請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84712完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光(Chih-Kung Lee) | |
| dc.contributor.author | Wen-Kai Liu | en |
| dc.contributor.author | 劉文凱 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:21:48Z | - |
| dc.date.copyright | 2022-09-12 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-07 | |
| dc.identifier.citation | [1] R. Matthew, J. Dutta, R. Maheswar, and K. Ahmed, 'Intelligent wearable electronics: a new paradigm in smart electronics,' in Challenges and solutions for sustainable smart city development: Springer, 2021, pp. 169-197. [2] S. Al-Sarawi, M. Anbar, R. Abdullah, and A. B. Al Hawari, 'Internet of things market analysis forecasts, 2020–2030,' in 2020 Fourth World Conference on smart trends in systems, security and sustainability (WorldS4), 2020, pp. 449-453: IEEE. [3] M. Hannula, A. Sakkinen, and A. Kylmanen, 'Development of EMFI-sensor based pressure sensitive insole for gait analysis,' in 2007 IEEE International Workshop on Medical Measurement and Applications, 2007, pp. 1-3: IEEE. [4] J. Alametsä, A. Värri, M. Koivuluoma, and L. Barna, 'The potential of EMFi sensors in heart activity monitoring,' in 2nd OpenECG workshop integration of the ECG into the EHR and interoperability of ECG device systems, Berlin, Germany, 2004: Citeseer. [5] M. Wegener and S. Bauer, 'Microstorms in cellular polymers: A route to soft piezoelectric transducer materials with engineered macroscopic dipoles,' ChemPhysChem, vol. 6, no. 6, pp. 1014-1025, 2005. [6] R. Gerhard, 'Improving essential properties of dielectrics for electro-electrets, piezo-electrets and ferroelectric polymer electrets via physico-chemical routes,' in 2013 IEEE International Conference on Solid Dielectrics (ICSD), 2013, pp. 45-48: IEEE. [7] F. Carpi, D. De Rossi, R. Kornbluh, R. E. Pelrine, and P. Sommer-Larsen, Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, 2011. [8] R. Gerhard-Multhaupt, 'Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, no. 5, pp. 850-859, 2002. [9] D. Rychkov and R. Gerhard, 'Stabilization of positive charge on polytetrafluoroethylene electret films treated with titanium-tetrachloride vapor,' Applied Physics Letters, vol. 98, no. 12, p. 122901, 2011. [10] G.-d. Kang and Y.-m. Cao, 'Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review,' Journal of membrane science, vol. 463, pp. 145-165, 2014. [11] 陳柏亦, '孔洞壓電駐極體薄膜製程開發與特性分析 ', 國立臺灣大學應用力學研究所 碩士論文, 2021. [12] F. Carpi, Electromechanically Active Polymers: A Concise Reference. Springer, 2016. [13] W. G. Hankel, 'Uber die aktinound piezoelektrischen eigenschaften des bergkrystalles und ihre beziehung zu den thermoelektrischen,' Abh. Sächs, vol. 12, no. s 457, 1881. [14] J. Curie and P. Curie, 'Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées,' Bulletin de minéralogie, vol. 3, no. 4, pp. 90-93, 1880. [15] S. Katzir, 'The discovery of the piezoelectric effect,' in The beginnings of piezoelectricity: Springer, 2006, pp. 15-64. [16] G. Lippmann, 'Principe de la conservation de l'électricité, ou second principe de la théorie des phénomènes électriques,' Journal de Physique Théorique et Appliquée, vol. 10, no. 1, pp. 381-394, 1881. [17] W. Voigt, Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik). BG Teubner, 1910. [18] W. P. Mason, 'Piezoelectricity, its history and applications,' The journal of the Acoustical Society of America, vol. 70, no. 6, pp. 1561-1566, 1981. [19] E. Fukada, 'Piezoelectricity of wood,' Journal of the Physical Society of Japan, vol. 10, no. 2, pp. 149-154, 1955. [20] H. Kawai, 'The piezoelectricity of poly (vinylidene fluoride),' Japanese journal of applied physics, vol. 8, no. 7, p. 975, 1969. [21] D. Damjanovic, 'Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,' Reports on Progress in Physics, vol. 61, no. 9, p. 1267, 1998. [22] S. Lang, 'A 2400 year history of pyroelectricity: from Ancient Greece to exploration of the solar system,' British ceramic transactions, vol. 103, no. 2, pp. 65-70, 2004. [23] S. B. Lang, 'Pyroelectricity: from ancient curiosity to modern imaging tool,' Physics today, vol. 58, no. 8, p. 31, 2005. [24] A. Ballato, 'Piezoelectricity: history and new thrusts,' in 1996 IEEE Ultrasonics Symposium. Proceedings, 1996, vol. 1, pp. 575-583: IEEE. [25] N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoç, H. Lee, and Y.-S. Kang, 'Processing, structure, properties, and applications of PZT thin films,' Critical reviews in solid state and materials sciences, vol. 32, no. 3-4, pp. 111-202, 2007. [26] R. L. Filler, 'The acceleration sensitivity of quartz crystal oscillators: A review,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 35, no. 3, pp. 297-305, 1988. [27] S. Mohith, A. R. Upadhya, K. P. Navin, S. Kulkarni, and M. Rao, 'Recent trends in piezoelectric actuators for precision motion and their applications: A review,' Smart Materials and Structures, vol. 30, no. 1, p. 013002, 2020. [28] X. Chen, X. Han, and Q. D. Shen, 'PVDF‐based ferroelectric polymers in modern flexible electronics,' Advanced Electronic Materials, vol. 3, no. 5, p. 1600460, 2017. [29] A. Jain, P. KJ, A. K. Sharma, A. Jain, and R. PN, 'Dielectric and piezoelectric properties of PVDF/PZT composites: A review,' Polymer Engineering & Science, vol. 55, no. 7, pp. 1589-1616, 2015. [30] K. K. Sappati and S. Bhadra, 'Piezoelectric polymer and paper substrates: a review,' Sensors, vol. 18, no. 11, p. 3605, 2018. [31] S. Gray, 'IV. A letter from Mr. Stephen Gray to Dr. Mortimer, Secr. RS Containing a farther account of his experiments concerning electricity,' Philosophical Transactions of the Royal Society of London, vol. 37, no. 423, pp. 285-291, 1732. [32] A. Mellinger, 'Charge storage in electret polymers: mechanisms, characterization and applications,' Universität Potsdam, 2004. [33] M. EGUCHI, 'Variation of electrical conductivity of oils and waxes,' Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, vol. 1, no. 10-11, pp. 320-326, 1919. [34] A. Gemant, 'LXXIII. Recent investigations on electrets,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 20, no. 136, pp. 929-952, 1935. [35] G. Sessler and J. West, 'Self‐biased condenser microphone with high capacitance,' The Journal of the Acoustical Society of America, vol. 34, no. 11, pp. 1787-1788, 1962. [36] R. Kacprzyk, E. Motyl, J. B. Gajewski, and A. Pasternak, 'Piezoelectric properties of nonuniform electrets,' Journal of Electrostatics, vol. 35, no. 2-3, pp. 161-166, 1995. [37] A. Savolainen and K. Kirjavainen, 'Electrothermomechanical film. Part I. Design and characteristics,' Journal of Macromolecular Science—Chemistry, vol. 26, no. 2-3, pp. 583-591, 1989. [38] M. Paajanen, J. Lekkala, and K. Kirjavainen, 'ElectroMechanical Film (EMFi)—a new multipurpose electret material,' Sensors and Actuators A: Physical, vol. 84, no. 1-2, pp. 95-102, 2000. [39] S. Bauer, R. Gerhard, and G. M. Sessler, 'Ferroelectrets: Soft electroactive foams for transducers,' 2004. [40] R. Moreno and B. Gross, 'Measurement of potential buildup and decay, surface charge density, and charging currents of corona‐charged polymer foil electrets,' Journal of applied physics, vol. 47, no. 8, pp. 3397-3402, 1976. [41] M. Wegener, M. Paajanen, W. Wirges, and R. Gerhard-Multhaupt, 'Corona-induced partial discharges, internal charge separation and electromechanical transducer properties in cellular polymer films,' in Proceedings. 11th International Symposium on Electrets, 2002, pp. 54-57: IEEE. [42] X. Qiu, A. Mellinger, M. Wegener, W. Wirges, and R. Gerhard, 'Barrier discharges in cellular polypropylene ferroelectrets: How do they influence the electromechanical properties?,' Journal of applied physics, vol. 101, no. 10, p. 104112, 2007. [43] X. Qiu, R. Gerhard, and A. Mellinger, 'Turning polymer foams or polymer-film systems into ferroelectrets: dielectric barrier discharges in voids,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 1, pp. 34-42, 2011. [44] G. Sessler and J. Hillenbrand, 'Electromechanical response of cellular electret films,' in 10th International Symposium on Electrets (ISE 10). Proceedings (Cat. No. 99 CH36256), 1999, pp. 261-264: IEEE. [45] X. Qiu, Z. Xia, and F. Wang, 'Piezoelectricity of single-and multi-layer cellular polypropylene film electrets,' Frontiers of Materials Science in China, vol. 1, no. 1, pp. 72-75, 2007. [46] A. Mohebbi, F. Mighri, A. Ajji, and D. Rodrigue, 'Polymer ferroelectret based on polypropylene foam: piezoelectric properties prediction using dynamic mechanical analysis,' Polymers for Advanced Technologies, vol. 28, no. 4, pp. 476-483, 2017. [47] K. Hagiwara, M. Goto, Y. Iguchi, Y. Yasuno, H. Kodama, K.Kidokoro and T. Tajima, 'Soft X-ray charging method for a silicon electret condenser microphone,' Applied physics express, vol. 3, no. 9, p. 091502, 2010. [48] K. Hagiwara, M. Goto, Y. Iguchi , T. Tajima , Y. Yasuno, H. Kodama, K. Kidokoro , and Y. Suzuki, 'Electret charging method based on soft X-ray photoionization for MEMS transducers,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 4, pp. 1291-1298, 2012. [49] L. Paralı, 'The electret effects of crystallized polymer–ferropiezoelectric composite under electric discharge plasma,' Journal of Electrostatics, vol. 76, pp. 89-94, 2015. [50] G. Casalbore‐Miceli, M. C. Gallazzi, S. Zecchin, N. Camaioni, A. Geri, and C. Bertarelli, 'A Donor–Acceptor Polymer with a Peculiar Negative‐Charge‐“Trapping” Characteristic,' Advanced Functional Materials, vol. 13, no. 4, pp. 307-312, 2003. [51] G. M. Sessler, 'Physical principles of electrets,' Electrets, pp. 13-80, 1980. [52] M. Paajanen, H. Välimäki, and J. Lekkala, 'Modelling the electromechanical film (EMFi),' Journal of Electrostatics, vol. 48, no. 3-4, pp. 193-204, 2000. [53] M. Wegener, W. Wirges, and R. Gerhard‐Multhaupt, 'Piezoelectric polyethylene terephthalate (PETP) foams–specifically designed and prepared ferroelectret films,' Advanced Engineering Materials, vol. 7, no. 12, pp. 1128-1131, 2005. [54] J. Zhong, Y. Ma, Y. Song, Q. Zhong, Y. Chu, I. Karakurt, D. B. Bogy, and L. Lin, 'A flexible piezoelectret actuator/sensor patch for mechanical human–machine interfaces,' ACS nano, vol. 13, no. 6, pp. 7107-7116, 2019. [55] X. Huiming, C. Gangjin, C. Xumin, and C. Zhi, 'A flexible electret membrane with persistent electrostatic effect and resistance to harsh environment for energy harvesting,' Scientific reports, vol. 7, no. 1, pp. 1-8, 2017. [56] M. Paajanen, H. Minkkinen, and J. Raukola, 'Gas diffusion expansion-increased thickness and enhanced electromechanical response of cellular polymer electret films,' in Proceedings. 11th International Symposium on Electrets, 2002, pp. 191-194: IEEE. [57] J. G. Leonhartsberger, H. Salhofer, R. Schwödiauer,S. Bauer-Gogonea,S. Bauer,R. Forstner,G. Eder,M. Paajanen,H. Minkkinen and J. Raukola, 'Capacitance dilatometry for the in-situ controlled expansion process of cellular polymer-filler composites (ferroelectrets),' Ferroelectrics, vol. 331, no. 1, pp. 181-187, 2006. [58] N. Jahan, F. Mighri, D. Rodrigue, and A. Ajji, 'Effect of the inflation strategy on the piezoelectric response of cellular poly (vinylidene fluoride) ferroelectret,' Journal of Applied Polymer Science, vol. 136, no. 20, p. 47540, 2019. [59] R. J. Plunkett, 'The history of polytetrafluoroethylene: discovery and development,' high performance polymers: their origin and development, pp. 261-266, 1986. [60] T. A. Ford and H. W. Edward, 'Polyvinylidene fluoride and process for obtaining the same,' ed: Google Patents, 1948. [61] S. Ebnesajjad, 'Introduction to fluoropolymers,' in Applied Plastics Engineering Handbook: Elsevier, 2017, pp. 55-71. [62] A. Lovinger, 'In Developments in Crystalline Polymers; Basset, DC, Ed,' Applied Science: London, vol. 1, p. 195, 1982. [63] Y. Koseki, K. Aimi, and S. Ando, 'Crystalline structure and molecular mobility of PVDF chains in PVDF/PMMA blend films analyzed by solid-state 19F MAS NMR spectroscopy,' Polymer journal, vol. 44, no. 8, pp. 757-763, 2012. [64] T.Wu, H. Jin, S. Dong, W. Xuan, H. Xu, L. Lu, Z. Fang, S. Huang, X. Tao, L. Shi, S. Liu and J. Luo, 'A flexible film bulk acoustic resonator based on β-phase polyvinylidene fluoride polymer,' Sensors, vol. 20, no. 5, p. 1346, 2020. [65] A. Salimi and A. Yousefi, 'Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films,' Polymer Testing, vol. 22, no. 6, pp. 699-704, 2003. [66] V. Sencadas, R. Gregorio Jr, and S. Lanceros-Méndez, 'α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch,' Journal of Macromolecular Science®, vol. 48, no. 3, pp. 514-525, 2009. [67] T. Kaura, R. Nath, and M. Perlman, 'Simultaneous stretching and corona poling of PVDF films,' Journal of Physics D: Applied Physics, vol. 24, no. 10, p. 1848, 1991. [68] H. J. Ye, W. Z. Shao, and L. Zhen, 'Crystallization kinetics and phase transformation of poly (vinylidene fluoride) films incorporated with functionalized BaTiO3 nanoparticles,' Journal of Applied Polymer Science, vol. 129, no. 5, pp. 2940-2949, 2013. [69] X. Zhang, J. Hillenbrand, and G. Sessler, 'Ferroelectrets with improved thermal stability made from fused fluorocarbon layers,' Journal of Applied Physics, vol. 101, no. 5, p. 054114, 2007. [70] X. Zhang, X. Zhang, G. M. Sessler, and X. Gong, 'Quasi-static and dynamic piezoelectric responses of layered polytetrafluoroethylene ferroelectrets,' Journal of Physics D: Applied Physics, vol. 47, no. 1, p. 015501, 2013. [71] M. Dansachmüller, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, M. Paajanen, and J. Raukola, 'Elastic and electromechanical properties of polypropylene foam ferroelectrets,' Applied Physics Letters, vol. 86, no. 3, p. 031910, 2005. [72] R. Kressmann, 'Linear and nonlinear piezoelectric response of charged cellular polypropylene,' Journal of Applied Physics, vol. 90, no. 7, pp. 3489-3496, 2001. [73] X. Zhang, X. Wang, G. Cao, D. Pan, Z. Sun, and Z. Xia, 'Preparation and piezoelectricity of piezoelectrets made of polytetrafluoroethylene,' Ferroelectrics, vol. 408, no. 1, pp. 55-61, 2010. [74] S. R. Anton and K. M. Farinholt, 'An evaluation on low-level vibration energy harvesting using piezoelectret foam,' in Active and Passive Smart Structures and Integrated Systems 2012, 2012, vol. 8341, pp. 162-171: SPIE. [75] Y. Chu,J. Zhong,H. Liu,Y. Ma,N. Liu,Y. Song,J. Liang,Z. Shao,Y. Sun,Y. Dong,X. Wang,L. Lin., 'Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system,' Advanced Functional Materials, vol. 28, no. 40, p. 1803413, 2018. [76] J. Hillenbrand and G. Sessler, 'Piezoelectricity in cellular electret films,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 4, pp. 537-542, 2000. [77] R. Kressmann, 'New piezoelectric polymer for air-borne and water-borne sound transducers,' The Journal of the Acoustical Society of America, vol. 109, no. 4, pp. 1412-1416, 2001. [78] G. S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, and S. Bauer, 'Large and broadband piezoelectricity in smart polymer-foam space-charge electrets,' Applied Physics Letters, vol. 77, no. 23, pp. 3827-3829, 2000. [79] A. Mellinger, 'Dielectric resonance spectroscopy: a versatile tool in the quest for better piezoelectric polymers,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 10, no. 5, pp. 842-861, 2003. [80] Z. An, M. Zhao, J. Yao, Y. Zhang, and Z. Xia, 'Improved piezoelectric properties of cellular polypropylene ferroelectrets by chemical modification,' Applied Physics A, vol. 95, no. 3, pp. 801-806, 2009. [81] H.-S. Oh, K. H. Lim, B. Roh, I. Hwang, and H. Kim, 'Corrosion resistance and sintering effect of carbon supports in polymer electrolyte membrane fuel cells,' Electrochimica Acta, vol. 54, no. 26, pp. 6515-6521, 2009. [82] S. H. Tabatabaei, P. J. Carreau, and A. Ajji, 'Microporous membranes obtained from PP/HDPE multilayer films by stretching,' Journal of membrane science, vol. 345, no. 1-2, pp. 148-159, 2009. [83] F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, 'A review on electrospinning for membrane fabrication: Challenges and applications,' Desalination, vol. 356, pp. 15-30, 2015. [84] S. Loeb and S. Sourirajan, 'Sea water demineralization by means of an osmotic membrane,' ACS Publications, 1962. [85] A. K. Hołda and I. F. Vankelecom, 'Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes,' Journal of Applied Polymer Science, vol. 132, no. 27, 2015. [86] A. Schäfer, A. G. Fane, and T. D. Waite, Nanofiltration: principles and applications. Elsevier, 2005. [87] A. J. Castro, 'Methods for making microporous products,' ed: Google Patents, 1981. [88] I. J. Roh, S. Ramaswamy, W. B. Krantz, and A. R. Greenberg, 'Poly (ethylene chlorotrifluoroethylene) membrane formation via thermally induced phase separation (TIPS),' Journal of Membrane Science, vol. 362, no. 1-2, pp. 211-220, 2010. [89] H. K. Lee, A. S. Myerson, and K. Levon, 'Nonequilibrium liquid-liquid phase separation in crystallizable polymer solutions,' Macromolecules, vol. 25, no. 15, pp. 4002-4010, 1992. [90] H. Matsuyama, M. Teramoto, S. Kudari, and Y. Kitamura, 'Effect of diluents on membrane formation via thermally induced phase separation,' Journal of applied polymer science, vol. 82, no. 1, pp. 169-177, 2001. [91] A. Laxminarayan, K. S. McGuire, S. S. Kim, and D. R. Lloyd, 'Effect of initial composition, phase separation temperature and polymer crystallization on the formation of microcellular structures via thermally induced phase separation,' Polymer, vol. 35, no. 14, pp. 3060-3068, 1994. [92] H. Matsuyama, M. Teramoto, and T. Uesaka, 'Membrane formation and structure development by dry-cast process,' Journal of membrane science, vol. 135, no. 2, pp. 271-288, 1997. [93] S. S. Shojaie, W. B. Krantz, and A. R. Greenberg, 'Dense polymer film and membrane formation via the dry-cast process part II. Model validation and morphological studies,' Journal of Membrane Science, vol. 94, no. 1, pp. 281-298, 1994. [94] A. Venault, Y. Chang, D.-M. Wang, and D. Bouyer, 'A review on polymeric membranes and hydrogels prepared by vapor-induced phase separation process,' Polymer Reviews, vol. 53, no. 4, pp. 568-626, 2013. [95] A. Asad, D. Sameoto, and M. Sadrzadeh, 'Overview of membrane technology,' in Nanocomposite membranes for water and gas separation: Elsevier, 2020, pp. 1-28. [96] P. Georlette and J. Leva, 'Composition comprising a vinylidene fluoride polymer and a blowing agent,' ed: Google Patents, 1984. [97] M. Grasselli and N. Betz, 'Making porous membranes by chemical etching of heavy-ion tracks in β-PVDF films,' Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 236, no. 1-4, pp. 501-507, 2005. [98] Q. Wang, Z. Wang, and Z. Wu, 'Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment,' Desalination, vol. 297, pp. 79-86, 2012. [99] Q. Li, Z. L. Xu, and L. Y. Yu, 'Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes,' Journal of applied polymer science, vol. 115, no. 4, pp. 2277-2287, 2010. [100]T.-H. Young, L.-P. Cheng, D.-J. Lin, L. Fane, and W.-Y. Chuang, 'Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents,' Polymer, vol. 40, no. 19, pp. 5315-5323, 1999. [101]J. T. Jung, J. F. Kim, H. H. Wang, E. Di Nicolo, E. Drioli, and Y. M. Lee, 'Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS),' Journal of Membrane Science, vol. 514, pp. 250-263, 2016. [102]A. M. Nasib, I. Hatim, N. Jullok, and H. R. Alamery, 'Morphological properties of poly (vinylidene fluoride-cotetrafluoroethylene membrane): effect of solvents and polymer concentrations,' Malaysian Journal of Analytical Sciences, vol. 21, no. 2, pp. 356-364, 2017. [103]D. Wang, K. Li, and W. Teo, 'Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives,' Journal of Membrane Science, vol. 178, no. 1-2, pp. 13-23, 2000. [104]R. Naim, A. Ismail, and A. Mansourizadeh, 'Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84712 | - |
| dc.description.abstract | 本研究以開發多孔壓電駐極體薄膜製程為核心,選用兩種PVDF的共聚物PVDF-TrFE、PVDF-HFP為材料,採用非溶劑誘導相轉變(Nonsolvent Induced Phase Separation, NIPS)以及蒸氣誘導相轉變(Vapor-Induced Phase Separation, VIPS)方式製作具有海綿狀孔洞的薄膜。研究發現NIPS製程使用之非溶劑凝聚液與薄膜成形具有關聯性,並可透過添加物改變薄膜結構;以VIPS製程製作薄膜則發現溶劑為薄膜結構的重要變因,透過不同溶劑以及不同比例的混和溶劑的選擇可產生不同結構的薄膜。在完成多孔壓電駐極體薄膜製程開發後,亦將各種薄膜進行-16 kV及12小時的電暈極化駐電程序,並量測其壓電係數。以動態法量測壓電係數之結果顯示,以NIPS法製備高分子溶液中含有8 wt%乙醇並使用60 wt%乙醇為凝聚液所製成的薄膜、以VIPS法製備分別使用DMF、DMAC溶劑製成的薄膜,輸出響應媲美商用EMFi薄膜;準靜態法量測結果則發現NIPS法製備高分子溶液中含有2 wt%乙醇並使用60 wt%乙醇為凝聚液所製成的薄膜,於0.1 N的施力條件下輸出超過4000 pC/N,相較商用EMFi薄膜高出9.95倍,其餘樣本也皆具有約2000 pC/N以上的輸出效果,遠高於EMFi以及實心的PVDF薄膜,量測結果也顯示準靜態法電荷輸出與樣本電容大小具有相依性。從本研究可發現,無論是NIPS、VIPS皆可透過參數調控改變薄膜結構,並使其在低頻率範圍的量測具有良好的壓電輸出響應。 | zh_TW |
| dc.description.abstract | In this study, different processes to fabricate porous piezoelectric electret films are developed, including non-solvent-induced phase separation (NIPS) and vapor-phase induced phase separation (VIPS) methods. PVDF-TrFE and PVDF-HFP copolymers are used to create spongy structures with different pore sizes and geometry. It is found that the non-solvent-based NIPS process is a key factor in the formation of the porous film, and the film structure can be modulated by additives. On the other hand, it is also found that the solvent is an important factor in the porous film formation of the VIPS process. After poling these porous piezoelectric electret films prepared by different methods and parameters, a corona discharge polarization at -16 kV and 12 hours of treatment is conducted, and their piezoelectric coefficients are measured and compared. Using the dynamic method, it shows that the NIPS films prepared with 8 wt% ethanol in the polymer solution and 60 wt% ethanol as the coagulation solution can have a compatible piezoelectric constant with the commercial EMFi electret film. The VIPS films prepared by DMF or DMAC solvents also is comparable to the EMFi electret film. The quasi-static method shows that the piezoelectric coefficient of the NIPS film prepared by 2 wt% ethanol in the polymer solution and 60 wt% ethanol as the coagulation solution can exceed 4000 pC/N, which is about 9.95 times higher than that of EMFi films. In summary, it is found that both NIPS and VIPS can create a porous piezoelectric film with different porous structures and they can provide an excellent piezoelectric property for sensing applications. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:21:48Z (GMT). No. of bitstreams: 1 U0001-0709202209564100.pdf: 7591817 bytes, checksum: c39191767a433c3e87dd9358d8af9e83 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xiii 第1章 緒論 1 1.1 前言 1 1.2 研究背景 1 1.3 研究動機與目標 2 1.4 論文架構 3 第2章 鐵電材料性質、駐極體介紹 5 2.1 鐵電材料特性 5 2.1.1 壓電材料的研究發展 6 2.1.2 壓電效應、鐵電效應、熱電效應 7 2.1.3 常見的壓電材料 12 2.2 駐極體的發展與材料分類 13 2.2.1 駐極體的發展史 13 2.2.2 電荷駐極體材料介紹 15 2.2.3 偶極駐極體材料分類 17 2.3 駐極體的製程與原理特性 19 2.3.1 駐極體的極化方式及程序 19 2.3.2 駐極體的物理等效模型 25 2.3.3 常見的駐極體材料及製程 29 2.4 鐵電聚合物 31 2.4.1 PVDF的結晶相 32 2.4.2 提升PVDF β結晶相的方法 33 2.5 壓電係數的量測方式 35 2.5.1 透過正壓電效應量測壓電係數的方法 35 2.5.2 透過逆壓電效應量測壓電係數的方法 38 2.5.3 共振法計算壓電係數 39 第3章 相轉變法薄膜製程原理 42 3.1 相分離熱力學相圖 43 3.2 熱誘導式相分離法 44 3.3 蒸發誘導相分離法 45 3.4 非溶劑誘導相分離法 45 3.5 蒸氣誘導式相分離 46 3.6 聚偏二氟乙烯相分離製程 46 3.6.1 NIPS製作PVDF薄膜 46 第4章 研究方法與實驗架設 51 4.1 NIPS製備高分子薄膜 51 4.1.1 非溶劑乙醇濃度與成膜的關係 52 4.1.2 添加物、凝聚槽非溶劑濃度與成膜的關係 54 4.2 VIPS製備高分子薄膜 56 4.2.1 溶劑的種類與成膜的關係 56 4.2.2 混和溶劑與成膜的關係 58 4.3 薄膜極化製程及樣本製備 59 4.3.1 駐電程序 59 4.3.2 駐極體薄膜實驗樣本製備 60 4.4 壓電係數量測設備架設 62 4.4.1 動態法實驗架設 62 4.4.2 準靜態法實驗架設 63 第5章 實驗結果與討論 66 5.1 薄膜橫截面與參數調控的關係 66 5.1.1 NIPS之非溶劑乙醇濃度與成膜的關係 66 5.1.2 NIPS之添加物、凝聚槽非溶劑濃度與成膜的關係 70 5.1.3 VIPS之溶劑的種類與成膜的關係 75 5.1.4 VIPS混和溶劑與成膜的關係 77 5.2 壓電係數量測結果 80 5.2.1 動態法量測結果 80 5.2.2 準靜態法量測結果 90 5.3 薄膜結構與電性討論 98 5.3.1 樣本電容量測結果 98 第6章 結論及未來展望 105 6.1 結論 105 6.2 未來展望 106 參考文獻 107 | |
| dc.language.iso | zh-TW | |
| dc.subject | 動態法 | zh_TW |
| dc.subject | 壓電駐極體薄膜 | zh_TW |
| dc.subject | 非溶劑誘導相轉變 | zh_TW |
| dc.subject | 蒸氣誘導相轉變 | zh_TW |
| dc.subject | 準靜態法 | zh_TW |
| dc.subject | Vapor-induced phase separation | en |
| dc.subject | Piezoelectric electret film | en |
| dc.subject | Quasi-static method | en |
| dc.subject | Dynamic method | en |
| dc.subject | Non-solvent-induced phase separation | en |
| dc.title | 以相轉變法製作多孔壓電駐極體薄膜之製程及特性分析 | zh_TW |
| dc.title | Development and Analysis of a Porous Piezo-Electret Film Fabricated by Phase Inversion Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 許聿翔(Yu-Hsiang Hsu) | |
| dc.contributor.oralexamcommittee | 宋家驥(Chia-Chi SUNG),王昭男(Chao-Nan Wang),柯文清(Wen-Ching Ko) | |
| dc.subject.keyword | 壓電駐極體薄膜,非溶劑誘導相轉變,蒸氣誘導相轉變,動態法,準靜態法, | zh_TW |
| dc.subject.keyword | Piezoelectric electret film,Non-solvent-induced phase separation,Vapor-induced phase separation,Dynamic method,Quasi-static method, | en |
| dc.relation.page | 114 | |
| dc.identifier.doi | 10.6342/NTU202203215 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-07 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0709202209564100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
