Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉佩玲zh_TW
dc.contributor.advisorPei-Ling Liuen
dc.contributor.author謝承展zh_TW
dc.contributor.authorCheng-Chan Hsiehen
dc.date.accessioned2023-03-19T22:20:25Z-
dc.date.available2023-11-10-
dc.date.copyright2022-09-16-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Sansalone, M., and Carino, N. J., 1986, "Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves.," NBSIR, pp. 86-3452.
[2] Lin, C. C., Liu, P. L., and Yeh, P. L., 2009, "Application of empirical mode decomposition in the impact-echo test," NDT & E International, 42(7), pp. 589-598.
[3] Carino, N. J., Sansalone, M., and Hsu, N. N., 1986, Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Wave-forms Gordon & Breach Science Publishers.
[4] Lin, Y., and Su, W. C., 1996, "Use of Stress Waves for Determining the Depth of Surface-Opening Crack in Concrete Structure," ACI Materials Journal, 93(5), pp. 494-505.
[5] Cheng, C. C., and Sansalone, M., 1993, "Effect on Impact-Echo Signals Caused by Steel Reinforcing Bars and Voids around Bars," ACI Materials Journal, 90(5), pp. 421-434.
[6] Lin, Y., and Sansalone, M., 1992, "Detecting Flaws in Concrete Beams and Columns Using the Impact-Echo Method," ACI Materials Journal, 89(4), pp. 394-405.
[7] Loh, C. H., Wu, T. C., and Huang, N. E., 2001, "Application of the Empirical Mode Decomposition-Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses," Bulletin of the Seismological Society of America, 91(5), pp. 1339-1357.
[8] LeCun, Y., Bengio, Y., and Hinton, G., 2015, "Deep learning," Nature, 521(7553), pp. 436-444.
[9] Pratt, D., and Sansalone, M., 1992, "Impact-Echo Signal Interpretation Using Artificial Intelligence," ACI Materials Journal, 89(2), pp. 178-187.
[10] Dorafshan, S., and Azari, H., 2020, "Deep learning models for bridge deck evaluation using impact echo," Construction and Building Materials, 263.
[11] Xu, J. C., and Yu, X., 2021, "Detection of Concrete Structural Defects Using Impact Echo Based on Deep Networks," J Test Eval, 49(1), pp. 109-120.
[12] 林昀儒, 2020, "以CNN自動編碼器辨識敲擊回音試驗之異常訊號,"碩士, 國立臺灣大學.
[13] 陳柏合, 2021, "以深度學習判別鋼筋與裂縫之敲擊回音雙譜,"碩士, 國立臺灣大學.
[14] 陳源泰, 2021, "以深度學習方法判讀敲擊回音時頻圖,"碩士, 國立臺灣大學.
[15] Goldsmith, W., 1965, "Impact: The Theory and Physical Behavior of Colliding Solids."
[16] Colla, and Lausch, 2003, "Influence of Source Frequency on Impact-echo Data Quality for Testing Concrete Structure," NDT & E International 36, pp. 203-213.
[17] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, S. H., Zheng, Q., Tung, C. C., and Liu, H. H., 1998, "The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis " Proceedings of the Royal Society A, 454(1971), pp. 903-995.
[18] Colominas, M. A., Schlotthauer, G., and Torres, M. E., 2014, "Improved complete ensemble EMD: A suitable tool for biomedical signal processing," Biomed Signal Proces, 14, pp. 19-29.
[19] Wu, Z., and Huang, N. E., 2009, "Ensemble empirical mode decomposition: a noise-assisted data analysis method," Adv. Adapt. Data Anal. 1 (1), pp. 1-41.
[20] Torres, M. E., Colominas, M. A., Schlotthauer, G., and Flandrin, P., 2011, "A complete ensemble empirical mode decomposition with adaptive noise," Proc. 36th IEEE Int. Conf. on Acoust., Speech and Signal Process, ICASSP, pp. 4144-4147.
[21] Colominas, M. A., Schlotthauer, G., Torres, M. E., and Flandrin, P., 2012, "Noise-assisted EMD methods in action," Advances in Adaptive Data Analysis, 04(04).
[22] Jolliffe, I. T., and Cadima, J., 2016, "Principal component analysis: a review and recent developments," Philos T R Soc A, 374(2065).
[23] Haykin, S., 1998, Neural Network: A Comprehensive Foundation, Pearson Education.
[24] Krizhevsky, A., Sutskever, I., and Hinton, G. E., 2017, "ImageNet Classification with Deep Convolutional Neural Networks," Commun Acm, 60(6), pp. 84-90.
[25] Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., and Inman, D. J., 2021, "1D convolutional neural networks and applications: A survey," Mech Syst Signal Pr, 151.
[26] Yeh, P. L., and Liu, P. L., 2009, "Imaging of internal cracks in concrete structures using the surface rendering technique," NDT & E International, 42(3), pp. 181-187.
[27] Kohavi, R., 1995, "A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection " International Joint Conference on Artificial Intelligence, pp. 1137-1143.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84683-
dc.description.abstract敲擊回音法通常用於混凝土的缺陷檢測,為一種常見的非破壞性檢測,在傳統的檢測過程需要仰賴技術人員的知識才能區分缺陷的回音。有鑒於近幾年機器學習領域的突破性發展,本研究應用機器學習,對敲擊回音訊號經由經驗模態分解(EMD)所得到本質模態函數(IMF)進行自動判讀並找出缺陷回音。
本研究採用的機器學習有二種:類神經網路(ANN)及卷積神經網路(CNN)。模型的輸出是各個本質模態函數的類別:表面波、回音或振動。模型的輸入資料有二種:1. 敲擊回音訊號經由自適應噪聲之完整集合經驗模態分解法(CEEMDAN)所得到的前5個IMF;2. 將IMF進行主成分分析(PCA)得到的主成分。其中PCA在本文又分為PCA1與PCA2,PCA1是將所有IMF放在一起進行PCA;PCA2是對表面波IMF、回音IMF及振動IMF分別進行PCA。本研究亦嘗試將敲擊回音訊號的表面波移除之後再進行CEEMDAN。
本研究共發展六種模型,各模型之輸入資料與判讀實驗訊號的IMF準確率如下:
(i) ANN-IMF為以IMF做為輸入之ANN模型,為本文表現最差的模型,其回音的準確率僅有33.62%。
(ii) CNN-IMF為以IMF做為輸入之CNN模型,因為模態混疊的問題在淺裂縫試體預測表現不佳,其回音的準確率為77.58%。
(iii) CNN-SWR_IMF為以移除表面波後的IMF做為輸入之CNN模型,因將淺裂縫回音訊號也一併切除些許,因此在淺裂縫試體預測表現不如預期,其在回音的準確率為89.66%。
(iv) CNN-PCA1為以IMF進行PCA1之主成分做為輸入之CNN模型,因PCA1之特徵向量沒有將三種類型的波完美分開,因此表現不如預期,其回音的準確率為60.34%。
(v) CNN-PCA2為以IMF進行PCA2之主成分做為輸入之CNN模型,為本文表現整體平均表現最佳的模型,其在回音的準確率為88.79%。
(vi) CNN-SWR_PCA2為以移除表面波後的IMF進行PCA2之主成分做為輸入之CNN模型,模型因為沒有考慮到表面波的準確率,在本研究列為表現第二佳的模型,其回音準確率為99.14%。
經過比較,可發現CNN-PCA2與CNN-SWR_PCA2對於判讀回音IMF均表現良好,且泛用性高,可以做為工程師進行敲擊回音檢驗時的有力輔助工具。
zh_TW
dc.description.abstractThe impact echo (IE) test is often used to detect defects in concrete structures. The conventional approach for analyzing the IE data requires users’ expertise to differentiate the echo of defects from the other signals received. Given the breakthroughs in machine learning (ML) in recent years, this study applied ML to automatically classify intrinsic mode functions (IMFs) obtained by using empirical mode decomposition (EMD) and identify the echo IMF.
This study proposes two types of machine learning: artificial neural network(ANN) and one-dimensional convolutional neural network (CNN). The outputs of the model were the category of each IMF: surface wave, echo, or vibration. The inputs of the model were two types of data: 1. the first 5 IMF of the IE signals obtained by using the complete ensemble EMD with adaptive noise (CEEMDAN); 2. the principal components of the first 5 IMFs obtained by principal component analysis (PCA). Two types of PCA were conducted in this study, namely PCA1 and PCA2. PCA1 applied PCA to all IMFs with the three types of waves put together; PCA2 applied PCA to surface wave IMFs, echo IMFs, and vibration IMFs separately. To deal with the problem associated with shallow-crack signals, this study tried removing the surface waves from the IE signals before using CEEMDAN.
In this research, six models were developed, and their performances are as shown in the following:
(i) ANN-IMF, with IMFs as input, performed 33.6% echo accuracy and was the worst model in this paper.
(ii) CNN-IMF, with IMFs as input, performed 77.5% echo accuracy and predicted not well in shallow crack because of mode mixing.
(iii) CNN-SWR_IMF, with surface wave removed and IMFs as input, performed 89.6% echo accuracy. Since some shallow crack echoes were removed as well, the performance in the shallow crack was not as good as expected.
(iv) CNN-PCA1, with the principal components of IMFs obtained in PCA1 as input, performed 60.3% echo accuracy, which was not as good as expected due to the fact that the PCA1 eigenvector didn't ideally separate the three types of waves
(v) CNN-PCA2, with the principal components of IMFs obtained in PCA2 as input, performed 88.7% echo accuracy. It is rated as the best model because it has the best overall average performance.
(vi) CNN-SWR_PCA2, with surface wave removed and the principal components of IMFs obtained in PCA2 as input, performed 99.1% echo accuracy. This study rated it as the second-best model since it didn't consider surface waves.
The results indicated that CNN-PCA2 and CNN-SWR_PCA2 performed well in identifying IMF echoes, which can be used as a reference model for engineers to inspect defects.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:20:25Z (GMT). No. of bitstreams: 1
U0001-0709202221353500.pdf: 7890656 bytes, checksum: 6608c413c7a2c2270a5d5167e35527fa (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄
致謝 II
摘要 III
Abstract V
圖目錄 X
表目錄 XV
第一章 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 全文簡介 4
第二章 敲擊回音法 6
2-1 敲擊回音法原理 6
2-2 敲擊源 8
第三章 訊號處理 11
3-1 經驗模態分解法 11
3-1-1 原始經驗模態分解法(EMD) 12
3-1-2 集合經驗模態分解法(EEMD) 13
3-1-3 自適應噪聲之完整集合EMD (CEEMDAN) 16
3-2 主成分分析 19
3-3 主成分分析用法 23
3-3-1 主成分分析用法1 (PCA1) 23
3-3-2 主成分分析用法2 (PCA2) 25
3-4 模態混疊指標 27
第四章 機器學習模型 30
4-1 ANN 分類模型 30
4-1-1 ANN本文架構 30
a. 前向傳播 (Forward propagation) 33
b. 反向傳播 (Backward propagation) 35
4-2 CNN分類模型 38
4-2-1 本研究CNN架構 38
a. 卷積層(Convolution layer) 40
b. 池化層(Max pooling layer) 41
c. 全連接層(Flatten layer) 41
第五章 資料集 42
5-1 數值模擬 42
5-1-1 數值模擬步驟 42
5-1-2 數值模擬試體介紹 46
5-2 實驗介紹 48
5-2-1 實驗設備介紹 48
5-2-2 訊號量測 50
5-2-3 實驗試體 50
5-2-4 時間域原點計算 53
5-3 訓練集與測試集 53
5-3-1 K-fold交叉驗證 58
5-3-2 訓練架構調整 58
第六章 結果與討論 62
6-1 訓號前處理 62
6-1-1 雜訊的影響與濾除 62
6-1-2 淺裂縫模態混疊影響與處理 65
6-2 以IMF做為輸入之ANN與CNN模型 69
6-2-1 以移除表面波後的IMF做為輸入之CNN模型 82
6-3 以IMF進行PCA1之主成分做為輸入之CNN模型 91
6-4 以IMF進行PCA2之主成分做為輸入之CNN模型 101
6-4-1 移除表面波後IMF的PCA2為主成分之CNN模型 113
6-5 模型泛化性測試 121
第七章 結論 127
7-1 未來展望 130
Reference 131
附錄 134
附錄一 Python環境建置 134
附錄二 ANN程式碼 136
附錄三 CNN程式碼 136
-
dc.language.isozh_TW-
dc.title以機器學習與主成分分析進行敲擊回音本質模態函數之分類zh_TW
dc.titleClassification of Impact-Echo Intrinsic Mode Functions Using Machine Learning and Principal Component Analysisen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林宜清;孫嘉宏zh_TW
dc.contributor.oralexamcommitteeYi-Ching Lin;Jia-Hong Sunen
dc.subject.keyword敲擊回音法,經驗模態分解法,自適應噪聲之完整集合經驗模態分解法,主成分分析,非破壞性檢測,機器學習,人工神經網路,卷積神經網路,zh_TW
dc.subject.keywordImpact-Echo Method,EMD,CEEMDAN,Principal Component Analysis,Nondestructive Testing,Deep Learning,ANN,CNN,en
dc.relation.page136-
dc.identifier.doi10.6342/NTU202203237-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2022-09-16-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved