請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8467
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張豐丞(Feng-Cheng Chang) | |
dc.contributor.author | Szu-Han Wang | en |
dc.contributor.author | 王思涵 | zh_TW |
dc.date.accessioned | 2021-05-20T00:55:08Z | - |
dc.date.available | 2023-08-05 | |
dc.date.available | 2021-05-20T00:55:08Z | - |
dc.date.copyright | 2020-08-11 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-06 | |
dc.identifier.citation | 1. Myglovets, M.; Poddubnaya, O. I.; Sevastyanova, O.; Lindström, M. E.; Gawdzik, B.; Sobiesiak, M.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon N. Y. 2014, 80, 771–783, DOI:10.1016/j.carbon.2014.09.032. 2. Suhas; Carrott, P. J. M.; Ribeiro Carrott, M. M. L. Lignin – from natural adsorbent to activated carbon: A review. Bioresour. Technol. 2007, 98, 2301–2312, DOI:10.1016/j.biortech.2006.08.008. 3. Li, T.; Takkellapati, S. The current and emerging sources of technical lignins and their applications. Biofuels, Bioprod. Biorefining 2018, 12, 756–787, DOI:10.1002/bbb.1913. 4. Chen, Y.; Zi, F.; Hu, X.; Yu, H.; Nie, Y.; Yang, P.; Cheng, H.; Wang, Q.; Qin, X.; Chen, S.; Zhang, Y. Grafting of organic sulfur-containing functional groups on activated carbon for gold(I) adsorption from thiosulfate solution. Hydrometallurgy 2019, DOI:10.1016/j.hydromet.2019.02.007. 5. Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019. 6. Hsu, E.; Barmak, K.; West, A. C.; Park, A.-H. A. Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies. Green Chem. 2019, 21, 919–936, DOI:10.1039/C8GC03688H. 7. UNEP; PACE; ITU; ILO; UNIDO; UNU; Unitar; WBSCD; WEF A New Circular Vision for Electronics Time for a Global Reboot; Geneva, 2019; 8. Lee, T.; Ooi, C. H.; Othman, R.; Yeoh, F. Y. Activated carbon fiber - The hybrid of carbon fiber and activated carbon. Rev. Adv. Mater. Sci. 2014. 9. Suzuki, M. Activated carbon fiber: Fundamentals and applications. Carbon N. Y. 1994, 32, 577–586, DOI:10.1016/0008-6223(94)90075-2. 10.Chang, F.-C.; Yen, S.-H.; Wang, S.-H. Developing Lignosulfonate-Based Activated Carbon Fibers. Materials (Basel). 2018, 11, 1877–1888, DOI:10.3390/ma11101877. 11.Yen, S.-H.; Chang, F.-C. Effects of Fiber Processing Conditions on the Yield, Carbon Content, and Diameter of Lignosulfonate-based Carbon Fibers. BioResources 2016, 11, 10158–10172, DOI:10.15376/biores.11.4.10158-10172. 12.Vergunst, T.; Kapteijn, F.; Moulijn, J. A. Carbon coating of ceramic monolithic substrates. In Studies in Surface Science and Catalysis; Delmon, B., Jacobs, P. A., Maggi, R., Martens, J. A., Grange, P., Poncelet, G. B. T.-S. in S. S. and C., Eds.; Elsevier, 1998; Vol. 118, pp. 175–183 ISBN 0167-2991. 13.Aro, T.; Fatehi, P. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem 2017, 10, 1861–1877, DOI:10.1002/cssc.201700082. 14.Flatt, R.; Schober, I. Superplasticizers and the rheology of concrete. In Understanding the Rheology of Concrete; Roussel, N. B. T.-U. the R. of C., Ed.; Elsevier, 2012; pp. 144–208 ISBN 978-0-85709-028-7. 15.Huang, Y.; Miao, Y. E.; Liu, T. Electrospun fibrous membranes for efficient heavy metal removal. J. Appl. Polym. Sci. 2014, 131, DOI:10.1002/app.40864. 16.Greiner, A.; Wendorff, J. H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chemie Int. Ed. 2007, 46, 5670–5703, DOI:10.1002/anie.200604646. 17.Bhardwaj, N.; Kundu, S. C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347, DOI:10.1016/j.biotechadv.2010.01.004. 18.Taylor, G. Electrically Driven Jets. Proc. R. Soc. A Math. Phys. Eng. Sci. 1969, 313, 453–475, DOI:10.1098/rspa.1969.0205. 19.Yarin, A. L.; Koombhongse, S.; Reneker, D. H. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 2001, 89, 3018–3026, DOI:10.1063/1.1333035. 20.Deitzel, J. .; Kleinmeyer, J.; Harris, D.; Beck Tan, N. . The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf). 2001, 42, 261–272, DOI:10.1016/S0032-3861(00)00250-0. 21.Liu, H.; Hsieh, Y.-L. Lo Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 2119–2129, DOI:10.1002/polb.10261. 22.Ryu, Y. J.; Kim, H. Y.; Lee, K. H.; Park, H. C.; Lee, D. R. Transport properties of electrospun nylon 6 nonwoven mats. Eur. Polym. J. 2003, 39, 1883–1889, DOI:10.1016/S0014-3057(03)00096-X. 23.McKee, M. G.; Wilkes, G. L.; Colby, R. H.; Long, T. E. Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules 2004, 37, 1760–1767, DOI:10.1021/ma035689h. 24.Haghi, A. K.; Akbari, M. Trends in electrospinning of natural nanofibers. Phys. status solidi 2007, 204, 1830–1834, DOI:10.1002/pssa.200675301. 25.Fong, H.; Reneker, D. H. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 3488–3493, DOI:10.1002/(SICI)1099-0488(19991215)37:24<3488::AID-POLB9>3.0.CO;2-M. 26.Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F. Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties. Polymer (Guildf). 2003, 44, 5721–5727, DOI:10.1016/S0032-3861(03)00532-9. 27.Tan, S.-H.; Inai, R.; Kotaki, M.; Ramakrishna, S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer (Guildf). 2005, 46, 6128–6134, DOI:10.1016/j.polymer.2005.05.068. 28.Burger, C.; Hsiao, B. S.; Chu, B. Nanofibrous Materials and Their Applications. Annu. Rev. Mater. Res. 2006, 36, 333–368, DOI:10.1146/annurev.matsci.36.011205.123537. 29.McKee, M. G.; Layman, J. M.; Cashion, M. P.; Long, T. E. Phospholipid Nonwoven Electrospun Membranes. Science (80-. ). 2006, 311, 353–355, DOI:10.1126/science.1119790. 30.Baumgarten, P. K. Electrostatic spinning of acrylic microfibers. J. Colloid Interface Sci. 1971, 36, 71–79, DOI:10.1016/0021-9797(71)90241-4. 31.Doshi, J.; Reneker, D. H. Electrospinning process and applications of electrospun fibers. J. Electrostat. 1995, 35, 151–160, DOI:10.1016/0304-3886(95)00041-8. 32.Buchko, C. J.; Chen, L. C.; Shen, Y.; Martin, D. C. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer (Guildf). 1999, 40, 7397–7407, DOI:10.1016/S0032-3861(98)00866-0. 33.Deitzel, J. Electrospinning of polymer nanofibers with specific surface chemistry. Polymer (Guildf). 2002, 43, 1025–1029, DOI:10.1016/S0032-3861(01)00594-8. 34.Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P. Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 2001, 13, 2221–2236, DOI:10.1063/1.1384013. 35.Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J. 2005, 41, 423–432, DOI:10.1016/j.eurpolymj.2004.10.027. 36.Pham, Q. P.; Sharma, U.; Mikos, A. G. Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules 2006, 7, 2796–2805, DOI:10.1021/bm060680j. 37.Hayati, I.; Bailey, A.; Tadros, T. . Investigations into the mechanism of electrohydrodynamic spraying of liquids. J. Colloid Interface Sci. 1987, 117, 222–230, DOI:10.1016/0021-9797(87)90186-X. 38.Reneker, D. H.; Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer (Guildf). 2008, 49, 2387–2425, DOI:10.1016/j.polymer.2008.02.002. 39.Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer (Guildf). 2002, 43, 4403–4412, DOI:10.1016/S0032-3861(02)00275-6. 40.Reneker, D. H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216–223, DOI:10.1088/0957-4484/7/3/009. 41.Demir, M. .; Yilgor, I.; Yilgor, E.; Erman, B. Electrospinning of polyurethane fibers. Polymer (Guildf). 2002, 43, 3303–3309, DOI:10.1016/S0032-3861(02)00136-2. 42.Larrondo, L.; St. John Manley, R. Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 921–932, DOI:10.1002/pol.1981.180190602. 43.Larrondo, L.; St. John Manley, R. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 909–920, DOI:10.1002/pol.1981.180190601. 44.Larrondo, L.; St. John Manley, R. Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 933–940, DOI:10.1002/pol.1981.180190603. 45.Yördem, O. S.; Papila, M.; Menceloğlu, Y. Z. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology. Mater. Des. 2008, 29, 34–44, DOI:10.1016/j.matdes.2006.12.013. 46.Yuan, X.; Zhang, Y.; Dong, C.; Sheng, J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym. Int. 2004, 53, 1704–1710, DOI:10.1002/pi.1538. 47.Wannatong, L.; Sirivat, A.; Supaphol, P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym. Int. 2004, 53, 1851–1859, DOI:10.1002/pi.1599. 48.Kim, K.-H.; Jeong, L.; Park, H.-N.; Shin, S.-Y.; Park, W.-H.; Lee, S.-C.; Kim, T.-I.; Park, Y.-J.; Seol, Y.-J.; Lee, Y.-M.; Ku, Y.; Rhyu, I.-C.; Han, S.-B.; Chung, C.-P. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J. Biotechnol. 2005, 120, 327–339, DOI:10.1016/j.jbiotec.2005.06.033. 49.Zuo, W.; Zhu, M.; Yang, W.; Yu, H.; Chen, Y.; Zhang, Y. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci. 2005, 45, 704–709, DOI:10.1002/pen.20304. 50.Boland, E. D.; Wnek, G. E.; Simpson, D. G.; Pawlowski, K. J.; Bowlin, G. L. Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning. J. Macromol. Sci. - Pure Appl. Chem. 2001, 38 A, 1231–1243, DOI:10.1081/MA-100108380. 51.Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L. Electrospinning of Collagen Nanofibers. Biomacromolecules 2002, 3, 232–238, DOI:10.1021/bm015533u. 52.Bornat, A. Production of Electrostatically Spun Products 1987. 53.Theron, A.; Zussman, E.; Yarin, A. L. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 2001, 12, 384–390, DOI:10.1088/0957-4484/12/3/329. 54.Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253, DOI:10.1016/S0266-3538(03)00178-7. 55.Lee, J. S.; Choi, K. H.; Ghim, H. Do; Kim, S. S.; Chun, D. H.; Kim, H. Y.; Lyoo, W. S. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J. Appl. Polym. Sci. 2004, 93, 1638–1646, DOI:10.1002/app.20602. 56.Geng, X.; Kwon, O. H.; Jang, J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 2005, 26, 5427–5432, DOI:10.1016/j.biomaterials.2005.01.066. 57.Ki, C. S.; Baek, D. H.; Gang, K. D.; Lee, K. H.; Um, I. C.; Park, Y. H. Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer (Guildf). 2005, 46, 5094–5102, DOI:10.1016/j.polymer.2005.04.040. 58.Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F. Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules 2004, 37, 573–578, DOI:10.1021/ma0351975. 59.Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. 2004, 16, 1151–1170, DOI:10.1002/adma.200400719. 60.Li, M.; Mondrinos, M. J.; Gandhi, M. R.; Ko, F. K.; Weiss, A. S.; Lelkes, P. I. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 2005, 26, 5999–6008, DOI:10.1016/j.biomaterials.2005.03.030. 61.Mit-uppatham, C.; Nithitanakul, M.; Supaphol, P. Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromol. Chem. Phys. 2004, 205, 2327–2338, DOI:10.1002/macp.200400225. 62.Worasuwannarak, N.; Hatori, S.; Nakagawa, H.; Miura, K. Effect of oxidation pre-treatment at 220 to 270 °C on the carbonization and activation behavior of phenolic resin fiber. Carbon N. Y. 2003, 41, 933–944, DOI:10.1016/S0008-6223(02)00426-8. 63.Norberg, I. Carbon Fibres from Kraft Lignin TT - Kolfiber från sulfatlignin (swe), KTH Royal Institute of Technology: Wood Chemistry and Pulp Technology, Fibre and Polymer Technology, School of Chemical Science and Engineering (CHE), KTH, 2012. 64.Yue, Z.; Economy, J. Carbonization and activation for production of activated carbon fibers. In Activated Carbon Fiber and Textiles; Chen, J. Y., Ed.; Elsevier: Oxford, 2017; pp. 61–139 ISBN 9780081006788. 65.Park, S.-J. Precursors and Manufacturing of Carbon Fibers. In Springer Series in Materials Science; Park, S.-J., Ed.; Springer Singapore: Singapore, 2018; Vol. 210, pp. 31–67 ISBN 978-981-13-0538-2. 66.Thommes, M. Physical Adsorption Characterization of Nanoporous Materials. Chemie Ing. Tech. 2010, 82, 1059–1073, DOI:10.1002/cite.201000064. 67.Thommes, M.; Cychosz, K. A.; Neimark, A. V. Advanced Physical Adsorption Characterization of Nanoporous Carbons. In Novel Carbon Adsorbents; Tascón, J. M. D., Ed.; Elsevier: Oxford, 2012; pp. 107–145 ISBN 9780080977447. 68.Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069, DOI:10.1515/pac-2014-1117. 69.Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619, DOI:10.1351/pac198557040603. 70.Bansal, R. C.; Goyal, M. Activated carbon adsorption; 1st Editio.; ICE Publishing: Boca Raton, 2005; ISBN 9781420028812. 71.Belhamdi, B.; Merzougui, Z.; Trari, M.; Addoun, A. A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). J. Appl. Res. Technol. 2016, 14, 354–366, DOI:10.1016/j.jart.2016.08.004. 72.Das, N. Recovery of precious metals through biosorption - A review. Hydrometallurgy 2010, 103, 180–189, DOI:10.1016/j.hydromet.2010.03.016. 73.Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier, 2006; ISBN 9780080444635. 74.Li, L.; Quinlivan, P. A.; Knappe, D. R. U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon N. Y. 2002, 40, 2085–2100, DOI:10.1016/S0008-6223(02)00069-6. 75.Di Natale, F.; Orefice, M.; La Motta, F.; Erto, A.; Lancia, A. Unveiling the potentialities of activated carbon in recovering palladium from model leaching solutions. Sep. Purif. Technol. 2017, 174, 183–193, DOI:10.1016/j.seppur.2016.10.022. 76.Alfarra, A.; Frackowiak, E.; Béguin, F. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Appl. Surf. Sci. 2004, 228, 84–92, DOI:10.1016/j.apsusc.2003.12.033. 77.Frost, H.; Düren, T.; Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J. Phys. Chem. B 2006, 110, 9565–9570, DOI:10.1021/jp060433. 78.Reid, C. R.; Thomas, K. M. Adsorption Kinetics and Size Exclusion Properties of Probe Molecules for the Selective Porosity in a Carbon Molecular Sieve Used for Air Separation. J. Phys. Chem. B 2001, 105, 10619–10629, DOI:10.1021/jp0108263. 79.Kadirvelu, K.; Faur-Brasquet, C.; Cloirec, P. Le Removal of Cu(II), Pb(II), and Ni(II) by Adsorption onto Activated Carbon Cloths. Langmuir 2000, 16, 8404–8409, DOI:10.1021/la0004810. 80.Hu, S.; Hsieh, Y.-L. Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin. J. Mater. Chem. A 2013, 1, 11279, DOI:10.1039/c3ta12538f. 81.Lowell, S.; Shields, J. E.; Thomas, M. A.; Thommes, M. Surface Area Analysis from the Langmuir and BET Theories. In Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Lowell, S., Shields, J. E., Thomas, M. A., Thommes, M., Eds.; Springer Netherlands: Dordrecht, 2004; pp. 58–81 ISBN 978-1-4020-2303-3. 82.Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the bet equation applicable to microporous adsorbents? In Studies in Surface Science and Catalysis; 2007; Vol. 160, pp. 49–56. 83.ISO [International Organization for Standardization] Determination of the specific surface area of solids by gas adsorption - BET method (ISO 9277:2010(E)). Ref. number ISO 2010, 9277, 30 pp., DOI:10.1007/s11367-011-0297-3. 84.Neimark, A. V.; Lin, Y.; Ravikovitch, P. I.; Thommes, M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon N. Y. 2009, 47, 1617–1628, DOI:10.1016/j.carbon.2009.01.050. 85.Leon y Leon, C. A.; Solar, J. M.; Calemma, V.; Radovic, L. R. Evidence for the protonation of basal plane sites on carbon. Carbon N. Y. 1992, 30, 797–811, DOI:10.1016/0008-6223(92)90164-R. 86.Barton, S. S.; Evans, M. J. B.; Halliop, E.; MacDonald, J. A. F. Acidic and basic sites on the surface of porous carbon. Carbon N. Y. 1997, 35, 1361–1366, DOI:10.1016/S0008-6223(97)00080-8. 87.Tze, W. T. Y.; Bernhardt, G.; Gardner, D. J.; Christiansen, A. W. X-ray photoelectron spectroscopy of wood treated with hydroxymethylated resorcinol. Int. J. Adhes. Adhes. 2006, 26, 550–554, DOI:10.1016/j.ijadhadh.2005.08.002. 88.Schönherr, J.; Buchheim, J.; Scholz, P.; Adelhelm, P. Boehm Titration Revisited (Part II): A Comparison of Boehm Titration with Other Analytical Techniques on the Quantification of Oxygen-Containing Surface Groups for a Variety of Carbon Materials. C 2018, 4, 22, DOI:10.3390/c4020022. 89.Cheng, S.; Zhang, L.; Xia, H.; Peng, J.; Shu, J.; Li, C. Ultrasound and microwave-assisted preparation of Fe-activated carbon as an effective low-cost adsorbent for dyes wastewater treatment. RSC Adv. 2016, 6, 78936–78946, DOI:10.1039/c6ra14082c. 90.Shimodaira, N.; Masui, A. Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 2002, 92, 902–909, DOI:10.1063/1.1487434. 91.ASTM International Standard Practice for Determination of Adsorptive Capacity of Activated Carbon by Aqueous Phase Isotherm Technique. ASTM Stand. 2004, 15, 1–4, DOI:10.1520/D3860-98R08.2. 92.Peng, M.; Nguyen, A. V.; Wang, J.; Miller, R. A critical review of the model fitting quality and parameter stability of equilibrium adsorption models. Adv. Colloid Interface Sci. 2018, 262, 50–68, DOI:10.1016/j.cis.2018.10.001. 93.López-Luna, J.; Ramírez-Montes, L. E.; Martinez-Vargas, S.; Martínez, A. I.; Mijangos-Ricardez, O. F.; González-Chávez, M. del C. A.; Carrillo-González, R.; Solís-Domínguez, F. A.; Cuevas-Díaz, M. del C.; Vázquez-Hipólito, V. Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Appl. Sci. 2019, 1, 950, DOI:10.1007/s42452-019-0977-3. 94.Kinniburgh, D. G. General Purpose Adsorption Isotherms. Environ. Sci. Technol. 1986, 20, 895–904, DOI:10.1021/es00151a008. 95.Redlich, O.; Peterson, D. L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024, DOI:10.1021/j150576a611. 96.Ramos, S. N. do C.; Xavier, A. L. P.; Teodoro, F. S.; Elias, M. M. C.; Gonçalves, F. J.; Gil, L. F.; de Freitas, R. P.; Gurgel, L. V. A. Modeling mono- and multi-component adsorption of cobalt(II), copper(II), and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part I: Batch adsorption study. Ind. Crops Prod. 2015, 74, 357–371, DOI:10.1016/j.indcrop.2015.05.022. 97.Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Zeitschrift für Chemie und Ind. der Kolloide 1907, 2, 15–15, DOI:10.1007/BF01501332. 98.Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504, DOI:10.1016/j.cherd.2016.02.006. 99.Tan, K. L.; Hameed, B. H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48, DOI:10.1016/j.jtice.2017.01.024. 100.Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465, DOI:https://doi.org/10.1016/S0032-9592(98)00112-5. 101.Leitner, S.; Gratzl, G.; Paulik, C.; Weber, H. Carbon Materials from Lignin and Sodium Lignosulfonate via Diisocyanate Cross-Linking and Subsequent Carbonization. C 2015, 1, 43–57, DOI:10.3390/c1010043. 102.Shin, S.; Jang, J.; Yoon, S.-H.; Mochida, I. A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon N. Y. 1997, 35, 1739–1743, DOI:10.1016/S0008-6223(97)00132-2. 103.Qi, F.; Yan, Y.; Lamb, D.; Naidu, R.; Bolan, N. S.; Liu, Y.; Ok, Y. S.; Donne, S. W.; Semple, K. T. Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresour. Technol. 2017, DOI:10.1016/j.biortech.2017.07.033. 104.Chingombe, P.; Saha, B.; Wakeman, R. J. Surface modification and characterisation of a coal-based activated carbon. Carbon N. Y. 2005, 43, 3132–3143, DOI:10.1016/j.carbon.2005.06.021. 105.Li, J.; Su, S.; Zhou, L.; Kundrát, V.; Abbot, A. M.; Mushtaq, F.; Ouyang, D.; James, D.; Roberts, D.; Ye, H. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers. J. Appl. Phys. 2013, 113, 024313, DOI:10.1063/1.4774218. 106.Ying, W.; Shi, Z.; Yang, H.; Xu, G.; Zheng, Z.; Yang, J. Effect of alkaline lignin modification on cellulase–lignin interactions and enzymatic saccharification yield. Biotechnol. Biofuels 2018, 11, 214, DOI:10.1186/s13068-018-1217-6. 107.Liu, C.; Xu, J.; Hu, J.; Zhang, H.; Xiao, R. Metal Ion-Catalyzed Hydrothermal Liquefaction of Calcium Lignosulfonate in Subcritical Water. Chem. Eng. Technol. 2017, 40, 1092–1100, DOI:10.1002/ceat.201600650. 108.Chen, J.; Liu, C.; Wu, S.; Liang, J.; Lei, M. Enhancing the quality of bio-oil from catalytic pyrolysis of kraft black liquor lignin. RSC Adv. 2016, 6, 107970–107976, DOI:10.1039/c6ra18923g. 109.Rashid, T.; Kait, C. F.; Murugesan, T. A “Fourier Transformed Infrared” Compound Study of Lignin Recovered from a Formic Acid Process. Procedia Eng. 2016, 148, 1312–1319, DOI:10.1016/j.proeng.2016.06.547. 110.Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. Compounds Containing the Carbonyl Group. In The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Lin-Vien, D., Colthup, N. B., Fateley, W. G., Grasselli, J. G. B. T.-T. H. of I. and R. C. F. of O. M., Eds.; Elsevier: San Diego, 1991; pp. 117–154 ISBN 978-0-12-451160-6. 111.Hoseinzadeh Hesas, R.; Arami-Niya, A.; Wan Daud, W. M. A.; Sahu, J. N. Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-Assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption. BioResources 2013, 8, DOI:10.15376/biores.8.2.2950-2966. 112.Zhang, Y.; Wu, J.-Q.; Li, H.; Yuan, T.-Q.; Wang, Y.-Y.; Sun, R.-C. Heat Treatment of Industrial Alkaline Lignin and its Potential Application as an Adhesive for Green Wood–Lignin Composites. ACS Sustain. Chem. Eng. 2017, 5, 7269–7277, DOI:10.1021/acssuschemeng.7b01485. 113.Liu, W.-J.; Jiang, H.; Yu, H.-Q. Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem. 2015, 17, 4888–4907, DOI:10.1039/C5GC01054C. 114.Kawamoto, H. Lignin pyrolysis reactions. J. Wood Sci. 2017, 63, 117–132, DOI:10.1007/s10086-016-1606-z. 115.Ház, A.; Jablonský, M.; Orságová, A. Determination of Temperature Regions. In 4nd International Conference Renewable Energy Sources 2013; 2013; pp. 1–6. 116.Archontoulis, S. V.; Miguez, F. E. Nonlinear Regression Models and Applications in Agricultural Research. Agron. J. 2015, 107, 786, DOI:10.2134/agronj2012.0506. 117.Liu, Y. Is the Free Energy Change of Adsorption Correctly Calculated? J. Chem. Eng. Data 2009, 54, 1981–1985, DOI:10.1021/je800661q. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8467 | - |
dc.description.abstract | 隨著科技日新月異,電子廢棄物回收成為刻不容緩的議題。眾多解決方案中,以生質廢棄物回收電子垃圾為較環境友善的辦法。木質素磺酸鹽是近來廣受歡迎的生質廢棄物。每年,全球造紙業產生上萬噸的木質素磺酸鹽,其豐富的碳含量,具備作高值化利用的潛能。 此研究分為兩部分:木質素磺酸鹽活性碳纖維研發、以及木質素活性碳纖維金屬離子吸附研究。第一部份利用靜電紡絲法紡織木質素纖維膜,接著以二氧化碳進行物理活化,產出木質素活性碳纖維。進一步以物理及化學方法分析材料特性,以選擇材料最佳活化時間。材料結構由電子掃描顯微鏡(Scanning electron microscope, SEM)以及比表面積與孔徑分佈儀進行檢測。材料表面性質由元素分析儀、X射線光電子能譜儀(X-Ray Photoelectron Spectroscopy, XPS)、傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectroscopy, FTIR)、拉曼光譜儀(Raman Spectroscopy)進行分析。 第二部分利用第一部分最佳條件之木質素活性碳纖維,分別以批次法吸附二價銅離子、三價金離子。由於銅、金離子為電子廢棄物中含量、價值較高之金屬,故選擇其作為吸附對象。吸附行為主要由三個角度分析:不同金屬離子濃度對材料吸附量之影響(吸附等溫線)、不同金屬離子溶液酸鹼值對材料吸附量之影響、不同吸附時間對吸附量之影響(吸附動力學)。並進一步以不同等溫線模型、動力學模型擬合實驗數據,由赤池信息量準則(Akaike Information Criterion, AIC)選擇較佳模型。此外,亦由金屬離子脫附試驗評估木質素磺酸鹽活性碳纖維之重複利用性。 分析結果顯示,經60分鐘活化之木質素磺酸鹽活性碳纖維具較高比表面積、微孔體積,及較多酸性官能基,故有潛力成為較佳金屬離子吸附劑。根據吸附行為研究,銅離子與金離子之吸附機制皆為物理、化學吸附混合,其中,金離子吸附較傾向於化學吸附。此外,吸/脫附試驗顯示,木質素磺酸鹽活性碳纖維在三輪吸脫附循環後,仍具備吸附銅、金離子之效能。整體而言,此研究開拓物理活化木質素磺酸鹽活性碳纖維與其回收有價值金屬離子之應用。 | zh_TW |
dc.description.abstract | Living in an electronic-dominated world, e-wastes have become an urgent problem. From an environment point of view, an effective solution would be leveraging renewable source, preferably another type of wastes, to recycle these metals. One waste that is easy to deal with is lignosulfonate. Tons of them were produced as byproduct by the pulp industry every year. As a carbon-rich polymer, it is worth the attention for a higher-value investment. The research is divided into two parts, including the development of lignosulfonate activated carbon fiber (LACF) and its metal recovery behavior. LACF was developed through the electrospinning technique, followed by a series of CO2-based physical activation. Physical and chemical characterization were implemented to find the optimized activation time for developing LACF. For the material structure, scanning electron microscope (SEM) and specific surface area and pore size distribution analyzer were utilized. In terms of the surface properties, elemental analysis, X-Ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and Raman Spectroscopy were applied. Throughout the second part of the study, the adsorption behavior of Cu(II) and Au(III) metal ions were respectively tested with batch methods on the lab-made LACF. The metal ions were chosen for their larger amount and higher value. Examinations included the adsorption capacity change according to various adsorbate concentrations, adsorbate pH environment, and adsorption equilibrium time. In order to explore the adsorption mechanism, isotherm and kinetic modeling were performed, and the Akaike Information Criterion (AIC) was implemented to choose the better model. Further, desorption tests were executed to evaluate the reusability of LACF. It was observed that LACF with a 60-min activation treatment possessed a higher specific surface area, micropore ratio, and more acidic functional groups, which potentially made it a better candidate for metal-ion adsorption. According to the adsorption behavior study, both Cu(II) and Au(III) ions were adsorbed onto LACF with a mix of physi- and chemisorption, while the latter was more inclined to chemisorption. Furthermore, the LACF could recover these two metal ions after 3 adsorption-desorption cycles. Overall, this study paves the way for physically activated lignosulfonate carbon and its application in recovering valuable metal ions. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:55:08Z (GMT). No. of bitstreams: 1 U0001-0407202003540100.pdf: 11034567 bytes, checksum: a001df086de04ec49b2810f3374bc21a (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Acknowledgement i 摘要 ii Abstract iv Table of Contents vi List of Figures viii List of Tables x Chapter 1: Introduction 1 Chapter 2: Background and Literature Review 4 2.1 Introduction of Lignosulfonate 4 2.2 Production of Electrospun Lignosulfonate Activated Carbon Fiber (LACF) 5 2.2.1 Electrospinning 5 2.2.2 Pre-oxidation (Thermal stabilization) 14 2.2.3 Carbonization 15 2.2.4 Physical Activation 16 2.3 Adsorption mechanism 18 2.3.1 Physical adsorption (Physisorption) 18 2.3.2 Chemical adsorption (Chemisorption) 23 Chapter 3: Materials and Methods 25 3.1 Materials 25 3.2 Methods 25 3.2.1 LACF Production 25 3.2.2 Characterization of LACF 27 3.2.3 Characterization of LACF with metal ion 38 3.2.4 Mono-component Metal Recovery experiments (Batch/Column) 38 Chapter 4: Results and Discussion 47 4.1 Characterization 47 4.1.1 Physical Characterization 47 4.1.2 Chemical Characterization 51 4.1.3 Characterization of LACF with metal ion 63 4.2 Batch Adsorption experiment 66 4.2.1 Cu(II)/Au(III) adsorption according to various pH 66 4.2.2 Cu(II)/Au(III) adsorption according to various concentration (Isotherm) 68 4.2.3 Cu(II)/Au(III) adsorption according to various contact time (Kinetics) 77 4.3 Desorption and Recycle of LACFs 79 Chapter 5: Conclusions and Recommendations 82 References 85 | |
dc.language.iso | en | |
dc.title | 電紡木質素磺酸鹽活性碳纖維-製備、性質分析及應用 | zh_TW |
dc.title | Electrospun Lignosulfonate Activated Carbon Fiber as Valuable Metal Ion Adsorbents – Preparation, Characterization, and Application | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0002-1964-061X | |
dc.contributor.oralexamcommittee | 席行正(Hsing-Cheng Hsi),林弘萍(Hong-Ping Lin),林翰謙(Han-Chien Lin), 郭佩鈺(Pei-Yu Kuo) | |
dc.subject.keyword | 木質素磺酸鹽,活性碳纖維,靜電紡絲法,物理活化,金屬離子,吸附機制, | zh_TW |
dc.subject.keyword | lignosulfonate,activated carbon fiber,electrospinning,physical activation,metal ion,adsorption mechanism, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU202001308 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-07-06 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-05 | - |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0407202003540100.pdf | 10.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。