Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84703
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉啟德(Chi-Te Liu)
dc.contributor.authorHsiao-Lin Chienen
dc.contributor.author簡曉琳zh_TW
dc.date.accessioned2023-03-19T22:21:21Z-
dc.date.copyright2022-10-12
dc.date.issued2022
dc.date.submitted2022-09-08
dc.identifier.citationAdedeji, A.A., Häggblom, M.M., and Babalola, O.O. (2020). Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. Scientific African 9, e00492. Akiba, N., Aono, T., Toyazaki, H., Sato, S., and Oyaizu, H. (2010). phrR-like gene praR of Azorhizobium caulinodans ORS571 is essential for symbiosis with Sesbania rostrata and is involved in expression of reb genes. Applied and Environmental Microbiology 76, 3475-3485. Althoff, D.M., and Segraves, K.A. (2016). 'Mutualism, the evolutionary ecology of,' in Encyclopedia of Evolutionary Biology, ed. R.M. Kliman. (Oxford: Academic Press), 87-93. Alunni, B., and Gourion, B. (2016). Terminal bacteroid differentiation in the legume-rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond. New Phytologist 211, 411-417. Angelard, C., and Bever, J.D. (2013). 'Symbionts, genetics of,' in Brenner's Encyclopedia of Genetics (Second Edition), eds. S. Maloy & K. Hughes. Academic Press), 595-597. Aschenbrenner, I.A., Cernava, T., Berg, G., and Grube, M. (2016). Understanding microbial multi-species symbioses. Frontiers in Microbiology 7, 1-9. Bago, B., Pfeffer, P.E., Abubaker, J., Jun, J., Allen, J.W., Brouillette, J., Douds, D.D., Lammers, P.J., and Shachar-Hill, Y. (2003). Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiology 131, 1496-1507. Bartosik, A.A., Glabski, K., Jecz, P., Lasocki, K., Mikosa, M., Plochocka, D., Thomas, C.M., and Jagura-Burdzy, G. (2014). Dissection of the region of Pseudomonas aeruginosa ParA that is important for dimerization and interactions with its partner ParB. Microbiology 160, 2406-2420. Bartosik, A.A., Lasocki, K., Mierzejewska, J., Thomas, C.M., and Jagura-Burdzy, G. (2004). ParB of Pseudomonas aeruginosa: Interactions with its partner ParA and its target parS and specific effects on bacterial growth. Journal of Bacteriology 186, 6983-6998. Bartosik, A.A., Mierzejewska, J., Thomas, C.M., and Jagura-Burdzy, G. (2009). ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. Microbiology 155, 1080-1092. Baxter, J.C., Waples, W.G., and Funnell, B.E. (2020). Nonspecific DNA binding by P1 ParA determines the distribution of plasmid partition and repressor activities. Journal of Biological Chemistry 295, 17298-17309. Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N., and Zhang, L.X. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science 10, 1-15. Beringer, J.E. (1974). R-factor transfer in Rhizobium leguminosarum. Journal of General Microbiology 84, 188-198. Bignell, C., and Thomas, C.M. (2001). The bacterial ParA-ParB partitioning proteins. Journal of Biotechnology 91, 1-34. Brewin, N.J. (2004). Plant cell wall remodelling in the rhizobium–legume symbiosis. Critical Reviews in Plant Sciences 23, 293-316. Burke, G.R., and Strand, M.R. (2014). Systematic analysis of a wasp parasitism arsenal. Molecular Ecology 23, 890-901. Cabeen, M.T., and Jacobs-Wagner, C. (2005). Bacterial cell shape. Nature Reviews Microbiology 3, 601-610. Capoen, W., Goormachtig, S., and Holsters, M. (2010a). Water-tolerant legume nodulation. Journal of Experimental Botany 61, 1251-1255. Capoen, W., Oldroyd, G., Goormachtig, S., and Holsters, M. (2010b). Sesbania rostrata: a case study of natural variation in legume nodulation. New Phytologist 186, 340-345. Chien, H.L., Huang, W.Z., Tsai, M.Y., Cheng, C.H., and Liu, C.T. (2019). Overexpression of the chromosome partitioning gene parA in Azorhizobium caulinodans ORS571 alters the bacteroid morphotype in Sesbania rostrata stem nodules. Frontiers in Microbiology 10. Cook, D.R. (1999). Medicago truncatula - a model in the making! Commentary. Current Opinion in Plant Biology 2, 301-304. Corich, V., Goormachtig, S., Lievens, S., Van Montagu, M., and Holsters, M. (1998). Patterns of ENOD40 gene expression in stem-borne nodules of Sesbania rostrata. Plant Molecular Biology 37, 67-76. Corzo, J. (2006). Time, the forgotten dimension of ligand binding teaching. Biochemistry and Molecular Biology Education 34, 413-416. Czernic, P., Gully, D., Cartieaux, F., Moulin, L., Guefrachi, I., Patrel, D., Pierre, O., Fardoux, J., Chaintreuil, C., Nguyen, P., Gressent, F., Da Silva, C., Poulain, J., Wincker, P., Rofidal, V., Hem, S., Barrière, Q., Arrighi, J.-F., Mergaert, P., and Giraud, E. (2015). Convergent evolution of endosymbiont differentiation in dalbergioid and inverted repeat-lacking clade legumes mediated by nodule-specific cysteine-rich peptides. Plant Physiology 169, 1254-1265. D'haeze, W., De Rycke, R., Mathis, R., Goormachtig, S., Pagnotta, S., Verplancke, C., Capoen, W., and Holsters, M. (2003). Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proceedings of the National Academy of Sciences of the United States of America 100, 11789-11794. D'haeze, W., Gao, M.S., De Rycke, R., Van Montagu, M., Engler, G., and Holsters, M. (1998). Roles for azorhizobial nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively. Molecular Plant-Microbe Interactions 11, 999-1008. D'haeze, W., Glushka, J., De Rycke, R., Holsters, M., and Carlson, R.W. (2004). Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Molecular Microbiology 52, 485-500. D'haeze, W., and Holsters, M. (2002). Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12, 79r-105r. Debaugny, R.E., Sanchez, A., Rech, J., Labourdette, D., Dorignac, J., Geniet, F., Palmeri, J., Parmeggiani, A., Boudsocq, F., Anton Leberre, V., Walter, J.-C., and Bouet, J.-Y. (2018). A conserved mechanism drives partition complex assembly on bacterial chromosomes and plasmids. Molecular Systems Biology 14, e8516. Defaria, S.M., Sutherland, J.M., and Sprent, J.I. (1986). A new type of infected cell in root-nodules of Andira spp. (leguminosae). Plant Science 45, 143-147. Den Herder, J., Lievens, S., Rombauts, S., Holsters, M., and Goormachtig, S. (2007). A symbiotic plant peroxidase involved in bacterial invasion of the tropical legume Sesbania rostrata. Plant Physiology 144, 717-727. Dilworth, M.J. (1966). Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta 127, 285-294. Dombrecht, B., Vanderleyden, J., and Michiels, J. (2001). Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in Gram-negative bacteria. Molecular Plant-Microbe Interactions 14, 426-430. Donald, R.G.K., Nees, D., Raymond, C.K., Loroch, A.I., and Ludwig, R.A. (1986). Three genomic loci encode Rhizobium sp. ORS571 N2 fixation genes. Journal of Bacteriology 165, 72-81. Downie, J.A. (2014). Legume nodulation. Current biology 24, R184-190. Draper, G.C., and Gober, J.W. (2002). Bacterial chromosome segregation. Annual Review of Microbiology 56, 567-597. Dreyfus, B., Garcia, J.L., and Gillis, M. (1988). Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. International Journal of Systematic Bacteriology 38, 89-98. Dreyfus, B.L., Elmerich, C., and Dommergues, Y.R. (1983). Free-living rhizobium strain able to grow on N2 as the sole nitrogen source. Applied and Environmental Microbiology 45, 711-713. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350-356. Easter, J., Jr., and Gober, J.W. (2002). ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Molecular Cell 10, 427-434. Ebersbach, G., and Gerdes, K. (2005). Plasmid segregation mechanisms. Annual Review of Genetics 39, 453-479. El-Brolosy, M., Rossi, A., Kontarakis, Z., Kuenne, C., Guenther, S., Fukuda, N., Takacs, C., Lai, S.-L., Fukuda, R., Gerri, C., Kikhi, K., Giraldez, A., and Stainier, D.Y.R. (2018). Genetic compensation is triggered by mutant mRNA degradation. bioRxiv, 328153. El-Brolosy, M.A., and Stainier, D.Y.R. (2017). Genetic compensation: A phenomenon in search of mechanisms. PLOS Genetics 13, e1006780. Errington, J. (2003). Regulation of endospore formation in Bacillus subtilis. Nature Reviews Microbiology 1, 117-126. Figge, R.M., Easter, J., and Gober, J.W. (2003). Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Molecular Microbiology 47, 1225-1237. Fisher, G.L.M., Pastrana, C.L., Higman, V.A., Koh, A., Taylor, J.A., Butterer, A., Craggs, T., Sobott, F., Murray, H., Crump, M.P., Moreno-Herrero, F., and Dillingham, M.S. (2017). The structural basis for dynamic DNA binding and bridging interactions which condense the bacterial centromere. Elife 6. Gage, D.J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews 68, 280-300. Gao, M.S., D'haeze, W., De Rycke, R., Wolucka, B., and Holsters, M. (2001). Knockout of an azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. Molecular Plant-Microbe Interactions 14, 857-866. Gerdes, K., Moller-Jensen, J., and Bugge Jensen, R. (2000). Plasmid and chromosome partitioning: surprises from phylogeny. Molecular Microbiology 37, 455-466. Gibson, K.E., Kobayashi, H., and Walker, G.C. (2008). Molecular determinants of a symbiotic chronic infection. Annual Review of Genetics 42, 413-441. Glazebrook, J., Ichige, A., and Walker, G.C. (1993). A Rhizobium meliloti homolog of the Escherichia coli peptide- antibiotic transport protein Sbma is essential for bacteroid development. Genes & Development 7, 1485-1497. Goethals, K., Vandeneede, G., Vanmontagu, M., and Holsters, M. (1990). Identification and characterization of a functional nodD Gene in Azorhizobium caulinodans ORS571. Journal of Bacteriology 172, 2658-2666. Goormachtig, S., Alves-Ferreira, M., Van Montagu, M., Engler, G., and Holsters, M. (1997). Expression of cell cycle genes during Sesbania rostrata stem nodule development. Molecular Plant-Microbe Interactions 10, 316-325. Gordon, G.S., Sitnikov, D., Webb, C.D., Teleman, A., Straight, A., Losick, R., Murray, A.W., and Wright, A. (1997). Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90, 1113-1121. Gordon, G.S., and Wright, A. (2000). DNA segregation in bacteria. Annual Review of Microbiology 54, 681-708. Gruber, S., and Errington, J. (2009). Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685-696. Haag, A.F., Arnold, M.F.F., Myka, K.K., Kerscher, B., Dall'angelo, S., Zanda, M., Mergaert, P., and Ferguson, G.P. (2013). Molecular insights into bacteroid development during Rhizobium-legume symbiosis. Fems Microbiology Reviews 37, 364-383. Haag, A.F., Baloban, M., Sani, M., Kerscher, B., Pierre, O., Farkas, A., Longhi, R., Boncompagni, E., Hérouart, D., Dall'angelo, S., Kondorosi, E., Zanda, M., Mergaert, P., and Ferguson, G.P. (2011). Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLOS Biology 9, e1001169. Handberg, K., and Stougaard, J. (1992). Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. The Plant Journal 2, 487-496. Harrier, L.A. (2001). The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. Journal of Experimental Botany 52, 469-478. Harrison, M.J. (1997). The arbuscular mycorrhizal symbiosis: An underground association. Trends in Plant Science 2, 54-60. Hiraga, S. (1992). Chromosome and plasmid partition in Escherichia coli. Annual Review of Biochemistry 61, 283-306. Hiraga, S. (1993). Chromosome partition in Echerichia coli. Current Opinion in Genetics & Development 5, 789-801. Hiraga, S. (2000). Dynamic localization of bacterial and plasmid chromosomes. Annual Review of Genetics 34, 21-59. Hirsch, A.M. (1992). Developmental biology of legume nodulation. New Phytologist 122, 211-237. Horst, R.K. (1990). 'Plant diseases and their pathogens,' in Westcott’s Plant Disease Handbook, ed. R.K. Horst. (Boston, MA: Springer US), 86-515. Iniesta, A.A. (2014). ParABS system in chromosome partitioning in the bacterium Myxococcus xanthus. PLOS ONE 9, e86897. Inukai, S., Kock, K.H., and Bulyk, M.L. (2017). Transcription factor-DNA binding: beyond binding site motifs. Current Opinion in Genetics & Development 43, 110-119. Ireton, K., Gunther, N.W.T., and Grossman, A.D. (1994). spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. Journal of Bacteriology 176, 5320-5329. Jacott, C.N., Murray, J.D., and Ridout, C.J. (2017). Trade-offs in arbuscular mycorrhizal symbiosis: Disease resistance, growth responses and perspectives for crop Bbeeding. Agronomy-Basel 7, 1-18. Jalal, A.S.B., Tran, N.T., and Le, T.B.K. (2020). ParB spreading on DNA requires cytidine triphosphate in vitro. Elife 9, 1-24. Jecz, P., Bartosik, A.A., Glabski, K., and Jagura-Burdzy, G. (2015). A single parS sequence from the cluster of four sites closest to oriC is necessary and sufficient for proper chromosome segregation in Pseudomonas aeruginosa. PLOS ONE 10, e0152541. Jones, K.M., Kobayashi, H., Davies, B.W., Taga, M.E., and Walker, G.C. (2007). How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature Reviews Microbiology 5, 619-633. Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A., and Pozo, M.J. (2012). Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology 38, 651-664. Kalliomaa-Sanford, A.K., Rodriguez-Castaneda, F.A., Mcleod, B.N., Latorre-Rosello, V., Smith, J.H., Reimann, J., Albers, S.V., and Barilla, D. (2012). Chromosome segregation in Archaea mediated by a hybrid DNA partition machine. Proceedings of the National Academy of Sciences of the United States of America 109, 3754-3759. Karas, B.J., Ross, L., Novero, M., Amyot, L., Shrestha, A., Inada, S., Nakano, M., Sakai, T., Bonetta, D., Sato, S., Murray, J.D., Bonfante, P., and Szczyglowski, K. (2021). Intragenic complementation at the Lotus japonicus CELLULOSE SYNTHASE-LIKE D1 locus rescues root hair defects. Plant Physiology 186, 2037-2050. Karunakaran, R., Haag, A.F., East, A.K., Ramachandran, V.K., Prell, J., James, E.K., Scocchi, M., Ferguson, G.P., and Poole, P.S. (2010). BacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes. Journal of Bacteriology 192, 2920-2928. Kawalek, A., Wawrzyniak, P., Bartosik, A.A., and Jagura-Burdzy, G. (2020). Rules and exceptions: The role of chromosomal ParB in DNA segregation and other cellular processes. Microorganisms 8, 1-30. Kereszt, A., Mergaert, P., and Kondorosi, E. (2011). Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims? Molecular Plant-Microbe Interactions 24, 1300-1309. Kereszt, A., Mergaert, P., Montiel, J., Endre, G., and Kondorosi, E. (2018). Impact of plant peptides on symbiotic nodule development and functioning. Frontiers in Plant Science 9, 1-16. Krusell, L., Krause, K., Ott, T., Desbrosses, G., Kramer, U., Sato, S., Nakamura, Y., Tabata, S., James, E.K., Sandal, N., Stougaard, J., Kawaguchi, M., Miyamoto, A., Suganuma, N., and Udvardi, M.K. (2005). The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17, 1625-1636. Kusiak, M., Gapczynska, A., Plochocka, D., Thomas, C.M., and Jagura-Burdzy, G. (2011). Binding and spreading of ParB on DNA determine its biological function in Pseudomonas aeruginosa. Journal of Bacteriology 193, 3342-3355. Larkin, R.P., and Fravel, D.R. (1998). Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Disease 82, 1022-1028. Lasocki, K., Bartosik, A.A., Mierzejewska, J., Thomas, C.M., and Jagura-Burdzy, G. (2007). Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. Journal of Bacteriology 189, 5762-5772. Lazarovits, G., Goettel, M., and Vincent, C. (2007). 'Biological Control: a global perspective. Case Histories from around the world. ,' in Biological Control: a global perspective. Case Histories from around the world. . (Wallingford, U.K.: CABI), 1-440. Ledermann, R., Schulte, C.C.M., Poole, P.S., and Margolin, W. (2021). How rhizobia adapt to the nodule environment. Journal of Bacteriology 203, e00539-00520. Lee, K.B., Backer, P.D., Aono, T., Liu, C.T., Suzuki, S., Suzuki, T., Kaneko, T., Yamada, M., Tabata, S., Kupfer, D.M., Najar, F.Z., Wiley, G.B., Roe, B., Binnewies, T., Ussery, D., D'haeze, W., Den Herder, J., Gevers, D., Vereecke, D., Holsters, M., and Oyaizu, H. (2008). The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 9, 271. Lee, M.J., Liu, C.H., Wang, S.Y., Huang, C.T., and Huang, H. (2006). Characterization of the Soj/Spo0J chromosome segregation proteins and identification of putative parS sequences in Helicobacter pylori. Biochemical and Biophysical Research Communications 342, 744-750. Lee, P.S., and Grossman, A.D. (2006). The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis. Molecular Microbiology 60, 853-869. Lehman, A.P., and Long, S.R. (2013). Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. Journal of Bacteriology 195, 5362-5369. Lievens, S., Goormachtig, S., Den Herder, J., Capoen, W., Mathis, R., Hedden, P., and Holsters, M. (2005). Gibberellins are involved in nodulation of Sesbania rostrata. Plant Physiology 139, 1366-1379. Lievens, S., Goormachtig, S., and Holsters, M. (2004). Nodule-enhanced protease inhibitor gene: emerging patterns of gene expression in nodule development on Sesbania rostrata. Journal of Experimental Botany 55, 89-97. Lin, D.C., and Grossman, A.D. (1998). Identification and characterization of a bacterial chromosome partitioning site. Cell 92, 675-685. Liu, C.T., Lee, K.B., Wang, Y.S., Peng, M.H., Lee, K.T., Suzuki, S., Suzuki, T., and Oyaizu, H. (2011). Involvement of the azorhizobial chromosome partition gene (parA) in the onset of bacteroid differentiation during Sesbania rostrata stem nodule development. Applied and Environmental Microbiology 77, 4371-4382. Livny, J., Yamaichi, Y., and Waldor, M.K. (2007). Distribution of centromere-like parS sites in bacteria: Insights from comparative genomics. Journal of Bacteriology 189, 8693-8703. Lloret, J., Wulff, B.B.H., Rubio, J.M., Downie, J.A., Bonilla, I., and Rivilla, R. (1998). Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1. Applied and Environmental Microbiology 64, 1024-1028. Lobocka, M., and Yarmolinsky, M. (1996). P1 plasmid partition: A mutational analysis of ParB. Journal of Molecular Biology 259, 366-382. Madariaga-Marcos, J., Pastrana, C.L., Fisher, G.L.M., Dillingham, M.S., and Moreno-Herrero, F. (2019). ParB dynamics and the critical role of the CTD in DNA condensation unveiled by combined force-fluorescence measurements. Elife 8, e43812. Maj, D., Wielbo, J., Marek-Kozaczuk, M., and Skorupska, A. (2010). Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiological Research 165, 50-60. Markmann, K., and Parniske, M. (2009). Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends in Plant Science 14, 77-86. Maroti, G., Kereszt, A., Kondorosi, E., and Mergaert, P. (2011). Natural roles of antimicrobial peptides in microbes, plants and animals. Research in Microbiology 162, 363-374. Maroti, G., and Kondorosi, E. (2014). Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Frontiers in Microbiology 5, 1-6. Marshall, E., Costa, L.M., and Gutierrez-Marcos, J. (2011). Cysteine-Rich Peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. Journal of Experimental Botany 62, 1677-1686. Masson-Boivin, C., Giraud, E., Perret, X., and Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends in Microbiology 17, 458-466. Mathis, R., Van Gijsegem, F., De Rycke, R., D'haeze, W., Van Maelsaeke, E., Anthonio, E., Van Montagu, M., Holsters, M., and Vereecke, D. (2005). Lipopolysaccharides as a communication signal for progression of legume endosymbiosis. Proceedings of the National Academy of Sciences of the United States of America 102, 2655-2660. Mergaert, P. (2018). Role of antimicrobial peptides in controlling symbiotic bacterial populations. Natural Product Reports 35, 336-356. Mergaert, P., Dhaeze, W., Fernandezlopez, M., Geelen, D., Goethals, K., Claudeprome, J., Vanmontagu, M., and Holsters, M. (1996). Fucosylation and arabinosylation of Nod factors in Azorhizobium caulinodans: Involvement of nolK, nodZ as well as noeC and/or downstream genes. Molecular Microbiology 21, 409-419. Mergaert, P., Nikovics, K., Kelemen, Z., Maunoury, N., Vaubert, D., Kondorosi, A., and Kondorosi, E. (2003). A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiology 132, 161-173. Mergaert, P., Uchiumi, T., Alunni, B., Evanno, G., Cheron, A., Catrice, O., Mausset, A.-E., Barloy-Hubler, F., Galibert, F., Kondorosi, A., and Kondorosi, E. (2006). Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proceedings of the National Academy of Sciences of the United States of America 103, 5230-5235. Merino-Salomon, A., Babl, L., and Schwille, P. (2021). Self-organized protein patterns: The MinCDE and ParABS systems. Current Opinion in Cell Biology 72, 106-115. Mierzejewska, J., and Jagura-Burdzy, G. (2012). Prokaryotic ParA-ParB-parS system links bacterial chromosome segregation with the cell cycle. Plasmid 67, 1-14. Mohl, D.A., Easter, J., Jr., and Gober, J.W. (2001). The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Molecular Microbiology 42, 741-755. Mohl, D.A., and Gober, J.W. (1997). Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88, 675-684. Moller-Jensen, J., Jensen, R.B., and Gerdes, K. (2000). Plasmid and chromosome segregation in prokaryotes. Trends in Microbiology 8, 313-320. Montiel, J., Szucs, A., Boboescu, I.Z., Gherman, V.D., Kondorosi, E., and Kereszt, A. (2016). Terminal bacteroid differentiation is associated with variable morphological changes in legume species belonging to the inverted repeat-lacking clade. Molecular Plant-Microbe Interactions 29, 210-219. Murray, H., and Errington, J. (2008). Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135, 74-84. Nap, J.P., and Bisseling, T. (1990). Developmental biology of a plant-prokaryote symbiosis - the legume root nodule. Science 250, 948-954. Ndoye, I., De Billy, F., Vasse, J., Dreyfus, B., and Truchet, G. (1994). Root nodulation of Sesbania rostrata. Journal of Bacteriology 176, 1060-1068. O’brien, T.P., Feder, N., and Mccully, M.E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59, 367–373. Ogura, Y., Ogasawara, N., Harry, E.J., and Moriya, S. (2003). Increasing the ratio of Soj to Spo0J promotes replication initiation in Bacillus subtilis. Journal of Bacteriology 185, 6316-6324. Oldroyd, G.E.D., Murray, J.D., Poole, P.S., and Downie, J.A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics, Vol 45 45, 119-144. Oono, R., and Denison, R.F. (2010). Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids. Plant Physiology 154, 1541-1548. Oono, R., Schmitt, I., Sprent, J.I., and Denison, R.F. (2010). Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytologist 187, 508-520. Osorio-Valeriano, M., Altegoer, F., Steinchen, W., Urban, S., Liu, Y., Bange, G., and Thanbichler, M. (2019). ParB-type DNA segregation proteins are CTP-dependent molecular switches. Cell 179, 1512-1524. Passot, F.M., Calderon, V., Fichant, G., Lane, D., and Pasta, F. (2012). Centromere binding and evolution of chromosomal partition systems in the Burkholderiales. Journal of Bacteriology 194, 3426-3436. Peng, M.-H. (2011). Functional characterization of the ParA and ParB chromosome partition proteins in Azorhizobium calinodans ORS571 Master Master thesis, National Taiwan University. Poreau, B. (2013). Commensalism in Cetaceans according to Pierre-Joseph Van Beneden. To what extent is it true? Bulletin Mensuel De La Societe Linneenne De Lyon 82, 65-70. Postgate, J.R. (1982). Biology nitrogen fixation: fundamentals. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 296, 375-385. Prashar, P., Kapoor, N., and Sachdeva, S. (2013). Isolation and characterization of Bacillus sp with in vitro antagonistic activity against Fusarium oxysporum from rhizosphere of tomato. Journal of Agricultural Science and Technology 15, 1501-1512. Prell, J., and Poole, P. (2006). Metabolic changes of rhizobia in legume nodules. Trends in Microbiology 14, 161-168. Ptacin, J.L., Lee, S.F., Garner, E.C., Toro, E., Eckart, M., Comolli, L.R., Moerner, W., and Shapiro, L. (2010). A spindle-like apparatus guides bacterial chromosome segregation. Nature Cell Biology 12, 791-U746. Quisel, J.D., and Grossman, A.D. (2000). Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). Journal of Bacteriology 182, 3446-3451. Ramm, B., Heermann, T., and Schwille, P. (2019). The E. coli MinCDE system in the regulation of protein patterns and gradients. Cellular and Molecular Life Sciences 76, 4245-4273. Rowe, D.C.D., and Summers, D.K. (1999). The quiescent-cell expression system for protein synthesis in Escherichia coli. Applied and Environmental Microbiology 65, 2710-2715. Saleh, A. (2013). Morphological and molecular characterization of Fusarium isolates collected from date palm in Saudi Arabia. Phytopathology 103, S2.125. Sato, S., Siarot, L., Matsuoka, J.-I., Aono, T., and Oyaizu, H. (2016). An Azorhizobium caulinodans ORS571 mutant with deletion of a gene encoding a TIGR02302 family protein overproduces exopolysaccharides and is defective in infection into plant host cells. Soil Science and Plant Nutrition 62, 392-398. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods 9, 671-675. Schofield, W.B., Lim, H.C., and Jacobs-Wagner, C. (2010). Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. The Embo Journal 29, 3068-3081. Scholefield, G., Whiting, R., Errington, J., and Murray, H. (2011). Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Molecular Microbiology 79, 1089-1100. Sharpe, M.E., and Errington, J. (1998). A fixed distance for separation of newly replicated copies of oriC in Bacillus subtilis: implications for co-ordination of chromosome segregation and cell division. Molecular Microbiology 28, 981–990. Simon, R., Priefer, U., and Puhler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Bio-Technology 1, 784-791. Spaink, H.P., Okker, R.J.H., Wijffelman, C.A., Tak, T., Goosenderoo, L., Pees, E., Vanbrussel, A.a.N., and Lugtenberg, B.J.J. (1989). Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product. Journal of Bacteriology 171, 4045-4053. Sprent, J.I. (2007). Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytologist 174, 11-25. Spurr, A.R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26, 31-43. Suzuki, S., Aono, T., Lee, K.B., Suzuki, T., Liu, C.T., Miwa, H., Wakao, S., Iki, T., and Oyaizu, H. (2007). Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Applied and Environmental Microbiology 73, 6650-6659. Tautz, D. (1992). Redundancies, development and the flow of information. BioEssays : news and reviews in molecular, cellular and developmental biology 14, 263-266. Taylor, J.A., Pastrana, C.L., Butterer, A., Pernstich, C., Gwynn, E.J., Sobott, F., Moreno-Herrero, F., and Dillingham, M.S. (2015). Specific and non-specific interactions of ParB with DNA: implications for chromosome segregation. Nucleic Acids Research 43, 719-731. Towbin H, Staehelin T, and J, G. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences USA 76 4350–4354. Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 76, 4350-4354. Tsukada, S., Aono, T., Akiba, N., Lee, K.-B., Liu, C.-T., Toyazaki, H., and Oyaizu, H. (2009). Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions. Applied and Environmental Microbiology 75, 5037-5046. Van De Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., Tiricz, H., Satiat-Jeunemaitre, B., Alunni, B., Bourge, M., Kucho, K., Abe, M., Kereszt, A., Maroti, G., Uchiumi, T., Kondorosi, E., and Mergaert, P. (2010). Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122-1126. Vinardell, J.M., López-Baena, F.J., Hidalgo, A., Ollero, F.J., Bellogín, R., Del Rosario Espuny, M., Temprano, F., Romero, F., Krishnan, H.B., Pueppke, S.G., and Ruiz-Sainz, J.E.J.a.O.M. (2004). The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner. Archives of Microbiology 181, 144-154. Wake, R.G., and Errington, J. (1995). Chromosome partitioning in bacteria. Annual Review of Genetics 29, 41-67. Wang, D., Griffitts, J., Starker, C., Fedorova, E., Limpens, E., Ivanov, S., Bisseling, T., and Long, S.R. (2010). A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327, 1126-1129. Wang, Q., Liu, J.E., and Zhu, H.Y. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science 9, 1-8. Williams, D.R., and Thomas, C.M. (1992). Active partitioning of bacterial plasmids. Journal of general microbiology 138, 1-16.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84703-
dc.description.abstractAzorhizobium caulinodans ORS571 根瘤菌的染色體分配系統 (ParABS) 不僅與染色體分離有關也已證實會參與共生結瘤時類菌體 (bacteroid) 的形成。當染色體分配基因 parA 缺失會導致細胞週期缺陷使得染色體套數增加,細胞形態異常,以及在宿主植物上形成未成熟的莖瘤。在本研究中(第二章)建構了parA 過度表現株 PnptII-parA以進一步探討parA基因在共生及非共生時期所扮演的角色。研究結果發現與 parA基因缺失相比,ParA的過度生產並不影響菌體在非共生時的生長、細胞形態、染色體套數及固氮能力。 然而,在與長喙田莖Sesbania rostrata共生時卻觀察到異常的莖瘤表型,包括產生的莖瘤較小、固氮能力明顯下降且受感染的植物細胞數目也較少。此外,也觀察到具有類似末期分化特徵的類菌體,即形態明顯增長且具有相對狹窄的類菌體外膜空間等。然而,目前文獻上並未報導 S. rostrata可生成驅使類菌體進行末期分化的 NCR 胜肽 (nodule-specific cysteine-rich peptides)。儘管 PnptII-parA 在非共生時期的外觀與野生型幾乎相同,但它們的共生相關基因的表現型態卻顯著不同,推測發生在共生時期的異常表型是來自於結瘤過程中過量的 ParA 蛋白質造成細胞週期中斷所引起。 Azorhizobium 根瘤菌的ParB蛋白質具有 helix-turn-helix (HTH) 結構域,推測可以與特定的 DNA 片段結合。論文第三章中利用生物薄膜干涉技術 (BioLayer Interferometry) 來探討ParB蛋白質與各種 DNA片段結合的特性。在檢測該蛋白質與染色體分配相關的功能時,研究結果發現不同濃度的 ParB 均可與高度保守的 parS 序列具專一性結合; 而在檢測其與類菌體形成相關的功能時,當有其他蛋白質 (BSA) 同時存在下,ParB會與類菌體分化相關基因bacA的啟動子區域中具有迴文特徵的序列產生專一性結合。此外,在2 M的ParB,即接近其細胞中濃度的條件下進行結合動力學試驗,發現ParB 對 bacA 啟動子迴文區序列的結合能力較ParB 對parS 快。因此,推測ParB蛋白可能在結瘤過程中擔任轉錄因子的角色用以調節結瘤相關基因的表現。根據上述結果,Azorhizobium 根瘤菌是否藉由 ParA 與 ParB 的交互作用以決定菌體是在非共生態進行正常的染色體分配,或是在結瘤共生時啟動類菌體的分化,仍有待進一步驗證。zh_TW
dc.description.abstractThe chromosome partitioning system (ParABS) of Azorhizobium caulinodans ORS 571 has been proved to involve in either chromosome segregation during free-living or bacteroid formation during symbiotic nodulation. Deletion of the chromosome partitioning gene parA of ORS571 results in cell cycle defects, pleiomorphic cell shape, and formation of immature stem-nodules on its host plant Sesbania rostrata. In Chapter 2, a parA overexpression mutant (PnptII-parA) was constructed to further investigate the roles of parA gene under free-living and symbiotic states. By contrast to the deletion of parA gene, overproduction of ParA did not affect the cell growth, chromosome segregation, or free-living nitrogen fixation ability of the mutant. On the other hand, distinctive features were observed under symbiosis, such as smaller nodules, reduced nitrogen-fixing capacity, fewer infected plant cells, and swollen polyploid bacteroids with relatively narrow symbiosome space. Several of the morphotype features are reminiscent of the terminally differentiated bacteroides in some inverted repeat-lacking clade (IRLC) indeterminate nodules. However, S. rostrata is not thought to produce the nodule-specific cysteine-rich (NCR) peptides that induce terminal differentiation in rhizobia. Although the appearance of this mutant is almost the same as the wild type under the free-living state, many symbiotic-related genes of them expressed so differently. Accordingly, it suggests that the abnormal symbiosome formation in the stem-nodules is due to cell cycle disruption caused by excess ParA protein in the symbiotic cells during nodulation. Azorhizobial ParB contains a helix-turn-helix (HTH) domain, which suggests being able to bind with particular sequences of DNA fragments. In Chapter 3, I conducted Bio-layer interferometry (BLI) assay to elucidate the in vitro DNA-binding traits of this protein. For chromosome partitioning, the dose-dependent binding signal responses of ParB and the highly conserved parS locus were detected. For bacteroid formation, azorhizobial ParB could specifically bind to the three palindromic sites in the bacteroid differentiation-related gene bacA while conducting the trials in the presence of an interfering molecule BSA protein. According to the binding kinetics for interactions at the estimated cellular ParB concentration (2 M) in A. caulinodans, I assumed that azorhizobial ParB binds more quickly to the palindromic sequences in the bacA promoter region than to the conserved parS. Accordingly, azorhizobial ParB was deduced to act as a transcription factor for regulating the bacteroid-related genes during nodulation. Taken together, interactions between azorhizobial ParA and ParB proteins may function as a checkpoint, which couples the chromosome partitioning to the onset of bacteroid formation. This assumption remains to be elucidated.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:21:21Z (GMT). No. of bitstreams: 1
U0001-0209202207181200.pdf: 62966967 bytes, checksum: ddcd67597ce0ce026dd616e4261fcc2e (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 謝辭 ii 中文摘要 iii Abstract v Contents vii List of Tables ix List of Figures x List of Appendix Figures xii Chapter 1. Introduction 1 1.1 Symbiosis 1 1.2 Mutualism in arbuscular mycorrhiza (AM) 2 1.3.1 Mutualism in legume and rhizobia 3 1.3.2 Legume nodulation process 3 1.3.3 Determinate and indeterminate nodule types 4 1.3.4 BacA, a bacteroid development related protein 6 1.4 Symbiotic interaction between Sesbania rostrate and Azorhizobium caulinodans 7 1.5 Chromosome partition system 9 1.6 Chromosome partition system and legume-rhizobium symbiosis 10 1.7 Aims of this study 11 Chapter 2 16 Overexpression of the chromosome partitioning gene parA in Azorhizobium caulinodans ORS571 alters the bacteroid morphotype in Sesbania rostrata stem nodules 16 2.1 Abstract 17 2.2 Introduction 18 2.3 Materials and methods 21 2.4 Results 29 2.5 Discussion 35 2.6 Conclusion 43 Chapter 3 65 Azorhizobial chromosome partitioning protein ParB involves in bacteroid formation by binding to the palindromic sequences in the bacA promoter region 65 3.1 Abstract 66 3.2 Introduction 67 3.3 Materials and methods 69 3.4 Results and Discussion 72 Chapter 4 Conclusion 92 Regulatory models of azorhizobial ParABS for bacteroid differentiation under free-living and symbiosis. 94 Appendix Figures 98 References 101 Appendix- Published Papers 114
dc.language.isoen
dc.title探討根瘤菌 Azorhizobium caulinodans ORS571 的染色體分配蛋白 ParA 與 ParB 在類菌體形成的角色zh_TW
dc.titleFunctional characterization of Azorhizobium caulinodans ORS571 chromosome partition proteins, ParA & ParB, on bacteroid formationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳仁治(Jen-Chih Chen),蔡孟勳(Mong-Hsun Tsai),劉嚞睿(Je-Ruei Liu),李昆達(Kung-Ta Lee)
dc.subject.keyword莖瘤發育,染色體分配系統-ParA 及ParB,固氮作用,類菌體形成蛋白質BacA,生物膜干涉技術,zh_TW
dc.subject.keywordstem nodule development,chromosome partitioning system-ParA and ParB,nitrogen fixation,bacteroid forming protein BacA,BioLayer Interferometry,en
dc.relation.page151
dc.identifier.doi10.6342/NTU202203092
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
dc.date.embargo-lift2027-09-07-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-0209202207181200.pdf
  目前未授權公開取用
61.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved