請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84693
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張智星 | zh_TW |
dc.contributor.advisor | Jyh-Shing Jang | en |
dc.contributor.author | 婁敦傑 | zh_TW |
dc.contributor.author | Tun-Chieh Lou | en |
dc.date.accessioned | 2023-03-19T22:20:52Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2022-09-14 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] H. Wang, “Side-channel analysis of aes based on deep learning,” 2019.
[2] S. Jin, S. Kim, H. Kim, and S. Hong, “Recent advances in deep learning-based side-channel analysis,” ETRI Journal, vol. 42, 02 2020. [3] 陳家瑋, “於熱能洩漏中尋找興趣點來實行區域性旁通道分析及基於機器學習之攻擊模型,” Master’s thesis, 國立臺灣大學, Jan 2021. [4] S. Albelwi and A. Mahmood, “A framework for designing the architectures of deep convolutional neural networks,” Entropy, vol. 19, no. 6, 2017. [Online]. Available: https://www.mdpi.com/1099-4300/19/6/242 [5] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning for side-channel analysis and introduction to ascad database,” 06 2020. [6] B.Hettwer,S.Gehrer,andT.Güneysu,Profiled Power Analysis Attacks Using Convolutional Neural Networks with Domain Knowledge: 25th International Conference, Calgary, AB, Canada, August 15–17, 2018, Revised Selected Papers, 01 2019, pp. 479–498. [7] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, p. 81–106, mar 1986. [Online]. Available: https://doi.org/10.1023/A:1022643204877 [8] M. Azhari, A. Alaoui, Z. Achraoui, B. Ettaki, and J. Zerouaoui, “Adaptation of the random forest method: Solving the problem of pulsar search,” in Proceedings of the 4th International Conference on Smart City Applications, ser. SCA ’19. New York, NY, USA: Association for Computing Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3368756.3369004 [9] L. Ahmed Amine, “Power system applications of support vector machine in classification and regression,” 05 2009. [10] J. Wen, T.-C. Lou, H. Chen, G. Chen, M. Abarham, H. He, S. Pan, L. Lin, W. Li, G. Ni, A. Kumar, D. Geb, S. Asgari, N. Chang, and J.-S. R. Jang, “Security integrity analytics by thermal side-channel simulation: An ml-augmented auto-poi approach,” Master’s thesis, Apr 2021. [11] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, ser. Lecture Notes in Computer Science, vol. 2523. Springer, 2002, pp. 13–28. [12] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryptology — CRYPTO’ 99, M. Wiener, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388–397. [13] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage model,” in Cryptographic Hardware and Embedded Systems - CHES 2004, M. Joye and J.-J. Quisquater, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 16–29. [14] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems,” in Advances in Cryptology — CRYPTO ’96, N. Koblitz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 104–113. [15] “Announcing the advanced encryption standard (AES),” Federal Information Processing Standards Publication 197, 2001. [16] S. Yang, Y. Zhou, J. Liu, and D. Chen, “Back propagation neural network based leakage characterization for practical security analysis of cryptographic implementations,” 11 2011, pp. 169–185. [17] Z. Martinasek and V. Zeman, “Innovative method of the power analysis,” Radioengineering, vol. 22, pp. 586–594, 06 2013. [18] H.Maghrebi,T.Portigliatti,andE.Prouff,“Breaking cryptographic implementations using deep learning techniques,” 12 2016, pp. 3–26. [19] J. Zhang, M. Zheng, J. Nan, H. Hu, and N. Yu, “A novel evaluation metric for deep learning-based side channel analysis and its extended application to imbalanced data,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, pp. 73–96, 2020. [20] G. Zaid, L. Bossuet, F. Dassance, A. Habrard, and A. Venelli, “Ranking loss: Maximizing the success rate in deep learning side-channel analysis,” Cryptology ePrint Archive, Paper 2020/872, 2020, https://eprint.iacr.org/2020/872. [Online]. Available: https://eprint.iacr.org/2020/872 [21] N. Chang, D. Zhu, L. Lin, D. Selvakumaran, J. Wen, S. Pan, W. Xia, H. Chen, C. Chow, and G. Chen, “Ml-augmented methodology for fast thermal side-channel emission analysis,” in Proceedings of the 26th Asia and South Pacific Design Automation Conference, ser. ASPDAC ’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 463–468. [Online]. Available: https://doi.org/10.1145/3394885.3431641 [22] M. Kerkhof, L. Wu, G. Perin, and S. Picek, “Focus is key to success: A focal loss function for deep learning-based side-channel analysis,” Cryptology ePrint Archive, Paper 2021/1408, 2021, https://eprint.iacr.org/2021/1408. [Online]. Available: https://eprint.iacr.org/2021/1408 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84693 | - |
dc.description.abstract | 本研究使用機器學習於旁通道攻擊,並提出一種應用於深度學習模型的訓練方法,迭代遷移式學習(iterative transfer learning),目前大多數研究的旁通道攻擊,在進行破解 advanced encryption standard-128 (AES-128) 時,針對每一個位元組都是重新訓練同樣的模型,這樣的訓練方式未考慮位元組的相關性,但由於每一個位元組的訓練模式是非常的相似,因此本研究提出迭代遷移式學習,先訓練其中一個位元組,再以此模型作為預訓練模型 (pretrained model),接續訓練其餘位元組,這樣的方式能夠在訓練其餘位元組時,提供好的初始權重,並減少模型攻擊階段的 measurement-to-disclosure (MTD)。在訓練資料充足的情況下,使用迭代遷移式學習能夠些微的減少 MTD,搭配多層感知器能夠將平均 MTD 從 54.7 減少至 53.8,搭配卷積神經網路能夠將平均 MTD 從 125 減少至 82.7,在訓練資料不足的情況下,使用迭代遷移式學習依然能夠成功破解加密,根據實驗結果顯示,此方法在減少訓練資料從13,600減少到2,000筆資料,仍然可以成功破解AES-128,迭代遷移式學習搭配多層感知器平均 MTD 為 635,而常見分開訓練的方式則是無法成功的。除此之外,本研究也比較使用功耗資料和溫度變化資料,進行訓練和攻擊的差異,結果顯示,使用功耗資料訓練的模型的平均 MTD 大部分優於使用溫度訓練的模型。 | zh_TW |
dc.description.abstract | The research uses machine learning for side-channel attacks and proposes a training approach applied to deep learning models called iterative transfer learning. Currently, most of the side-channel attacks train a model for each bytes, but this training method does not consider the correlation of each bytes. Because the training of each byte is very similar, the research proposes iterative transfer learning. In the beginning, using a byte to train the model and use this model as a pretrained model to train the remaining bytes. This approach can provide good initial weights when training the remaining bytes and reduce the measurement-to-disclosure (MTD) in the attack phase. When the data is enough, using iterative transfer learning still can reduce the MTD slightly. Using iterative transfer learning with multilayer perceptron can reduce average MTD from 54.7 to 53.8. Using iterative transfer learning with convolution neural network can reduce average MTD from 125 to 82.7. When the data is insufficient, using iterative transfer learning still can decrypt the MTD successfully. According to the experiments, this approach can successfully crack AES-128 when the number of training data is reduced from 13,600 to 2,000, while the separate training approach cannot be successful. And the average MTD is 635 when using iterative transfer learning with multilayer perceptron. Besides, we also examine the difference between using the power data and thermal data to attack the AES-128. In our research, we find that the average MTD of the model trained with power data is mostly better than the model trained with thermal data. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:20:52Z (GMT). No. of bitstreams: 1 U0001-0509202212282600.pdf: 7887025 bytes, checksum: c114b778988f2458b726c757fea76121 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝 v
摘要 vii Abstract ix 1 緒論 1 1.1 研究動機. 1 1.2 研究貢獻 2 1.3 章節概述 2 2 文獻探討 5 2.1 背景知識 5 2.1.1 旁通道攻擊 5 2.1.2 Advanced Encryption Standard-128 (AES-128) 6 2.2 文獻回顧9 2.2.1 基於多層感知器之旁通道攻擊相關研究 9 2.2.2 基於卷積神經網路之旁通道攻擊相關研究 10 2.2.3 損失函數於SCA相關研究 11 2.3 傳統機器學習分類器 14 2.4 相關係數能量分析 16 2.5 特徵選取(feature selection) 17 2.6 特徵提取(feature extraction) 18 3 資料集介紹 21 3.1 資料集生成21 3.2 資料分佈 22 3.3 功耗圖 25 3.4 溫度圖 25 3.5 Operating POIs 26 4 研究方法 29 4.1 研究方法概述 29 4.2 資料前處理 29 4.3 Progressive feature selection 31 4.4 迭代遷移式學習(iterative transfer learning) 32 5 實驗設計與結果 35 5.1 實驗流程及設定 35 5.1.1 傳統機器學習分類器參數設定 36 5.1.2 深度學習分類器參數設定 36 5.1.3 特徵選取和特徵提取的參數設定 37 5.2 效果評估方式 37 5.2.1 順位函數 37 5.2.2 Measurement-to-disclosure(MTD) 39 5.3 實驗環境 39 5.4 實驗與結果探討 40 5.4.1 實驗 1:不同設定條件下各模型攻擊 AES-128 結果比較 40 5.4.2 實驗 2:探討在減少訓練資料數量的情況下,迭代遷移式學習攻擊AES-128的效能 48 5.4.3 實驗 3:比較使用不同資料集訓練的各模型效能 56 6 結論與未來展望 59 6.1 結論 59 6.2 未來展望 60 Bibliography 61 | - |
dc.language.iso | zh_TW | - |
dc.title | 區域性熱能洩漏之旁通道分析的改進 | zh_TW |
dc.title | Improvements in Location-based Thermal Emission Side-Channel Analysis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳君朋;張鴻嘉 | zh_TW |
dc.contributor.oralexamcommittee | Jiun-Peng Chen;Hung-Chia Chang | en |
dc.subject.keyword | 旁通道攻擊,機器學習,迭代遷移式學習,漸進特徵選取, | zh_TW |
dc.subject.keyword | side-channel attack,machine learning,iterative transfer learning,progressive feature selection, | en |
dc.relation.page | 63 | - |
dc.identifier.doi | 10.6342/NTU202203139 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-09-08 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 資訊工程學系 | - |
dc.date.embargo-lift | 2022-09-14 | - |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。