請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84748完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(Chih-Chung Yang) | |
| dc.contributor.author | Chen-Hua Chen | en |
| dc.contributor.author | 陳振華 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:23:38Z | - |
| dc.date.copyright | 2022-09-06 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-04 | |
| dc.identifier.citation | 1. Chanyawadee, S.; Lagoudakis, P. G.; Harley, R. T.; Charlton, M. D. B.; Talapin, D. V.; Huang, H. W.; Lin, C. H. Increased Color-Conversion Efficiency in Hybrid Light-Emitting Diodes Utilizing Non-Radiative Energy Transfer. Adv. Mater. 2010, 22, 602-606. 2. Demira, H. V.; Nizamoglub, S.; Erdemb, T.; Mutluguna, E.; Gaponikc, N.; Eychmuller, A. Quantum Dot Integrated LEDs Using Photonic and Excitonic Color Conversion. Nano Today 2011, 6, 632-647. 3. Ni, C. C.; Kuo, S. Y.; Li, Z. H.; Wu, S. H.; Wu, R. N.; Chen, C. Y.; Yang, C. C. Förster Resonance Energy Transfer in Surface Plasmon Coupled Color Conversion Processes of Colloidal Quantum Dots. Opt. Express 2021, 29, 4067-4081. 4. Chen, Y. P.; Ni, C. C.; Wu, R. N.; Kuo, S. Y.; Su, Y. C.; Huang, Y. Y.; Chen, J. W.; Hsu, Y. C.; Wu, S. H.; Chen, C. Y.; Wu, P. H.; Kiang, Y. W.; Yang, C. C. Combined Effects of Surface Plasmon Coupling and Förster Resonance Energy Transfer on the Light Color Conversion Behaviors of Colloidal Quantum Dots on an InGaN/GaN Quantum-Well Nanodisk Structure. Nanotechnology 2021, 32, 135206. 5. Förster, T. Energy Transport and Fluorescence. Naturwissenschaften 1946, 33, 166-175. 6. Ghenuche, P.; Mivelle, M.; de Torres, J.; Moparthi, S. B.; Rigneault, H.; Hulst, N. F. V.; Parajó, M. F. G.; Wenger, J. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates. Nano Lett. 2015, 15, 6193-6201. 7. Lunz, M.; Gerard, V. A.; Gun’ko, Y. K.; Lesnyak, V.; Gaponik, N.; Susha, A. S.; Rogach, A. L.; Bradley, A. L. Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers. Nano Lett. 2011, 11, 3341-3345. 8. Zhang, X.; Marocico, C. A.; Lunz, M.; Gerard, V. A.; Gun’ko, Y. K.; Lesnyak, V.; Gaponik, N.; Susha, A. S.; Rogach, A. L.; Bradley, A. L. Experimental and Theoretical Investigation of the Distance Dependence of Localized Surface Plasmon Coupled Förster Resonance Energy Transfer. ACS Nano 2014, 8, 1273-1283. 9. Su, C. Y.; Lin, C. H.; Yao, Y. F.; Liu, W. H.; Su, M. Y.; Chiang, H. C.; Tsai, M. C.; Tu, C. G.; Chen, H. T.; Kiang, Y. W.; Yang, C. C. Dependencies of Surface Plasmon Coupling Effects on the p-GaN Thickness of a Thin-p-Type Light-Emitting Diode. Opt. Express 2017, 25, 21526-21536. 10. Lin, C. H.; Su, C. Y.; Yao, Y. F.; Su, M. Y.; Chiang, H. C.; Tsai, M. C.; Liu, W. H.; Tu, C. G.; Kiang, Y. W.; Yang, C. C.; Huang, F. W.; Lee, C. L.; Hsu, T. C. Further Emission Efficiency Improvement of a Commercial-Quality Light-Emitting Diode through Surface Plasmon Coupling. Opt. Lett. 2018, 43, 5631-5634. 11. Chen, D.; Xiao, H.; Han, J. Nanopores in GaN by Electrochemical Anodization in Hydrofluoric Acid Formation and Mechanism. J. Appl. Phys. 2012, 112, 064303. 12. Griffin, P. H.; Oliver, R. A. Porous Nitride Semiconductors Reviewed. J. Phys. D: Appl. Phys. 2020, 53, 383002. 13. Schwab, M. J.; Chen, D.; Han, J.; Pfefferle, L. D. Aligned Mesopore Arrays in GaN by Anodic Etching and Photoelectrochemical Surface Etching. J. Phys. Chem. C 2013, 117, 16890-16895. 14. Schwab, M. J.; Han, J.; Pfefferle, L. D. Neutral Anodic Etching of GaN for Vertical or Crystallographic Alignment. Appl. Phys. Lett. 2015, 106, 241603. 15. Tseng, W. J.; van Dorp, D. H.; Lieten, R. R.; Vereecken, P. M.; Borghs, G. Anodic Etching of n-GaN Epilayer into Porous GaN and Its Photoelectrochemical Properties. J. Phys. Chem. C 2014, 118, 29492-29498. 16. Radzali, R.; Zainal, N.; Yam, F. K.; Hassan, Z. Characteristics of Porous GaN Prepared by KOH Photoelectrochemical Etching. Mater. Res. Innovations 2014, 18, S6-412-416. 17. Hsu, W. J.; Chen, K. T.; Huang, W. C.; Wu, C. J.; Dai, J. J.; Chen, S. H.; Lin, C. F. InGaN Light Emitting Diodes with a Nanopipe Layer Formed from the GaN Epitaxial Layer. Opt. Express 2016, 24, 11601-11610. 18. Li, Y.; Wang, C.; Zhang, Y.; Hu, P.; Zhang, S.; Du, M.; Su, X.; Li, Q.; Yun, F. Analysis of TM/TE Mode Enhancement and Droop Reduction by a Nanoporous n-AlGaN Underlayer in a 290 nm UV-LED. Photon. Res. 2020, 8, 806-811. 19. Soh, C. B.; Tay, C. B.; Tan, R. J. N.; Vajpeyi, A. P.; Seetoh, I. P.; Ansah-Antwi, K. K.; Chua, S. J. Nanopore Morphology in Porous GaN Template and Its Effect on the LEDs Emission. J. Phys. D: Appl. Phys. 2013, 46, 365102. 20. Wurm, C.; Collins, H.; Hatui, N,; Li, W.; Pasayat, S.; Hamwey, R.; Sun, K.; Sayed, I.; Khan, K.; Ahmadi, E.; Keller, S.; Mishra, U. Demonstration of Device-Quality 60% Relaxed In0.2Ga0.8N on Porous GaN Pseudo-Substrates Grown by PAMBE. J. Appl. Phys. 2022, 131, 015701. 21. Pasayat, S. S.; Gupta, C.; Wong, M. S.; Ley, R.; Gordon, M. J.; DenBaars, S. P.; Nakamura, S.; Keller, S.; Mishra, U. Demonstration of Ultra-Small (<10 μm) 632 nm Red InGaN Micro-LEDs with Useful On-Wafer External Quantum Efficiency (>0.2%) for Mini-Displays. Appl. Phys. Express 2021, 14, 011004. 22. Huang, S.; Zhang, Y.; Leung, B.; Yuan, G.; Wang, G.; Jiang, H.; Fan, Y.; Sun, Q.; Wang, J.; Xu, K.; Han, J. Mechanical Properties of Nanoporous GaN and Its Application for Separation and Transfer of GaN Thin Films. ACS Appl. Mater. Interfaces 2013, 5, 11074-11079. 23. Zhang, Y.; Sun, Q.; Leung, B.; Simon, J.; Lee, M. L.; Han, J. The Fabrication of Large-Area, Free-Standing GaN by a Novel Nanoetching Process. Nanotechnology 2011, 22, 045603. 24. Kang, J. H.; Ebaid, M.; Lee, J. K.; Jeong, T.; Ryu, S. W. Fabrication of Vertical Light Emitting Diode Based on Thermal Deformation of Nanoporous GaN and Removable Mechanical Supporter. ACS Appl. Mater. Interfaces 2014, 6, 8683-8687. 25. Yang, H.; Xi, X.; Yu, Z.; Cao, H.; Li, J.; Lin, S.; Ma, Z.; Zhao, L. Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure. ACS Appl. Mater. Interfaces 2018, 10, 5492-5497. 26. Maeda, K.; Domen, K. Photocatalytic Water Splitting: Recent Progress and Future Challenges. J. Phys. Chem. Lett. 2010, 1, 2655-2661. 27. Zhang, C.; Park, S. H.; Chen, D.; Lin, D. W.; Xiong, W.; Kuo, H. C.; Lin, C. F.; Cao, H.; Han, J. Mesoporous GaN for Photonic Engineering Highly Reflective GaN Mirrors as an Example. ACS Photon. 2015, 2, 980-986. 28. Lin, C. F.; Zhang, Y. T.; Wang, C. J.; Chen, Y. Y.; Shiu, G. Y.; Ke, Y.; Han, J. InGaN Resonant Microcavity with n+-Porous-GaN/p+-GaN Tunneling Junction. IEEE Electron Dev. Lett. 2021, 42, 1631-1633. 29. Zhang, M.; Liu, Y.; Wang, J.; Tang, J. Photodeposition of Palladium Nanoparticles on a Porous Gallium Nitride Electrode for Nonenzymatic Electrochemical Sensing of Glucose. Microchimica Acta 2019, 186, DOI: 10.1007/s00604-018-3172-0. 30. Najar, A.; Gerland, M.; Jouiad, M. Porosity-Induced Relaxation of Strains in GaN Layers Studied by Means of Microindentation and Optical Spectroscopy. J. Appl. Phys. 2012, 111, 093513. 31. Kang, J. H.; Li, B.; Zhao, T.; Ali Johar, M.; Lin, C. C.; Fang, Y. H.; Kuo, W. H.; Liang, K. L.; Hu, S.; Ryu, S. W.; Han, J. RGB Arrays for Micro-Light-Emitting Diode Applications Using Nanoporous GaN Embedded with Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 30890-30895. 32. Anderson, R.; Cohen, D.; Zhang, H.; Trageser, E.; Palmquist, N.; Nakamura, S.; DenBaars, S. Nano-Porous GaN Cladding and Scattering Loss in Edge Emitting Laser Diodes. Opt. Express 2022, 30, 2759-2767. 33. Ke, Y.; Wang, C. J.; Shiu, G. Y.; Chen, Y. Y.; Lin, Y. S.; Chen, H.; Han, J.; Lin, C. F. Polarization Properties of InGaN Vertical-Cavity Surface-Emitting Laser with Pipe Distributed Bragg Reflector. IEEE Transact. Electron Dev. 2022, 69, 201-204. 34. Elafandy, R. T.; Kang, J. H.; Mi, C.; Kim, T. K.; Kwak, J. S.; Han, J. Study and Application of Birefringent Nanoporous GaN in the Polarization Control of Blue Vertical-Cavity Surface-Emitting Lasers. ACS Photon. 2021, 8, 1041-1047. 35. Kuo, Y.; Ting, S. Y.; Liao, C. H.; Huang, J. J.; Chen, C. Y.; Hsieh, C.; Lu, Y. C.; Chen, C. Y.; Shen, K. C.; Lu, C. F.; Yeh, D. M.; Wang, J. Y.; Chuang, W. H.; Kiang, Y. W.; Yang, C. C. Surface Plasmon Coupling with Radiating Dipole for Enhancing the Emission Efficiency of a Light-Emitting Diode. Opt. Express 2011, 19, A914-A929. 36. Kuo, Y.; Chang, W. Y.; Lin, C. H.; Yang, C. C.; Kiang, Y. W. Evaluating the Blue-Shift Behaviors of the Surface Plasmon Coupling of an Embedded Light Emitter with a Surface Ag Nanoparticle by Adding a Dielectric Interlayer or Coating. Opt. Express 2015, 23, 30709-30720. 37. Cai, C. J.; Wang, Y. T.; Ni, C. C.; Wu, R. N.; Chen, C. Y.; Kiang, Y. W.; Yang, C. C. Emission Behaviors of Colloidal Quantum Dots Linked onto Synthesized Metal Nanoparticles. Nanotechnology 2020, 31, 095201. 38. Kuo, S. Y. Emission and Resonance Energy Transfer Behaviors of Colloidal Quantum Dots in Oriented GaN Porous Structures under the Condition of Surface Plasmon Coupling. MS Thesis, National Taiwan University, August 2021. 39. Lin, C. A. J.; Sperling, R. A.; Li, J. K.; Yang, T. A.; Li, P. Y.; Zanella, M.; Chang, W. H.; Parak, W. J. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 2008, 4(3):334-41. 40. Halbus, A. F.; Horozov, T. S.; Paunov, V. N. Surface-modified zinc oxide nanoparticles for antialgal and antiyeast applications. ACS Appl. Nano Mater 2020, 3, 440-451. 41. Chen, C. Y.; Ni, C. C.; Wu, R. N.; Kuo, S. Y.; Li, C. H.; Kiang, Y. W.; Yang, C. C. Surface plasmon coupling effects on the Förster resonance energy transfer from quantum dot into rhodamine 6G. Nanotechnology 2021, 29, 295202. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84748 | - |
| dc.description.abstract | 本研究中,我們首先探討在沒有量子井的多孔隙結構內綠光和紅光量子點的發射與福斯特共振能量轉換行為。在這部分研究中,我們觀察到奈米多孔隙結構內量子點的發射與福斯特共振能量轉換效率增強,證實了奈米級共振腔效應。接著,我們將奈米多孔隙結構製作在具有藍光量子井的樣品內,為了使紅光及綠光量子點靠近藍光量子井,我們將奈米多孔隙結構製作在藍光量子井附近。在這部分實驗,我們也可以透過奈米級共振腔效應得到從量子井到量子點福斯特共振能量轉換的增強效果。 我們還觀察到複雜的級聯福斯特共振能量轉換,福斯特共振能量轉換過程包括從量子井到綠光量子點、從量子井到紅光量子點以及從綠光量子點到紅光量子點的過程。在另一個實驗中,我們將銀奈米顆粒沉積在樣品表面上,以產生量子井和表面下孔隙內量子點之間的表面電漿子耦合。表面電漿子耦合可以進一步增強從量子井到量子點的福斯特共振能量轉換。整體而言,於本研究中,我們的結果證實奈米級共振腔效應可以增強多孔隙結構中的發射和福斯特共振能量轉換,同時也展示了從量子井到孔隙內量子點的福斯特共振能量轉換有增強的效果。此外,藉由表面電漿子耦合的效果可以進一步增強從量子井到量子點的福斯特共振能量轉換。 | zh_TW |
| dc.description.abstract | In this research, we first study the emission and Förster resonance energy transfer (FRET) behaviors of green-emitting quantum dot (GQD) and red-emitting QD (RQD) in porous structures without a quantum well (QW) structure. In this part of study, the enhancements of the emission efficiencies and FRET of QDs inside a porous structure are observed, confirming the nanoscale-cavity effect. Then, we fabricate a porous structure near a blue-emitting QW structure in a QW template for accommodating GQD and RQD. Here, enhanced FRET processes from QW into QD can be observed also through the nanoscale-cavity effect. We also observe the complicated cascading FRET behavior, i.e., the FRET system includes the processes from QW into GQD, from QW into RQD, and from GQD into RQD. Next, surface Ag NPs are deposited onto the sample surface to induce surface plasmon (SP) couplings with the embedded QWs and subsurface QDs. The SP coupling can further enhance the FRET from QWs into QDs. The observations in this study support the nanoscale-cavity effect for enhancing the emission and FRET in a porous structure. They also demonstrate the enhanced FRET from a nearby QW into an inserted QD. Meanwhile, SP coupling can further enhance the FRET from the QW into QD. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:23:38Z (GMT). No. of bitstreams: 1 U0001-0109202216533000.pdf: 10054720 bytes, checksum: 8a896a8956748e05950b1e02c7b5c1a5 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv Contents v List of Figure vii List of Table xxiii Chapter 1 Introduction 1 1.1 Surface plasmon coupling and Förster resonance energy transfer for color conversion 1 1.2 Subsurface GaN porous structures 2 1.3 Results of an earlier study 3 1.4 Research motivations 7 1.5 Thesis structure 8 Chapter 2 Sample Structures and Fabrication Procedures 14 2.1 Epitaxial samples for porous structure fabrication 14 2.2 Fabrication of a porous structure and insertion of quantum dots into pores 14 2.3 Sample structures and fabrication procedures 17 2.4 Optical characterization methods 18 Chapter 3 Emission and Förster Resonance Energy Transfer of Quantum Dots Inserted into a Subsurface Nano-porous Structure in a GaN Template 28 3.1 General sample descriptions 28 3.2 Time-resolved photoluminescence results 29 3.3 Continuous photoluminescence results 32 Chapter 4 Emission and Förster Resonance Energy Transfer of Quantum Dots Inserted into a Subsurface Nano-porous Structure in a Quantum-well Template 60 4.1 General sample descriptions 60 4.2 Time-resolved photoluminescence results 61 4.3 Continuous photoluminescence results 65 Chapter 5 Emission and Förster Resonance Energy Transfer of Quantum Dots Inserted into a Subsurface Nano-porous Structure in a Quantum-well Template under the Surface Plasmon Coupling of Surface Ag Nanoparticles 99 5.1 General sample descriptions 99 5.2 Time-resolved photoluminescence results 102 5.3 Continuous photoluminescence results 105 Chapter 6 Discussions 139 Chapter 7 Conclusions 141 References 142 | |
| dc.language.iso | en | |
| dc.subject | 福斯特共振能量轉換 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 表面電漿子耦合 | zh_TW |
| dc.subject | 量子井 | zh_TW |
| dc.subject | 奈米級共振腔效應 | zh_TW |
| dc.subject | Quantum well | en |
| dc.subject | quantum dot | en |
| dc.subject | Förster resonance energy transfer | en |
| dc.subject | surface plasmon coupling | en |
| dc.subject | nanoscale-cavity effect | en |
| dc.title | 塞入量子井結構表面下側向延伸孔洞內部膠體量子點的發光、福斯特共振能量轉換與表面電漿子耦合行為 | zh_TW |
| dc.title | Emission, Förster Resonance Energy Transfer and Surface Plasmon Coupling Behaviors of Colloidal Quantum Dots Inserted into Subsurface Laterally-extended Pores in a Quantum-well Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃建璋(Jian-Jang Huang),陳奕君(I-Chun Cheng),林建中(Chien-Chung Lin),郭仰(Yang Kuo) | |
| dc.subject.keyword | 量子點,福斯特共振能量轉換,表面電漿子耦合,奈米級共振腔效應,量子井, | zh_TW |
| dc.subject.keyword | quantum dot,Förster resonance energy transfer,surface plasmon coupling,nanoscale-cavity effect,Quantum well, | en |
| dc.relation.page | 145 | |
| dc.identifier.doi | 10.6342/NTU202203073 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-06 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0109202216533000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
