請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84678
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄧茂華(Mao-Hua Teng) | |
dc.contributor.author | Ching-Yi Chen | en |
dc.contributor.author | 陳青毅 | zh_TW |
dc.date.accessioned | 2023-03-19T22:20:13Z | - |
dc.date.copyright | 2022-09-26 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-12 | |
dc.identifier.citation | [1] J. Ji, J. Chen, W. Balsam, H. Lu, Y. Sun, and H. Xu (2004) “High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: Rapid climatic response of the East Asian monsoon to the tropical Pacific”, Geophysical Research Letters, 31(3). [2] R. Thompson and F. Oldfield (1986) Environmental Magnetism (pp.65-71). London: Allen und Unwin. [3] U. Schwertmann and R. M. Cornell (2000). Iron Oxides in the Laboratory (pp.121-134). Weinheim: Wiley-VCH. [4] P. R. Christensen, J. L. Bandfield, R. N. Clark, K. S. Edgett, V. E. Hamilton, T. Hoefen, … and M. D. Smith (2000) “Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer:Evidence for Near-Surface Water”, Journal of Geophysical Research, 105(E4), 9623-9642. [5] J. F. Lu and C. J. Tsai (2015) “Reduction Kinetics of Hematite to Magnetite Under Hydrothermal Treatments” The Royal Society of Chemistry, 5, 17236–17244 [6] H. L. Friedman (1964) “Kinetics of Thermal Degradation of Char‐Forming Plastics From Thermogravimetry. Application to A Phenolic Plastic”, Journal of Polymer Science Part C: Polymer Symposia, 6(1), 183-195. [7] T. Ozawa (1965) “A New Method of Analyzing Thermogravimetric Data”, Bulletin of the chemical society of Japan, 38(11), 1881-1886. [8] H. E. Kissinger (1957) “Reaction Kinetics in Differential Thermal Analysis”, Analytical chemistry, 29(11), 1702-1706. [9] M. Avrami (1939) “Kinetics of Phase Change. I General Theory”, Journal of Chemical Physics, 7, 1103-1112. [10] M. Avrami (1940) “Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei”, Journal of Chemical Physics, 8, 212-224. [11] M. Avrami (1941) “Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III”, Journal of Chemical Physics, 9, 177-184. [12] S. F. Hulbert (1969) “Models for Solid State Reactions in Powdered Compacts: A Review” Journal of the British Ceramic Society, 6, 11-20. [13] J. D. Hancock and J. H. Sharp (1972) “Method of Comparing Solid‐State Kinetic Data and Its Application to the Decomposition of Kaolinite, Brucite, and BaCO3” Journal of the American Ceramic Society, 55(2), 74-77. [14] 胡榮祖等 (2008)。熱分析動力學。北京:科學出版社。 [15] 汪建民(2014)。材料分析。新竹縣:中國材料科學學會。 [16] M. H. Teng, C. H. Liang, Y. T. Chen, and C. F. Wu (2002) “Surprising Applications of Master Sintering Curve Model”, The Chinese Journal of Process Engineering, 2, 195-198. [17] H. Su and D. L. Johnson (1996) “Master Sintering Curve: a Practical Approach to Sintering”, Journal of the American Ceramic Society, 79(12), 3211-3217. [18] H. Su and D. L. Johnson (1997) “A Practical Approach to Sintering”, The American Ceramic Society Bulletin, 76(2), 72-76. [19] J. W. Murray and R. G. Burns (Eds.). (1979) In Marine Minerals, Mineral. Soc. Am, 6(2), 49-98. [20] 梁家豪(2003)三種分析反應動力學及燒結資料的新方法。國立臺灣大學地質科學系碩士論文。 [21] 陳孟霞(2004)主導曲線模型運用在奈米氧化鋁和奈米二氧化鈦陶瓷粉末燒結之研究。國立臺灣大學地質科學系碩士論文。 [22] 夏葵芳(2006)簡單化學熱分解反應之主導曲線初步研究。國立臺灣大學地質科學系碩士論文。 [23] 林書弘(2007)蒸發岩礦物熱分解反應動力學之研究方法與應用探討。國立臺灣大學地質科學系碩士論文。 [24] 陳俐穎(2009)探討奈米至微米尺度之鑽石氧化反應動力學機制。國立臺灣大學地質科學系碩士論文。 [25] 連維帆(2010)銳鈦礦-金紅石與霰石-方解石相變反應之主導動力學研究。國立臺灣大學地質科學系碩士論文。 [26] 王紹宇(2011)主導動力學曲線與三種不同動力學模型之比較研究。國立臺灣大學地質科學系碩士論文。 [27] 吳尚庭(2012)藍晶石熱分解反應微結構變化與動力學探討。國立臺灣大學地質科學系碩士論文。 [28] 郭迦豪(2015)利用熱膨脹儀探討氫氧基磷灰石之熱分解反應與反應動力學。國立臺灣大學地質科學系碩士論文。 [29] 劉羽珊(2018)利用熱膨脹儀與兩階段燒結法探討氫氧基磷灰石相變溫度範圍及反應動力學。國立臺灣大學地質科學系碩士論文。 [30] 陳玟卉(2019)以三種反應剖面與不同曲線擬合方式探討主導動力學曲線模型之普適性。國立臺灣大學地質科學系碩士論文。 [31] 李琯儀(2019)不同粒徑大小水鈉錳礦之熱行為研究。國立臺灣大學地質科學系碩士論文。 [32] 莊人豪(2021)藉由三水鋁石熱行為探討主導動力學曲線模型對於複雜反應之適用性。國立臺灣大學地質科學系碩士論文。 [33] E. R. Monazam, R. W. Breault, R, Siriwardane, and D. D. Miller (2013) “Thermogravimetric Analysis of Modified Hematite by Methane (CH4) for Chemical-Looping Combustion: A Global Kinetics Mechanism”, Industrial & Engineering Chemistry Research, 52, 14808-14816. [34] H. Chen, Z. Zheng, Z. Chen and X. T. Bi (2016) “Reduction of Hematite (Fe2O3) to Metallic Iron (Fe) by CO in a Micro Fluidized Bed Reaction Analyzer: A Multistep Kinetics Study”, Powder Technology, 316, 410-420. [35] M. V. C. Sastri, R. P. Viswanath,s and B. Viswanathan (1982) “Studies on the Reduction of Iron Oxide with Hydrogen”, International Journal of Hydrogen Energy, 7(12), 951-955. [36] A. Chakraborty (1999) “Kinetics of the Reduction of Hematite to Magnetite near its Curie Transition”, Journal of Magnetism and Magnetic Materials, 204, 57-60. [37] P. Pourghahramani and E. Forssberg (2007) “Reduction Kinetics of Mechanically Activated Hematite Concentrate with Hydrogen Gas Using Nonisothermal Methods”, Thermochimica Acta, 454, 69-77. [38] A. Pineau, N. Kanari, and I. Gaballah (2005) “Kinetics of reduction of iron oxides by H2 Part I: Low temperature reduction of hematite” Thermochimica Acta, 447, 89-100. [39] Y. K. Rao (1970) “The Kinetics of Reduction of Hematite by Carbon”, Metallurgical Transactions, 2, 1439-1447. [40] N. S. Srinivasan and A. K. Lahiri (1977) “Studies on the Reduction of Hematite by Carbon” Metallurgical Transactions B, 8B, 175-178. [41] C. E. Seaton, J. S. Foster, and J. Velasco (1983) “Redution Kinetics of Hematite and Magnetite Pellets Containing Coal Char”, Transactions ISIJ, 23, 490-496. [42] M. S. Ellid, Y. S. Murayed, M. S. Zoto, S. Musi, and S. Popovi (2003) “Chemical Reduction of Hematite with Starch”, Journal of Radioanalytical and Nuclear Chemistry, 258(2), 299-305. [43] V. P. Ponomar, N. O. Dudchenko, and A. B. Brik (2017) “Reduction Roasting of Hematite to Magnetite Using Carbohydrates”, International Journal of Mineral Processing, 164, 21–25 [44] W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, and W. Maniukiewicz (2007) “Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres” Applied Catalysis A: General, 326(1), 17-27. [45] P. R. Swann and N.J. Tighe (1977) “High Voltage Microscopy of the Reduction of Hematite to Magnetite”, Metallurgical Transactions B, 8B, 479-487. [46] A. V. Bradshaw and A. G. Matyas (1976) “Structural Changes and Kinetics in the Gaseous Reduction of Hematite”, Metallurgical Transactions B, 7B, 81-87. [47] H. E. Abdouni, A. Modaressi, and J.J. Heizmann (1987) “The Changes in Texture During the Reduction of Hematite to Magnetite. Kinetic Study of the Phase Transformation at 650℃”, Reactivity of Solids, 5, 129-138. [48] M. Bahgat (2007) “Magnetite Surface Morphology During Hematite Reduction With CO/CO2 at 1073 K”, Materials letters, 61(2), 339-342. [49] J. Szekely, J. W. Evans, and H. Y. Sohn (1976) Gas-Solid Reactions. New York, NY: Academic Press. [50] R. J. Fruehan (1977) “The Rate of Reduction of Iron Oxides by Carbon” Metallurgical Transactions B, 8B, 279-286. [51] V. P. Ponomar, O. B. Brik, Yu. I. Cherevko, and V.V. Ovsienko (2019) “Kinetics of Hematite to Magnetite Transformation by Gaseous Reduction at Low Concentration of Carbon Monoxide”, Chemical Engineering Research and Design, 148, 393-402 [52] K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, and S. B. Lalvani (2004) “Reduction of Iron Oxide in Carbon Monoxide Atmosphere—Reaction Controlled Kinetics”, Fuel processing technology, 86(1), 33-47. [53] 許樹恩與吳泰伯(1993)X光繞射原理與材料結構分析。新竹市:中國材料科學學會發行。ISBN: 975-98954-1-4。 [54] M. Sorescu and T. Xu (2011) “Particle Size Effects on the Thermal Behavior of Hematite”, Journal of Thermal Analysis and Calorimetry, 107, 463-469. [55] D. W. McKee (1981, February) “Mechanisms of Catalyzed Gasification of Carbon” In AIP Conference Proceedings, American Institute of Physics, 70(1), 236-255. [56] K. Piotrowski, K. Mondal, T. Wiltowski, P. Dydo, and G. Rizeg (2007) “Topochemical Approach of Kinetics of the Reduction of Hematite to Wüstite”, Chemical engineering journal, 131(1-3), 73-82. [57] B. Weiss, J. Sturn, S. Voglsam, S. Strobl, H. Mali, F. Winter, and J. Schenk (2011) “Structural And Morphological Changes During Reduction of Hematite to Magnetite and Wustite in Hydrogen Rich Reduction Gases Under Fluidised Bed Conditions” Ironmaking & Steelmaking, 38(1), 65-73. [58] K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, and S. B. Lalvani (2004) “Reduction of Iron Oxide in Carbon Monoxide Atmosphere—Reaction Controlled Kinetics”, Fuel processing technology, 86(1), 33-47. [59] B. P. Jalan and Y. K. Rao (1978) “A Study of the Rates of Catalyzed Boudouard Reaction”, Carbon, 16(3), 175-184. [60] J. M. Calo and M. T. Perkins (1987) “A Heterogeneous Surface Model for the “Steady-State” Kinetics of the Boudouard Reaction”, Carbon, 25(3), 395-407. [61] P. Lahijani, Z. A. Zainal, M. Mohammadi, and A. R. Mohamed (2015) “Conversion of the Greenhouse Gas CO2 to the Fuel Gas CO via The Boudouard Reaction: A review” Renewable and Sustainable Energy Reviews, 41, 615-632. [62] K. Momma and F. Izumi (2011) “VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric And Morphology Data” Journal of Applied Crystallography, 44(6), 1272-1276. [63] Z. Chen, J. Dang, X. Hu, and H. Yan (2018) “Reduction Kinetics of Hematite Powder in Hydrogen Atmosphere at Moderate Temperatures” Metals, 8(10), 751. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84678 | - |
dc.description.abstract | 主導動力學曲線模型(Master Kinetics Curve model, MKC)是一個以一般化學反應速率方程式為基礎推導而出的動力學模型,具有使用方便、預測準確、應用範圍廣泛三個主要優點,若可以拓展其使用範圍,可以使許多領域的資料,如:社會學的諸多統計,在模擬跟分析上更為便捷、節省許多時間成本。由於其基礎為一般化學反應速率方程式,且前人研究中也已成功將此動力學模型應用於熱分解、黏土礦物脫水、相變、燒結與油母質生油等反應,因此理論上來說,主導動力學曲線模型可能為具有普適性的動力學模型,但在以碳還原赤鐵礦的反應中,卻遇到了無法良好擬合的情況。因此本研究使用主導動力學曲線模型、Avrami方程式、Ozawa熱重分析法三種不同動力學模型對赤鐵礦還原反應進行一系列的分析,並將不同動力學模型的分析結果互相比較驗證,探討其差異處。在本研究中除了透過碳熱還原法進行實驗來蒐集以碳還原赤鐵礦的溫度、時間、反應百分比等參數,同時也從文獻中蒐集赤鐵礦以不同方式還原的相關數據,包括以氫氣還原赤鐵礦、以非晶質碳還原赤鐵礦的文獻數據,並將蒐集來的相關數據套入前述不同動力學模型做分析比較。根據分析結果,以氫氣還原赤鐵礦反應方面,主導動力學曲線模型可以得到良好的預測曲線,且與其他模型得到的結果相近。以碳還原赤鐵礦反應方面發現若單看赤鐵礦還原為磁鐵礦反應的話,主導動力學曲線模型可以得到良好的預測曲線;但若是當有赤鐵礦被還原為鐵,鐵會催化碳素溶損反應(Boudouard reaction)導致還原反應速率提升而使反應無法擬合,必須依照催化反應的活性溫度區分反應數據,才能得到良好擬合結果。本研究結果顯示主導動力學曲線模型的確可以應用於赤鐵礦以碳、氫氣還原的反應上,且具有良好的分析能力,但若是反應過程中若有催化反應參與導致反應速率或機制改變,主導動力學曲線便會出現數據點偏移。 | zh_TW |
dc.description.abstract | The Master Kinetics Curve model (MKC) is a kinetics model derived from the general reaction rate equation. The reaction prediction curve can be obtained by fitting several sets of experiment data. Because the prediction curve of the reaction is based on experimental data, it is easy to use and its prediction of reaction ratios is adequately accurate. What we seek to accomplish herein is to expand the applicability of MKC, so that it can make the simulation and analysis of data more convenient. In previous studies, researchers had already successfully applied the MKC model to different reactions, such as sintering, phase transformation, oxidation, clay mineral dehydration, and thermal decomposition reactions. Besides, since the MKC model is derived from the general reaction rate equation, the MKC model may serve as a universal kinetics model. Although we consider MKC as a practical universal kinetics model, in the reaction of reducing hematite with amorphous carbon, it was found that the data didn’t fit well. Therefore, whether the MKC model can be applied to the reduction reaction of hematite was researched in this study. Besides, to get a better understanding of the applicability of MKC, the Avrami equation and the Ozawa method were also used in this study. A series of kinetics analyses of the reduction reaction of hematite was carried out with three different models. In this study, the hematite reduction experiments were carried out via the carbothermal reduction method. The reduction reaction of hematite data from the relevant literature were also collected. The isothermal experiments data were analyzed by using the MKC model and the Avrami equation, while the constant heating rate experiments were analyzed by using the MKC model and Ozawa method. According to the kinetics analysis results, we could obtain good prediction curves of the hematite reduced by hydrogen reaction via the MKC model. The results agree with the results obtained by other models, indicating that the MKC model is applicable for the reduction of hematite with hydrogen. As for the reduction of hematite with carbon, it was found that if the reaction of hematite is reduced to magnetite, the MKC model can obtain a good prediction curve, which shows that the MKC model is applicable for the reduction of hematite to magnetite. However, if some of the hematite is reduced to iron, the carbon solution loss reaction, also known as the Boudouard reaction, will be catalyzed by the iron, resulting in an increased reduction reaction rate, thereby causing the shifting of the data point. The results of this study show that the MKC model can indeed be applied to the reduction reaction of hematite with carbon and hydrogen, and is in good agreement with those of other models. However, if catalytic reactions occur, it will cause the shifting of the data point on the MKC curve. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:20:13Z (GMT). No. of bitstreams: 1 U0001-2608202217533900.pdf: 5379597 bytes, checksum: 0068c7e0074c8aaf2dee8ebb7dbfba98 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 3 1.3 各章內容簡介 5 第二章 文獻回顧 7 2.1 反應動力學 8 2.1.1反應動力學模型簡介 8 2.1.2 Avrami方程式 9 2.1.3 Ozawa熱重分析法(Flynn-Wall-Ozawa積分法) 13 2.2 主導動力學曲線模型(Master Kinetics Curve model, MKC) 14 2.2.1主導動力學曲線模型之簡介 15 2.2.2主導動力學曲線模型的推導 16 2.2.3主導動力學曲線模型的分析方法與使用方法 17 2.2.4主導動力學曲線模型相關文獻彙整 18 2.2.5主導動力學曲線模型之限制 21 2.3 赤鐵礦之還原反應 24 2.3.1赤鐵礦簡介 24 2.3.2赤鐵礦還原反應 26 2.3.3影響還原反應之因素 28 2.3.4赤鐵礦還原反應之表面結構變化 33 2.3.5還原過程中磁性改變 35 2.4本研究用到與赤鐵礦還原有關文獻 36 2.4.1以氫氣還原赤鐵礦等溫文獻 36 2.4.2以氫氣還原赤鐵礦等升溫文獻 37 2.4.3以非晶質碳還原赤鐵礦等溫實驗文獻 38 第三章 實驗方法 40 3.1 研究流程與步驟 40 3.2 儀器介紹 44 3.2.1 X光粉末繞射儀(X-Ray Diffraction Analyzer) 44 3.2.2 管型高溫爐(Tube Furnace) 46 3.2.3 熱重分析儀(Thermogravimetric analysis,TGA) 47 3.2.4 熱分析-質譜儀(Thermal Analysis Mass Spectrum, TA-MS) 49 3.2.5 示差掃描量熱儀(Differential Scanning Calorimetry, DSC) 50 3.2.6 比表面積儀(Specific Surface Area & Porosity Analyzer ) 50 3.2.7 雷射粒徑分析儀(Particle Size Analyzer) 52 3.3 主導動力學曲線模型電腦程式簡介 54 第四章 實驗結果與討論 56 4.1 赤鐵礦樣本之定性與定量分析結果 56 4.1.1 X光粉末繞射儀分析(XRD)結果 56 4.1.2比表面積儀分析結果 57 4.1.3雷射粒徑分析儀 57 4.2 赤鐵礦還原反應實驗結果與討論 58 4.2.1熱重分析結果與討論 59 4.2.2熱重–質譜分析結果與討論 64 4.2.3還原反應後晶相與粒徑討論 66 4.2.4熱重實驗結果綜合討論 68 4.3 赤鐵礦還原反應動力學分析結果 69 4.3.1赤鐵礦還原實驗動力學分析結果 69 4.3.2赤鐵礦還原反應之文獻數據分析結果 77 4.3.3赤鐵礦還原反應活化能值比較 90 4.3.4動力學分析結果綜合討論 92 4.4 主導動力學曲線模型適用性與限制探討 94 4.4.1主導動力學曲線模型的適用性 94 4.4.2主導動力學曲線模型使用限制 95 4.4.3催化反應對主導動力學曲線模型的影響 97 4.4.4主導動力學曲線模型的應用 98 4.4.5持溫前的升溫階段 99 4.5本章節重點整理 101 第五章 結論與未來建議 103 參考文獻 105 附錄A赤鐵礦標準繞射峰圖譜 109 附錄B實驗數據 110 附錄C Boudouard Reaction 118 | |
dc.language.iso | zh-TW | |
dc.title | 主導動力學曲線模型於赤鐵礦還原反應之適用性研究 | zh_TW |
dc.title | A Study on the Applicability of Master Kinetics Curve Model in the Reduction Reactions of Hematite | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳樂群(Leh-Chyun Wu),郭力維(Li-Wei Kuo),陳卉君(Hui-Chun Chen) | |
dc.subject.keyword | 主導動力學曲線模型(MKC),Avrami方程式,Ozawa熱重分析法,赤鐵礦,還原反應, | zh_TW |
dc.subject.keyword | Master Kinetics Curve model,Avrami equation,Ozawa method,hematite,reduction reaction, | en |
dc.relation.page | 119 | |
dc.identifier.doi | 10.6342/NTU202202866 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-13 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-26 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2608202217533900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。