請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84737完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡志宏(Zse-Hong Tsai) | |
| dc.contributor.author | Chun-Hao Chang | en |
| dc.contributor.author | 張君豪 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:23:03Z | - |
| dc.date.copyright | 2022-09-07 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-06 | |
| dc.identifier.citation | CISCO (2020) Cisco Annual Internet Report (2018-2023). White Paper. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. 2010. “A view of cloud computing,” in Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010. W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge Computing: Vision and Challenges,” in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, 2016. Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A Survey on Mobile Edge Computing: The Communication Perspective,” in IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358, 2017. NCC行動寬頻業務用戶數統計https://www.ncc.gov.tw/chinese/news_detail.aspx?site_content_sn=5018&sn_f=47549 A. Isnawati, R. Pandiya, and A. Wahyudin, “Evaluation of MVNO model implementation in remote and border areas using the consistent fuzzy preference relations method,” in INFOTEL, vol. 13, no. 4, pp. 223-229, 2021. E. Whitaker, Z. Conten, “Cloud Edge Computing: Beyond the Data Center,” 2021. https://www.openstack.org/use-cases/edge-computing/cloud-edge-computing-beyond-the-data-center/ K. Cao, S. Hu, Y. Shi, A. W. Colombo, S. Karnouskos and X. Li, “A Survey on Edge and Edge-Cloud Computing Assisted Cyber-Physical Systems,” in IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7806-7819, 2021. T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta and D. Sabella, “On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration,” in IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017. J. X. Liao and X. W. Wu, 'Resource Allocation and Task Scheduling Scheme in Priority-Based Hierarchical Edge Computing System,' in 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), pp. 46-49, 2020. Y. Dong, G. Xu, M. Zhang and X. Meng, “A High-Efficient Joint ’Cloud-Edge’ Aware Strategy for Task Deployment and Load Balancing,” in IEEE Access, vol. 9, pp. 12791-12802, 2021. Y. Liu, M. J. Lee and Y. Zheng, 'Adaptive Multi-Resource Allocation for Cloudlet-Based Mobile Cloud Computing System,' in IEEE Transactions on Mobile Computing, vol. 15, no. 10, pp. 2398-2410, 2016. F. P. Lin and Z. Tsai, “Hierarchical Edge-Cloud SDN Controller System With Optimal Adaptive Resource Allocation for Load-Balancing,” in IEEE Systems Journal, vol. 14, no. 1, pp. 265-276, 2020. Y. Chung, Z. Tsai and C. Yang, “A Study of Quota-Based Dynamic Network Selection for Multimode Terminal Users,” in IEEE Systems Journal, vol. 8, no. 3, pp. 759-768, 2014. Z. Xu, L. Zhou, S. Chi-Kin Chau, W. Liang, Q. Xia and P. Zhou, “Collaborate or Separate? Distributed Service Caching in Mobile Edge Clouds,” in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 2066-2075, 2020. C. Liu, L. Shi and B. Liu, “Utility-Based Bandwidth Allocation for Triple-Play Services,” in Fourth European Conference on Universal Multiservice Networks (ECUMN’07), pp. 327-336, 2007. P. K. Dhillon, S. Kalra, “Secure and efficient ECC based SIP authentication scheme for VoIP communications in internet of things,” in Multimed Tools Appl, vol. 78, pp. 22199–22222, 2019. 市網中心往台大區網-IPv4(中華電信V11) MRTG http://mrtg.tp.edu.tw/n7k_v11.html A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale cluster management at Google with Borg,” in Proceedings of the Tenth European Conference on Computer Systems (EuroSys ‘15). Association for Computing Machinery, New York, NY, USA, Article 18, 1–17, 2015. Google ClusterData 2019 traces https://github.com/google/cluster-data/blob/master/ClusterData2019.md P. Dvorský, J. Londák, O. Lábaj and P. Podhradský, “Comparison of codecs for videoconferencing service in NGN,” in Proceedings ELMAR-2012, pp. 141-144, 2012. J. V. Neumann, O. Morgenstern, Theory of Games and Economic Behavior: 60th, 2007. C. Li, J. Li, Y. Li and Z. Han, 'Price and Spectrum Inventory Game for MVNOs in Wireless Virtualization Communication Markets,' 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1-7, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84737 | - |
| dc.description.abstract | 在Mobile Network中,大型的Mobile Network Operator (MNO)擁有大量的運算資源供消費者租用,但MNO本身能接觸到的客群較為有限,因此搭配Mobile Virtual Network Operator (MVNO)的合作是一個常見的商業營運模式。MNO將部分的運算資源租給本身不設置設施的虛擬網路服務業者(MVNO),使其也能夠提供網路服務,並協助其營運以擴大自身市場客群。在此營運模式下,MVNO本身不建置任何基礎建設(如基地台、運算主機),其服務資源均是向MNO租用,故此議題涉及MNO與MVNO的資源分配效率與商業模式之合理性,是而成為新的研究議題。 本論文要解決的問題主要有兩項,第一個是運算資源的分配問題,在MNO決定與MVNO合作時,雙方必須簽訂合約以決定在合約時間內MVNO要租用一定數量的運算資源,即MNO要在合約範圍內決定分配多少Virtual Machine (VM)給MVNO,增加自身營收並同時讓MVNO合理營運,我們稱這個問題為VM Allocation。在此階段本論文假設MNO可以透過蒐集過去的營運資料來進行估算,以進行最符合雙方商業利益的VM分配。 在合約簽訂後每回合的營運中,除前述VM分配外,MNO及MVNO會根據其各自客戶需求提供運算服務,而本論文要解決的第二個問題是工作分配問題,每當一個運算工作進入系統,會立即對該工作進行分配,決定該工作要放到哪一台VM進行運算,並且考慮cloud VM與edge VM之間的差異性,我們稱這個問題為Task Assignment。另外我們將運算工作分為VoIP, IP Video與FTP三種類別,並設定每個VM只能服務同一種類別的工作,每個工作類別有其獨特的流量特性,根據其特性的不同制定不同的效用函數,task assignment的目標為在使用者被分配到的資源量至少要大於資源下限(operating value)的前提下,最大化使用者對於該工作所獲服務的滿意度(utility),根據operator營運策略的不同,他們制定的operating value也會不同,代表其不同的商業考量。 本論文參考Google在2019年釋出的真實資料ClusterData trace,摘取其參數特性並在套用本論文所指定的隨機程序來進行模擬,以貼近真實世界的運作。因此本論文的主要貢獻為設計貼近現實的環境與模型,探討如何公允且自動的分配資源給MNO與MVNO,並達到雙邊都可接受的最佳營運效果。 | zh_TW |
| dc.description.abstract | In Mobile Network, Mobile Network Operator (MNO) is a big company that owns large amount of computing resource for customers to rent, but MNO itself can only reach a limited range of customers, so cooperating with another small company such as Mobile Virtual Network Operator (MVNO) is a common business mode is real world. Under this business mode, MNO rent part of its computing resource to MVNO that do not have their own facilities, so that MVNO can provide computing services to their own customers. This is a new research topic that involves the efficiency of resource allocation between MNO and MVNO and the rationality of the business mode. There are two main problems to be solved in this thesis. The first one is the allocation of computing resources. When MNO decides to cooperate with MVNO, both parties must sign a contract to decide that MVNO will rent a certain amount of computing resources, that is, MNO needs to decide how many Virtual Machines (VMs) to allocate to MVNO, to increase their own revenue and allow MVNO to operate reasonably. We call this problem as VM Allocation. We assume that MNO can make estimates by collecting past operational data to make the VM Allocation mechanism allocate the fittest amount of resources for both parties. After the VM Allocation, MNO and MVNO will provide computing services to their own customers, the second problem to be solved in this paper is tasks assignment. Whenever a task enters the system, we will assign the task immediately, decide which VM the task should run at, we also consider the difference between the cloud VM and the edge VM. We call this problem as Task Assignment. We divide computing application tasks into three categories: VoIP, IP Video and FTP, and assume each VM can only serve tasks of the same category. Each task category has unique traffic characteristics, and different utility functions are designed accordingly. The goal of Task Assignment is to maximize the satisfaction (utility) of users with the resource provided by a VM under the premise that the amount of resources allocated to the user is enough but not too many. This thesis refers to the real trace released by Google in 2019 called ClusterData. We extract its parameter characteristics and design a random program for simulating. The main contribution of this paper is to design an environment and model that close to realistic, discuss how to allocate resources between MNO and MVNO fairly and automatically, and achieve the best operating effect that is acceptable to both parties. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:23:03Z (GMT). No. of bitstreams: 1 U0001-0109202214332800.pdf: 6936938 bytes, checksum: dcb2786a3807e58f9a3db5ed8ece2df0 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 圖目錄 xi 表目錄 xiv 第1章 緒論 1 1.1 研究背景介紹 1 1.2 相關研究 4 1.2.1 MNO與MVNO 4 1.2.2 雲端-邊緣運算(Cloud-edge Computing) 5 1.2.3 效用函數 7 1.3 研究動機與問題描述 9 1.4 論文章節架構 10 第2章 MNO與MVNO之雲端與邊緣運算系統 11 2.1 系統模型 11 2.2 工作分類介紹 14 2.2.1 Voice over Internet Protocol (VoIP)應用 14 2.2.2 IP Video應用 15 2.2.3 File Transfer Protocol (FTP)應用 16 2.2.4 小結 17 2.3 VM Allocation之模型描述 18 2.4 Task Assignment之模型描述 22 2.5 效用函數 24 2.5.1 上行/下行吞吐量 24 2.5.2 工作運算單價 29 2.5.3 延遲 30 2.5.4 小結 31 2.6 MNO與MVNO之成本、收入及毛利模型 31 第3章 VATA (VM Allocation and Task Assignment)演算法 34 3.1 VM Allocation問題之解決方法 34 3.1.1 初始化群體(Initialize Population) 35 3.1.2 計算適應度(Evaluate fitness) 36 3.1.3 選擇(Select) 36 3.1.4 交配(Crossover) 38 3.1.5 突變(Mutation) 38 3.1.6 檢查群體條件 38 3.1.7 停止條件&結束 38 3.2 Task Assignment問題之解決方法 39 3.3 VATA流程解釋 41 第4章 資料生成方法 42 4.1 Google ClusterData 2019之觀察結果 42 4.2 資料生成機率分布模型與取樣法 44 4.2.1 Scaled-shifted Beta Distribution 44 4.2.2 Shifted Pearson Type 5 Distribution 45 4.2.3 接受-拒絕取樣法(Acceptance-rejection Sampling) 45 4.3 VM資料格式 46 4.4 事件資料格式與抵達時間定義 46 4.4.1 資料格式 46 4.4.2 Discrete Stochastic Nonstationary Poisson Process 47 4.5 歷史資料生成方法 48 4.6 小結 48 第5章 模擬結果與效能評估 49 5.1 環境參數與資料生成參數設定 49 5.1.1 環境參數設定 49 5.1.2 資料生成參數設定 51 5.1.3 基因演算法之實測結果 54 5.2 實驗一:效用函數權重值制定 54 5.2.1 實驗一之一:價格效用函數重要度係數測試 55 5.2.2 實驗一之二:延遲效用函數重要度係數測試 57 5.2.3 實驗一之三:下行吞吐量效用函數重要度係數測試 60 5.2.4 小結 63 5.3 比較對象(Baselines) 64 5.4 實驗結果 65 5.4.1 需求總資源觀察 65 5.4.2 VM Allocation資源分配量觀察 66 5.4.3 實驗二:VATA性能表現 68 5.4.4 實驗三:MNO有無與MVNO之合作之毛利比較 79 第6章 結論與未來研究方向 85 6.1 結論 85 6.2 未來研究方向 86 APPENDIX 88 REFERENCE 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 工作指配 | zh_TW |
| dc.subject | 資源分配 | zh_TW |
| dc.subject | 雲端邊緣運算 | zh_TW |
| dc.subject | MNO | zh_TW |
| dc.subject | MVNO | zh_TW |
| dc.subject | VM分配 | zh_TW |
| dc.subject | Cloud-Edge Computing | en |
| dc.subject | Task Assignment | en |
| dc.subject | VM Allocation | en |
| dc.subject | MVNO | en |
| dc.subject | MNO | en |
| dc.subject | Resource Allocation | en |
| dc.title | MNO與MVNO於雲端-邊緣運算之優化資源分配 | zh_TW |
| dc.title | Optimized Resource Allocation for Cloud-Edge Computing with MNO and MVNO | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林風(Phone Lin),鍾耀梁(Yao-Liang Chung) | |
| dc.subject.keyword | 資源分配,雲端邊緣運算,MNO,MVNO,VM分配,工作指配, | zh_TW |
| dc.subject.keyword | Resource Allocation,Cloud-Edge Computing,MNO,MVNO,VM Allocation,Task Assignment, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202203059 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-07 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0109202214332800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
