Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84682
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉俊麟(Chun-Lin Liu)
dc.contributor.authorYu-Lun Wangen
dc.contributor.author王郁倫zh_TW
dc.date.accessioned2023-03-19T22:20:22Z-
dc.date.copyright2022-09-19
dc.date.issued2022
dc.date.submitted2022-09-08
dc.identifier.citation[1] F. Khan and Z. Pi, “mmWave mobile broadband (MMB): Unleashing the 3–300GHz spectrum,” in 34th IEEE Sarnoff Symposium, 2011, pp. 1–6. [2] H.-J. Song and N. Lee, “Terahertz communications: Challenges in the next decade,” IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 2, pp. 105–117, 2022. [3] M. Bahjat, T. Rahman, and O. Aziz, “Propagation path loss modeling and outdoor coverage measurements review in millimeter wave bands for 5G cellular communications,” International Journal of Electrical and Computer Engineering, vol. 8, pp. 2254–2260, 08 2018. [4] X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen, “Millimeter wave communication: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1616–1653, 2018. [5] L.-S. Tsai and D. shan Shiu, “Channel modeling and capacity evaluation for relay-aided MIMO systems in LOS environments,” in 2007 International Symposium on Communications and Information Technologies, 2007, pp. 796–801. [6] W. Khawaja, O. Ozdemir, Y. Yapici, F. Erden, and I. Guvenc, “Coverage enhancement for NLOS mmWave links using passive reflectors,” IEEE Open Journal of the Communications Society, vol. 1, pp. 263–281, 2020. [7] K. Upadhya, K. Valkealahti, M. Moisio, D. Korpi, T. Ihalainen, and M. A. Uusitalo, “Passive reflectors for enhancing cellular UAV coverage,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 896–901. [8] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019. [9] P. Dinakar and J. Subbiah, “Efficient relay selection scheme using regenerative and degenerative protocols for 5th generation WiMAX systems,” AEU - International Journal of Electronics and Communications, vol. 69, 08 2014. [10] Q. Miao, B. Bai, and W. Chen, “Adaptive AF/DF selection with FD/HD switching in two-way relay networks,” IEEE Access, vol. 5, pp. 11 594–11 605, 2017. [11] X. Yue, Y. Liu, R. Liu, A. Nallanathan, and Z. Ding, “Full/half-duplex relay selection for cooperative NOMA networks,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1–6. [12] M. Abaza, R. Mesleh, A. Mansour, and E.-H. M. Aggoune, “Relay selection for full-duplex FSO relays over turbulent channels,” in 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 2016, pp. 103–108. [13] N. Shende, O. Gurbuz, and E. Erkip, “Half-duplex or full-duplex relaying: A capacity analysis under self-interference,” in 2013 47th Annual Conference on Information Sciences and Systems (CISS), 2013, pp. 1–6. [14] H. Alves, G. Fraidenraich, R. D. Souza, M. Bennis, and M. Latva-aho, “Performance analysis of full duplex and selective and incremental half duplex relaying schemes,” in 2012 IEEE Wireless Communications and Networking Conference (WCNC), 2012, pp. 771–775. [15] T. Riihonen, S. Werner, and R. Wichman, “Comparison of full-duplex and half-duplex modes with a fixed amplify-and-forward relay,” in 2009 IEEE Wireless Communications and Networking Conference, 2009, pp. 1–5. [16] M. T. Barros, R. Mullins, and S. Balasubramaniam, “Integrated terahertz communication with reflectors for 5G small-cell networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 5647–5657, 2017. [17] M. Di Renzo, K. Ntontin, J. Song, F. H. Danufane, X. Qian, F. Lazarakis, J. De Rosny, D.-T. Phan-Huy, O. Simeone, R. Zhang, M. Debbah, G. Lerosey, M. Fink, S. Tretyakov, and S. Shamai, “Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison,” IEEE Open Journal of the Communications Society, vol. 1, pp. 798–807, 2020. [18] Z. Peng, T. Li, C. Pan, H. Ren, W. Xu, and M. D. Renzo, “Analysis and optimization for RIS-aided multi-pair communications relying on statistical CSI,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3897–3901, 2021. [19] K. Ntontin, M. Di Renzo, and F. Lazarakis, “On the rate and energy efficiency comparison of reconfigurable intelligent surfaces with relays,” in 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020, pp. 1–5. [20] S. Zeng, H. Zhang, B. Di, Z. Han, and L. Song, “Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization,” IEEE Communications Letters, vol. 25, no. 1, pp. 269–273, 2021. [21] K. Yang, J. Yao, D. Jiang, and F. Qin, “Study of reconfigurable intelligent surface assisted communications over frequency selected channels,” in 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2021, pp. 1–6. [22] P. Xu, G. Chen, Z. Yang, and M. Di Renzo, “Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?” 2020. [Online]. Available: https://arxiv.org/abs/2008.05317 [23] S. Abeywickrama, R. Zhang, and C. Yuen, “Intelligent reflecting surface: Practical phase shift model and beamforming optimization,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–6. [24] B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, “Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1809–1822, 2020. [25] E. Björnson, Ö. Özdogan, and E. G. Larsson, “Reconfigurable intelligent surfaces: Three myths and two critical questions,” IEEE Communications Magazine, vol. 58, no. 12, pp. 90–96, 2020 [26] J. Wang, Y.-C. Liang, X. Yuan, and X. Wang, “Joint beamforming and reconfigurable intelligent surface design for two-way relay networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6 [27] S. Solanki, S. Gautam, S. K. Sharma, and S. Chatzinotas, “Ambient backscatter assisted co-existence in aerial-IRS wireless networks,” IEEE Open Journal of the Communications Society, vol. 3, pp. 608–621, 2022. [28] Q. Bie, Y. Liu, Y. Wang, X. Zhao, and X. Y. Zhang, “Deployment optimization of reconfigurable intelligent surface for relay systems,” IEEE Transactions on Green Communications and Networking, vol. 6, no. 1, pp. 221–233, 2022. [29] U. Altun, G. Karabulut Kurt, and E. Ozdemir, “The magic of superposition: A survey on simultaneous transmission based wireless systems,” IEEE Access, vol. 10, pp. 79 760–79 794, 2022. [30] Q. Gu, D. Wu, X. Su, J. Jin, Y. Yuan, and J. Wang, “Performance comparisons between reconfigurable intelligent surface and full/half-duplex relays,” in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 01–06. [31] J. Ye, A. Kammoun, and M.-S. Alouini, “Spatially-distributed RISs vs relay-assisted systems: A fair comparison,” IEEE Open Journal of the Communications Society, vol. 2, pp. 799–817, 2021. [32] S. Arzykulov, G. Nauryzbayev, A. Celik, and A. M. Eltawil, “RIS-assisted full-duplex relay systems,” IEEE Systems Journal, pp. 1–12, 2022. [33] N. T. Nguyen, Q.-D. Vu, K. Lee, and M. Juntti, “Hybrid relay-reflecting intelligent surface-assisted wireless communications,” IEEE Transactions on Vehicular Technology, vol. 71, no. 6, pp. 6228–6244, 2022. [34] S. Jia, X. Yuan, and Y.-C. Liang, “Reconfigurable intelligent surfaces for energy efficiency in D2D communication network,” IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 683–687, 2021. [35] G. C. Alexandropoulos and E. Vlachos, “A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 9175–9179. [36] S. W. Ellingson, Electromagnetics. VT Publishing, 2018, vol. 1. [37] A. Goldsmith, Wireless communications. United Kingdom: Cambridge University Press, Jan. 2005, vol. 9780521837163, publisher Copyright: © Cambridge University Press 2005. [38] D. Tse and P. Viswanath, “Fundamentals of wireless communication,” 2005. [39] K. Shahzad and X. Zhou, “Covert wireless communications under quasi-static fading with channel uncertainty,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1104–1116, 2021. [40] H. Qi, Z. G. Feng, K. F. C. Yiu, and S. Nordholm, “Optimal design of IIR filters via the partial fraction decomposition method,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 8, pp. 1461–1465, 2019. [41] B. Shahzadi, “Partial fraction expansion of functions with multiple poles,” Proceedings of the IEEE, vol. 69, no. 7, pp. 834–835, 1981. [42] M. István, The Lambert W function its generalizations and applications. CRC Press, 2022. [43] G. Alex, “Rayleigh fading multi-antenna channels,” EURASIP Journal on Advances in Signal Processing, vol. 2002, 03 2002. [44] B. Yang, X. Cao, C. Huang, C. Yuen, L. Qian, and M. D. Renzo, “Intelligent spectrum learning for wireless networks with reconfigurable intelligent surfaces,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3920–3925, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84682-
dc.description.abstract在通訊環境中,如何降低傳輸功率的損耗是一個重要的議題。其中,可重構智能表面 (RIS) 是一種可行的方法。該方法主要利用其表面元件來改變入射波的相位,使得多條路徑能夠於接收端產生建設性干涉。 為了更貼近實際情形,本文主要討論離散相位系統。於此假設,對於RIS元件,我們只能選擇一些有限的相位,我們這些相位稱為離散相位量化位階。當所選擇的RIS元件相位跟最佳RIS元件相位兩者分布越接近,RIS輔助通訊系統的表現就會越優秀。前人的研究主要採用均勻離散相位量化位階來實作離散系統。因為沒有考慮到傳輸路徑跟實際硬體的限制,選出的RIS元件相位跟最佳的相位會有一定的落差,而這個部份是能夠被改善的。 參考S. Abeywickrama、R. Zhang和C. Yuen在2020年提出的AO-based 演算法,能在連續相位的RIS輔助系統中找到最佳的相位分布。這個分布可以用來判斷離散相位量化位階的優劣程度,我們稱其為理想的RIS元件相位分布。 為了降低離散RIS相位跟理想相位的落差,文章中提出一種新的方式來決定離散相位量化位階。透過將離散RIS輔助通訊系統的最佳化問題進行適當的數學運算,可以獲得理想相位的算式。再經過一些近似,找到理想相位分布的近似式。得知通道模型、路徑損耗常數、天線個數以及實用相移模型的算式後,藉由這個近似式,算出最合適的離散相位量化位階。 實驗結果顯示,以相同的系統效能來看,比起均勻的離散相位量化位階,文章中提出的離散相位量化位階更節省RIS的硬體資源。此外,系統使用基地台來運算離散相位量化位階,這些額外的運算成本不會算進RIS的成本內。上述特點有利於RIS的大量部署,能有效的降低傳輸功率成本。zh_TW
dc.description.abstractReducing transmission power loss needs to be considered in the communication system. Reconfiguring intelligent surface (RIS) is one of the possible approaches to achieve this. By adjusting the phase of incoming waves via the elements of RIS, constructive interference can occur at the receiver's location in multiple paths during transmission. To be more realistic, we mainly study the case where the adjustable phase of the elements on the RIS is discrete. In this work, discrete phases can be selected from a set of phases called discrete phase quantization levels. The more the distribution of selected phases fits the optimal distribution, the better the performance of the communication system is. Previous works mostly use uniform discrete phase quantization levels which did not consider the transmission path and hardware limitations of the actual environment. Therefore, the determined discrete phase will have a gap with the optimal RIS element phase, and we believed it can still be improved. Referring to the AO-based algorithm proposed by S. Abeywickrama, R. Zhang, and C. Yuen in 2020, the optimal RIS element phase distribution in a continuous phase system can be found. We use this distribution as a baseline to judge the quality of different discrete phase quantization levels. Here, we call it the ideal phase distribution of the RIS element. To reduce the gap between the discrete phase and the ideal phase, we propose a new method to determine discrete phase quantization levels. In the discrete RIS-aided communication system, the formula for determining the ideal phase can be obtained through the mathematical calculation of the optimization problem. By approximating this formula, we can find an approximation of the ideal phase distribution. From the channel model, path loss exponents, the number of antennas, and the formula of practical phase shift model, we can acquire a suitable non-uniform discrete phase quantization level via this approximation formula. Under the same system performance, the simulation results show that our proposed discrete phase quantization levels require fewer hardware resources on RIS than uniform discrete phase quantization levels do. Moreover, since we use base stations (BS) to compute the proposed discrete phase quantization levels, the additional computational cost is not counted in the cost of RIS. These advantages allow multiple RISs to be deployed in the transmission environment, which prominently reduces transmission power loss.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:20:22Z (GMT). No. of bitstreams: 1
U0001-0209202217562100.pdf: 11821932 bytes, checksum: c5e10fbc4a1c7e10bcca77fe72004893 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents xi List of Figures xv List of Tables xvii Chapter 1 Introduction 1 Chapter 2 Reconfigurable Intelligent Surface 5 2.1 The Principle of Reconfigurable Intelligent Surface 5 2.2 The Way to Control the Transmission Environment 7 2.3 Comparison of Relay 8 Chapter 3 Hardware for Reconfigurable Intelligent Surface 11 3.1 The Hardware Architecture of Reconfigurable Intelligent Surface 11 3.2 Practical Phase Shift Model 12 Chapter 4 Reconfigurable Intelligent Surface-Aided System 17 4.1 System Model 17 4.2 Channel Model 18 4.3 Transmit Beamforming 19 4.4 Optimization Problem 20 4.5 Alternating Optimization Based Algorithm 22 Chapter 5 Discrete Phase Quantization Levels 25 5.1 One-Dimensional Search Algorithm 25 5.2 Proposed Discrete Phase Quantization Levels 28 5.2.1 Discrete Phase Quantization Levels Solved by Extremum 28 5.2.2 Discrete Phase Quantization Levels Solved by Lambert W Function 44 Chapter 6 Simulation Results 51 6.1 Optimization for the Continuous Phase RIS-Aided System 52 6.2 The Distribution of the Optimal Phase with Different System Parameters 53 6.3 Simplification of the Proposed Optimal Phase Equation 60 6.4 Cumulative Distribution Function of the Proposed Optimal Phase Equation 62 6.5 The Quantization Levels in the Discrete Phase RIS-Aided System 67 6.5.1 Discrete Phase Quantization Levels Solved by AO-Based Algorithm 67 6.5.2 The Uniform Discrete Phase Quantization Levels 68 6.5.3 Discrete Phase Quantization Levels Solved by Extremum 68 6.5.4 Discrete Phase Quantization Levels Solved by Lambert W Function 71 6.5.5 Comparison of the Four Methods 73 Chapter 7 Conclusion 77 Chapter 8 Future Work 79 References 81
dc.language.isoen
dc.subject智能反射表面zh_TW
dc.subject通訊系統zh_TW
dc.subject離散相位zh_TW
dc.subject量化位階zh_TW
dc.subject可重構智能表面zh_TW
dc.subjectdiscrete phaseen
dc.subjectreconfigurable intelligent surfaceen
dc.subjectintelligent reflecting surfaceen
dc.subjectquantization levelen
dc.subjectcommunication systemen
dc.title可重構智能表面輔助通訊系統的離散相位量化位置zh_TW
dc.titleDiscrete Phase Quantization Levels in Reconfigurable Intelligent Surface-Aided Communication Systemsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.advisor-orcid劉俊麟(0000-0003-3135-9486)
dc.contributor.oralexamcommittee馮世邁(See-May Phoong),蘇柏青(Borching Su)
dc.subject.keyword可重構智能表面,智能反射表面,量化位階,離散相位,通訊系統,zh_TW
dc.subject.keywordreconfigurable intelligent surface,intelligent reflecting surface,quantization level,discrete phase,communication system,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202203118
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
dc.date.embargo-lift2022-09-19-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0209202217562100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved