請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84706完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊烽正(Feng-Cheng Yang) | |
| dc.contributor.author | Yun-De Lin | en |
| dc.contributor.author | 林昀德 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:21:29Z | - |
| dc.date.copyright | 2022-10-08 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-07 | |
| dc.identifier.citation | Altinkaya, M. and M. Zontul (2013). 'Urban bus arrival time prediction: A review of computational models.' International Journal of Recent Technology and Engineering (IJRTE) 2(4): 164-169. Ba, J. L., J. R. Kiros and G. E. Hinton (2016). 'Layer normalization.' arXiv preprint arXiv:1607.06450. Breiman, L. (1996). 'Bagging predictors.' Machine learning 24(2): 123-140. Chen, W., Z. Wang and F. T. Chan (2017). 'Robust production capacity planning under uncertain wafer lots transfer probabilities for semiconductor automated material handling systems.' European Journal of Operational Research 261(3): 929-940. Chien, S. I.-J. and C. M. Kuchipudi (2003). 'Dynamic travel time prediction with real-time and historic data.' Journal of transportation engineering 129(6): 608-616. de Araujo, A. C. and A. Etemad (2019). Deep neural networks for predicting vehicle travel times. 2019 IEEE SENSORS, IEEE. Dorogush, A., A. Gulin, G. Gusev, N. Kazeev, L. O. Prokhorenkova and A. Vorobev (2018). 'Fighting biases with dynamic boosting (2017).' arXiv preprint arXiv:1706.09516. Freund, Y. and R. E. Schapire (1996). Experiments with a new boosting algorithm. icml, Citeseer. Friedman, J. H. (2001). 'Greedy function approximation: a gradient boosting machine.' Annals of statistics: 1189-1232. Jang, Y. J. and G.-H. Choi (2006). Introduction to automated material handling systems in LCD panel production lines. 2006 IEEE International Conference on Automation Science and Engineering, IEEE. Kankanamge, K. D., Y. R. Witharanage, C. S. Withanage, M. Hansini, D. Lakmal and U. Thayasivam (2019). Taxi trip travel time prediction with isolated XGBoost regression. 2019 Moratuwa Engineering Research Conference (MERCon), IEEE. Kuo, Y., T. Yang, B. A. Peters and I. Chang (2007). 'Simulation metamodel development using uniform design and neural networks for automated material handling systems in semiconductor wafer fabrication.' Simulation Modelling Practice and Theory 15(8): 1002-1015. Kwon, J., B. Coifman and P. Bickel (2000). 'Day-to-day travel-time trends and travel-time prediction from loop-detector data.' Transportation Research Record 1717(1): 120-129. Lee, C.-Y. and T.-L. Tsai (2019). 'Data science framework for variable selection, metrology prediction, and process control in TFT-LCD manufacturing.' Robotics and Computer-Integrated Manufacturing 55: 76-87. Lee, W.-H., S.-S. Tseng and S.-H. Tsai (2009). 'A knowledge based real-time travel time prediction system for urban network.' Expert systems with Applications 36(3): 4239-4247. Liao, D.-Y. and C.-N. Wang (2004). 'Neural-network-based delivery time estimates for prioritized 300-mm automatic material handling operations.' IEEE Transactions on Semiconductor Manufacturing 17(3): 324-332. Lin, H.-E., R. Zito and M. Taylor (2005). A review of travel-time prediction in transport and logistics. Proceedings of the Eastern Asia Society for transportation studies, Bangkok, Thailand. Lyu, J., P.-S. Chen and W.-T. Huang (2021). 'Combining an automatic material handling system with lean production to improve outgoing quality assurance in a semiconductor foundry.' Production Planning & Control 32(10): 829-844. Mark, C. D., A. W. Sadek and D. Rizzo (2004). Predicting experienced travel time with neural networks: a PARAMICS simulation study. Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749), IEEE. McCulloch, W. S. and W. Pitts (1943). 'A logical calculus of the ideas immanent in nervous activity.' The bulletin of mathematical biophysics 5(4): 115-133. Prokhorenkova, L., G. Gusev, A. Vorobev, A. V. Dorogush and A. Gulin (2018). 'CatBoost: unbiased boosting with categorical features.' Advances in neural information processing systems 31. Rumelhart, D. E., G. E. Hinton and R. J. Williams (1986). 'Learning representations by back-propagating errors.' nature 323(6088): 533-536. Wen, S.-F. (2010). AMHS 派貨邏輯利用類神經網路結合遺傳演算法實現效能動態最佳化研究, National Central University. Wu, C.-H., J.-M. Ho and D.-T. Lee (2004). 'Travel-time prediction with support vector regression.' IEEE transactions on intelligent transportation systems 5(4): 276-281. Xinghao, S., T. Jing, C. Guojun and S. Qichong (2013). 'Predicting bus real-time travel time basing on both GPS and RFID data.' Procedia-Social and Behavioral Sciences 96: 2287-2299. Zhang, Y. and A. Haghani (2015). 'A gradient boosting method to improve travel time prediction.' Transportation Research Part C: Emerging Technologies 58: 308-324. 孔祥竹, 蘇朝墩 and 洪瑞雲 (2007). 應用類神經網路減少 TFT-LCD 產品測試項目之研究 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84706 | - |
| dc.description.abstract | 本研究探討生產排程給定下的自動物料搬運系統的運輸時間預測。研究對象是TFT-LCD面板製造的cell廠區。為了對時間進行預測,本研究從歷史資料中分析並研擬四種具有不同特徵的資料供機器學習。機器學習過程,藉由多層感知機和深度神經網路的基本神經網路模型與集成式的CatBoost模型為基礎,開發出可以預測當派貨系統發出指令到指令完成所需的時間的模型。通過誤差函數計算輸出結果與正確答案間的誤差,並使用選定的優化器與算法更新神經網路的權重和CatBoost的殘差。反覆的更新權重以及修正殘差,直到CatBoost模型和神經網路的計算結果與正確答案家的誤差值收斂,得到預測模型的最佳權重。數值測試結果顯示CatBoost模型和深度神經網路模型為基礎的運輸時間預測模型雖然具有預測時間的效力,但最終無法改善歷史資料顯示的預測準確率。此外,運輸時間模型雖未能達到預期的準確率,但依然可以提供使用者一項做決策的工具。 | zh_TW |
| dc.description.abstract | This research focuses on the prediction of the transportation time of an automated material handling system for a given production schedule in a cell plant for TFT-LCD panel manufacturing. In order to predict the time, four types of data with different features are analyzed and developed from historical data for model training. A basic neural network model based on multi-layer perceptrons and deep neural networks, and an ensemble model called CatBoost are used to develop a model that predicts the time required between the dispatch system issuing an order and its completion. During the training process, the loss function is used to calculate the error between the output and the answer, and the selected optimizer and algorithm are used to update the weights of the neural network and the residuals of CatBoost. The weights are repeatedly updated and the residuals are corrected until the error between the CatBoost model and the neural network is converged with the answer, and the optimal weights for the prediction model are obtained. The results show that the transit time prediction model based on the CatBoost model and the deep neural network model is effective in predicting time, but ultimately fails to improve the prediction accuracy shown by the historical data. In addition, although the transit time model does not achieve the expected accuracy, it can still provide a tool for users to make decisions. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:21:29Z (GMT). No. of bitstreams: 1 U0001-3108202214081100.pdf: 1674523 bytes, checksum: a10ca3f6aa7f7f32e60eb6adb1aafd9d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 研究方法與步驟 2 1.4 章節概要 2 第二章 文獻探討和自動化搬運系統 4 2.1 自動化物料搬運系統(AUTO MATERIAL HANDLING SYSTEM, AMHS) 4 2.2 旅行時間估算及預測問題 5 2.2.2 旅行時間預測問題及其資料需求 5 2.2.3 旅行時間的預測方式 6 2.3 小結 7 第三章 機器學習 8 3.1 多層感知器(MULTILAYER PERCEPTRON, MLP) 8 3.2 損失函數(LOSS FUNCTION) 10 3.3 優化器(OPTIMIZER) 12 3.4 集成式學習(ENSEMBLE LEARNING) 15 3.5 梯度提升樹(GRADIENT BOOSTING DECISION TREE, GBDT) 18 第四章 以機器學習為核心的面板廠物料搬運時間預測系統 20 4.1 面板廠CELL段製程設備系統 20 4.1.2 Stocker物料儲存及轉運設備 21 4.1.3 RGV搬運設備 23 4.1.4 AGV搬運設備 25 4.2 歷史搬運指令檔案 27 4.2.1 原始指令資料介紹 27 4.2.2 資料前處理 29 4.3 訓練資料生成 30 4.3.1 第一類型資料集-含設備使用訊息及未執行指令數的資料集 31 4.3.2 第二類型資料集-含路徑順序權重訊息及距離估算的資料集 34 4.3.3 第三類型資料集-含待執行子指令時間估算的資料集 37 4.3.4 第四類型資料集-合理篩選的含時間估算資料集 39 4.4 機器學習為核心的物料搬運作業時間預測系統和系統 40 4.4.1 MLP架構的物料搬運作業時間預測系統 41 4.4.2 Deep MLP架構的物料搬運作業時間預測系統 44 4.4.3 Categorical Boosting (CatBoost)架構的物料搬運作業時間預測系統 47 4.5 小結 52 第五章 預測系統測試和結果分析 53 5.1 訓練和測試資料 53 5.2 模型預測結果 53 5.3 小結 61 第六章 結論及未來方向 63 6.1 結論 63 6.2 未來研究建議 64 參考文獻 66 附錄(一)總指令原始資料欄位 68 附錄(二) 子指令原始資料欄位 69 附錄(三)MLP網路 70 附錄(四)DNN模型 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多層感知機 | zh_TW |
| dc.subject | 自動物料搬運系統 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 時間預測問題 | zh_TW |
| dc.subject | 深度神經網路 | zh_TW |
| dc.subject | Deep Neural Network | en |
| dc.subject | Time Prediction | en |
| dc.subject | Automatic Material Handling System | en |
| dc.subject | Machine Learning | en |
| dc.subject | Multilayer Perceptron | en |
| dc.title | 機器學習之物料搬運時間預測系統 | zh_TW |
| dc.title | Machine Learning-Based Material Handling Time Prediction Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅士哲(Shih-Che Lo),蔡瑞煌(Rua-Huan Tsaih),黃奎隆(Kwei-Long Huang) | |
| dc.subject.keyword | 時間預測問題,自動物料搬運系統,機器學習,多層感知機,深度神經網路, | zh_TW |
| dc.subject.keyword | Time Prediction,Automatic Material Handling System,,Machine Learning,Multilayer Perceptron,,Deep Neural Network, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202203016 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-30 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3108202214081100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
