陳怡伶(Yi-Ling Chen) | |
| dc.subject.keyword | 卷積神經網路模型壓縮,通道剪枝,結構重要性學習,韋伯機率分佈, | zh_TW |
| dc.subject.keyword | CNN model compression,Channel pruning,Structure importance learning,Weibull probabilistic distribution, | en |
| dc.relation.page | 40 | |
| dc.identifier.doi | 10.6342/NTU202001198 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資料科學學位學程 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 資料科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2906202022384800.pdf | 1.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
