Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84665
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宏(Ping-Hung Chen)
dc.contributor.authorYu-Chi Suen
dc.contributor.author蘇宇琦zh_TW
dc.date.accessioned2023-03-19T22:19:40Z-
dc.date.copyright2022-10-07
dc.date.issued2022
dc.date.submitted2022-09-13
dc.identifier.citationBever, C.S., J.-X. Dong, N. Vasylieva, B. Barnych, Y. Cui, Z.-L. Xu, B.D. Hammock, and S.J. Gee. 2016. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Analytical and bioanalytical chemistry. 408:5985-6002. Burke, P., K. Schooler, and H.S. Wiley. 2001. Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Molecular biology of the cell. 12:1897-1910. Cao, H., F. Garcia, and M.A. McNiven. 1998. Differential distribution of dynamin isoforms in mammalian cells. Molecular biology of the cell. 9:2595-2609. Chen, P.-H., N. Bendris, Y.-J. Hsiao, C.R. Reis, M. Mettlen, H.-Y. Chen, S.-L. Yu, and S.L. Schmid. 2017. Crosstalk between CLCb/Dyn1-Mediated Adaptive Clathrin-Mediated Endocytosis and Epidermal Growth Factor Receptor Signaling Increases Metastasis. Developmental Cell. 40:278-288.e275. Chen, R., R. Manochakian, L. James, A.-G. Azzouqa, H. Shi, Y. Zhang, Y. Zhao, K. Zhou, and Y. Lou. 2020. Emerging therapeutic agents for advanced non-small cell lung cancer. Journal of Hematology & Oncology. 13:1-23. Chung, B.M., S.M. Raja, R.J. Clubb, C. Tu, M. George, V. Band, and H. Band. 2009. Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src@. BMC cell biology. 10:1-17. Cross, D.A., S.E. Ashton, S. Ghiorghiu, C. Eberlein, C.A. Nebhan, P.J. Spitzler, J.P. Orme, M.R.V. Finlay, R.A. Ward, and M.J. Mellor. 2014. AZD9291, an Irreversible EGFR TKI, Overcomes T790M-Mediated Resistance to EGFR Inhibitors in Lung CancerNovel Mutant-Selective EGFR Inhibitor Overcomes Drug Resistance. Cancer discovery. 4:1046-1061. Dawson, J.P., M.B. Berger, C.-C. Lin, J. Schlessinger, M.A. Lemmon, and K.M. Ferguson. 2005. Epidermal Growth Factor Receptor Dimerization and Activation Require Ligand-Induced Conformational Changes in the Dimer Interface. Molecular and Cellular Biology. 25:7734-7742. De Meyer, T., S. Muyldermans, and A. Depicker. 2014. Nanobody-based products as research and diagnostic tools. Trends in biotechnology. 32:263-270. Doroshow, D.B., and R.S. Herbst. 2018. Treatment of advanced non–small cell lung cancer in 2018. JAMA oncology. 4:569-570. Elia, G. 2008. Biotinylation reagents for the study of cell surface proteins. Proteomics. 8:4012-4024. Ernani, V., C.E. Steuer, and M. Jahanzeb. 2017. The end of nihilism: systemic therapy of advanced non–small cell lung cancer. Annual review of medicine. 68:153-168. Francavilla, C., M. Papetti, K.T. Rigbolt, A.-K. Pedersen, J.O. Sigurdsson, G. Cazzamali, G. Karemore, B. Blagoev, and J.V. Olsen. 2016. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nature structural & molecular biology. 23:608-618. Grandal, M.V., and I.H. Madshus. 2008. Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis. Journal of cellular and molecular medicine. 12:1527-1534. Hofman, E.G., A.N. Bader, J. Voortman, D.J. Van den Heuvel, S. Sigismund, A.J. Verkleij, H.C. Gerritsen, and P.M.v.B. en Henegouwen. 2010. Ligand-induced EGF receptor oligomerization is kinase-dependent and enhances internalization. Journal of Biological Chemistry. 285:39481-39489. Huang, Y.L. 2022. Developing Dynamin isoform-specific nanobodies as molecular tools. Khan, I., and P.S. Steeg. 2021. Endocytosis: A pivotal pathway for regulating metastasis. British Journal of Cancer. 124:66-75. Kirchhausen, T., D. Owen, and S.C. Harrison. 2014. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harbor perspectives in biology. 6:a016725. Kris, M.G., R.B. Natale, R.S. Herbst, T.J. Lynch Jr, D. Prager, C.P. Belani, J.H. Schiller, K. Kelly, H. Spiridonidis, and A. Sandler. 2003. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non–small cell lung cancer: a randomized trial. Jama. 290:2149-2158. Kwak, E.L., R. Sordella, D.W. Bell, N. Godin-Heymann, R.A. Okimoto, B.W. Brannigan, P.L. Harris, D.R. Driscoll, P. Fidias, T.J. Lynch, S.K. Rabindran, J.P. McGinnis, A. Wissner, S.V. Sharma, K.J. Isselbacher, J. Settleman, and D.A. Haber. 2005. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proceedings of the National Academy of Sciences of the United States of America. 102:7665-7670. Lakoduk, A.M., P. Roudot, M. Mettlen, H.M. Grossman, S.L. Schmid, and P.-H. Chen. 2019. Mutant p53 amplifies a dynamin-1/APPL1 endosome feedback loop that regulates recycling and migration. Journal of Cell Biology. 218:1928-1942. McMahon, C., A.S. Baier, R. Pascolutti, M. Wegrecki, S. Zheng, J.X. Ong, S.C. Erlandson, D. Hilger, S.G.F. Rasmussen, A.M. Ring, A. Manglik, and A.C. Kruse. 2018. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature Structural & Molecular Biology. 25:289-296. Mellman, I., and Y. Yarden. 2013. Endocytosis and cancer. Cold Spring Harbor perspectives in biology. 5:a016949. Meng, J. 2017. Distinct functions of dynamin isoforms in tumorigenesis and their potential as therapeutic targets in cancer. Oncotarget. 8:41701. Muyldermans, S., T. Baral, V.C. Retamozzo, P. De Baetselier, E. De Genst, J. Kinne, H. Leonhardt, S. Magez, V.K. Nguyen, and H. Revets. 2009. Camelid immunoglobulins and nanobody technology. Veterinary immunology and immunopathology. 128:178-183. Nevoltris, D., B. Lombard, E. Dupuis, G. Mathis, P. Chames, and D. Baty. 2015. Conformational nanobodies reveal tethered epidermal growth factor receptor involved in EGFR/ErbB2 predimers. ACS nano. 9:1388-1399. Peng, M., Z. Zheng, S. Chen, L. Fang, R. Feng, L. Zhang, Q. Tang, and X. Liu. 2022. Sensitization of Non-Small Cell Lung Cancer Cells to Gefitinib and Reversal of Epithelial-Mesenchymal Transition by Aloe-Emodin Via PI3K/Akt/TWIS1 Signal Blockage. Frontiers in oncology. 12:908031-908031. Pinilla-Macua, I., and A. Sorkin. 2015. Methods to study endocytic trafficking of the EGF receptor. In Methods in cell biology. Vol. 130. Elsevier. 347-367. Platta, H.W., and H. Stenmark. 2011. Endocytosis and signaling. Current opinion in cell biology. 23:393-403. Reis, C.R., P.H. Chen, S. Srinivasan, F. Aguet, M. Mettlen, and S.L. Schmid. 2015. Crosstalk between Akt/GSK 3β signaling and dynamin‐1 regulates clathrin‐mediated endocytosis. The EMBO journal. 34:2132-2146. Rosell, R., E. Carcereny, R. Gervais, A. Vergnenegre, B. Massuti, E. Felip, R. Palmero, R. Garcia-Gomez, C. Pallares, and J.M. Sanchez. 2012. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. The lancet oncology. 13:239-246. Scharping, N.E., A.V. Menk, R.S. Moreci, R.D. Whetstone, R.E. Dadey, S.C. Watkins, R.L. Ferris, and G.M. Delgoffe. 2016. The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity. 45:374-388. Schlessinger, J. 2000. Cell signaling by receptor tyrosine kinases. Cell. 103:211-225. Schmid, S.L. 2017. Reciprocal regulation of signaling and endocytosis: Implications for the evolving cancer cell. Journal of Cell Biology. 216:2623-2632. Sharma, S.V., D.W. Bell, J. Settleman, and D.A. Haber. 2007. Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer. 7:169-181. Shtiegman, K., B. Kochupurakkal, Y. Zwang, G. Pines, A. Starr, A. Vexler, A. Citri, M. Katz, S. Lavi, and Y. Ben-Basat. 2007. Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene. 26:6968-6978. Sigismund, S., V. Algisi, G. Nappo, A. Conte, R. Pascolutti, A. Cuomo, T. Bonaldi, E. Argenzio, L.G. Verhoef, and E. Maspero. 2013. Threshold‐controlled ubiquitination of the EGFR directs receptor fate. The EMBO journal. 32:2140-2157. Sigismund, S., E. Argenzio, D. Tosoni, E. Cavallaro, S. Polo, and P.P. Di Fiore. 2008. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Developmental cell. 15:209-219. Sigismund, S., T. Woelk, C. Puri, E. Maspero, C. Tacchetti, P. Transidico, P.P. Di Fiore, and S. Polo. 2005. Clathrin-independent endocytosis of ubiquitinated cargos. Proceedings of the National Academy of Sciences. 102:2760-2765. Sordella, R., D.W. Bell, D.A. Haber, and J. Settleman. 2004. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 305:1163-1167. Sun, C., W. Gao, J. Liu, H. Cheng, and J. Hao. 2020. FGL1 regulates acquired resistance to Gefitinib by inhibiting apoptosis in non-small cell lung cancer. Respiratory Research. 21. Tan, A.C. 2020. Targeting the PI3K/Akt/mTOR pathway in non‐small cell lung cancer (NSCLC). Thoracic cancer. 11:511-518. Thress, K.S., C.P. Paweletz, E. Felip, B.C. Cho, D. Stetson, B. Dougherty, Z. Lai, A. Markovets, A. Vivancos, and Y. Kuang. 2015. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M. Nature medicine. 21:560-562. Tomas, A., C.E. Futter, and E.R. Eden. 2014. EGF receptor trafficking: consequences for signaling and cancer. Trends in cell biology. 24:26-34. Wang, Y., Z. Fan, L. Shao, X. Kong, X. Hou, D. Tian, Y. Sun, Y. Xiao, and L. Yu. 2016. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. International journal of nanomedicine. 11:3287. Wang, Z. 2017. ErbB receptors and cancer. ErbB Receptor Signaling:3-35. Wee, P., and Z. Wang. 2017. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 9:52. Yang, C.-Y., J.C.-H. Yang, and P.-C. Yang. 2020. Precision management of advanced non–small cell lung cancer. Annual review of medicine. 71:117-136. Yu, H.A., M.E. Arcila, N. Rekhtman, C.S. Sima, M.F. Zakowski, W. Pao, M.G. Kris, V.A. Miller, M. Ladanyi, and G.J. Riely. 2013. Analysis of Tumor Specimens at the Time of Acquired Resistance to EGFR-TKI Therapy in 155 Patients with EGFR-Mutant Lung CancersMechanisms of Acquired Resistance to EGFR-TKI Therapy. Clinical cancer research. 19:2240-2247.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84665-
dc.description.abstract表皮生長因子受體 (EGFR) 屬於受體酪氨酸激酶 (RTK) ErbB 家族,對調節細胞功能至關重要。野生型EGFR過度表達或發生突變時,會導致細胞增加轉化能力。 在東亞地區,EGFR是非小細胞肺癌 (NSCLC) 中最常見的突變腫瘤驅動基因。酪氨酸激酶抑製劑 (TKI) (Scharping et al.) 被開發用於靶向 NSCLC 中的突變 EGFR。然而,獲得抗藥性限制了酪氨酸激酶抑製劑TKI 的療效。越來越多的研究指出,在具TKI抗藥性的細胞中,EGFR 的運輸發生了改變。癌細胞會採”適應性內吞運輸”來改變訊號傳導,以增加腫瘤癌化能力。但是,詳細的機制仍有待建立。我的研究發現具TKI抗藥性的PC9細胞中,神經元富集的同功型 Dynamin1 (Dyn1) 蛋白質的量增加,並與 EGFR 的表現增加相關,進而增加細胞遷移能力。此外,與親代 PC9 細胞相比,在具TKI抗藥性的PC9 細胞中,細胞表面的EGFR 增加,顯示 EGFR 的運輸改變。因此,我們開發了識別 EGFR 細胞外結構域的抗 EGFR 納米抗體,作為進一步研究改變的突變型 EGFR 運輸機制的新工具。總之,這項工作為理解改變的 EGFR 運輸如何加劇 TKI 抗性及影響NSCLC 細胞的遷移能力提供了新的視角。zh_TW
dc.description.abstractEpidermal growth factor receptor (EGFR) belongs to the receptor tyrosine kinases (RTKs) ErbB family and is crucial in regulating cellular functions. Overexpression of wild-type or mutations of EGFR leads to increased cell transforming abilities. EGFR is the most frequently mutant tumor-driver gene in non-small cell lung cancer (NSCLC) in East Asians. Tyrosine kinase inhibitors (TKIs) are developed to target mutant EGFRs in NSCLC. However, acquired resistance limited the TKIs efficacy. Increasing studies reveal altered trafficking of EGFRs in TKIs-resistant cells, and cancer cells adopt “adaptive endocytic trafficking” to bias signaling to augment malignancy. However, the detailed mechanisms remain to establish. This study reveals that up-regulated neuronal enriched isoform dynamin1 (Dyn1) correlates with increased EGFR to augment migration in gefitinib-resistant PC9 cells. Furthermore, increased surface EGFR is observed in gefitinib-resistant PC9 cells compared to parental PC9 cells indicating the altered trafficking of EGFR. Therefore, we develop the anti-EGFR nanobodies recognizing the EGFR extracellular domain as a new tool to study the mechanism of altered mutant-EGFR trafficking. In summary, the work provides a new perspective for understanding how altered EGFR trafficking intensifies migration in TKI-resistant NSCLC cells.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:19:40Z (GMT). No. of bitstreams: 1
U0001-1209202216285200.pdf: 3124849 bytes, checksum: 5e070d488c142ca6eca425d644f2a665 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 中文摘要 ii Abstract iii 縮寫 iv Table of contents v Chapter 1: Introduction 1 1.1 The role of EGFR in non-small cell lung cancer 1 1.2 Treatment of NSCLC harboring mutant-EGFR 2 1.3 The crosstalk between endocytosis and signaling in cancer 2 1.4 Contribution of Dyn1 in regulating trafficking of NSCLC cells 3 1.5 A new tool for monitoring mutant-EGFR trafficking 5 1.6 The purpose of this study 6 Chapter 2: Materials and Methods 7 2.1 Materials 7 2.1.1 Cell lines 7 2.1.2 Competent cells 8 2.1.3 Plasmids 8 2.1.4 Chemicals and reagents 10 2.1.5 Commercial Kits 14 2.1.6 Antibody 15 2.1.7 Enzymes 16 2.2 Methods 16 2.2.1 Cell culture 16 2.2.2 Western blotting 17 2.2.3 EGFR half-life assay 17 2.2.4 Cell viability assay 18 2.2.5 Lentivirus production 18 2.2.6 Overexpression of EGFR (Ex19Del) in PC9 cells 19 2.2.7 siRNA transfection 19 2.2.8 Wound healing assay 20 2.2.9 Expression of anti-EGFR nanobody G10 20 2.2.10 Purification of anti-EGFR nanobody G10 21 2.2.11 Flow cytometry 22 2.2.12 Establishment of EGFR ECD-Fc expressing cells 22 2.2.13 Protein expression of 6xHis tagged EGFR ECD 23 2.2.14 Preparation of EGFR ECD/magnetic beads 23 2.2.15 Nanobody screen 24 2.2.16 Yeast colony PCR 25 2.2.17 Construction of nanobody expressing plasmids 26 2.2.18 Expression of nanobody 28 Chapter 3: Results 29 3.1 Expressions of EGFR and Akt are up-regulated in gefitinib-resistant PC9 cells. 29 3.2 Degradation dynamics of EGFR are similar in PC9 and PC9/GR cells. 29 3.3 Increased surface EGFR in PC9/GR cells compared to PC9 cells. 30 3.4 Dyn1 expression is up-regulated in gefitinib-resistant PC9 cells. 32 3.5 Overexpression of mutant EGFR in PC9 cells increases Dyn1 levels. 32 3.6 Depletion of Dyn1 suppresses the migration ability of PC9/GR cells. 33 3.7 Anti-EGFR nanobody (G10) slightly increases Akt activation. 34 3.8 Expression and purification of EGFR ECD-Fc fusion protein 35 3.9 Screening of anti-EGFR ECD nanobodies 36 3.10 Characterization of the candidate anti-EGFR nanobodies 36 3.11 Construction, expression, and purification of EGFR ECD-6xHis proteins 37 3.12 Identification and characterization of EGFR-interacting Nb 12 and Nb 16 37 3.13 Purified EGFR-interacting Nb 16 does not interfere Akt activation 38 3.14 Flow cytometry assay of dose-dependent binding of Nb 16 for EGFR 39 Chapter 4: Discussion 39 Figures 43 Figure 1. Expressions of EGFR and Akt are up-regulated in gefitinib-resistant PC9 cells. 43 Figure 2. Degradation dynamics of EGFR in PC9 and PC9/GR cells are similar. 46 Figure 3. Increased surface EGFR is detected by anti-EGFR nanobody (G10) in PC9/GR cells compared to PC9 cells. 47 Figure 4. Dyn1 expression is up-regulated in gefitinib-resistant PC9 cells. 49 Figure 5. Overexpression of mutant EGFR in PC9 cells increases Dyn1 levels. 50 Figure 6. Depletion of Dyn1 suppresses the migration ability of PC9/GR cells. 54 Figure 7. Anti-EGFR nanobody (G10) slightly increases Akt activation. 55 Figure 8. Expression and purification of EGFR ECD-Fc fusion proteins. 56 Figure 9. Screening of anti-EGFR ECD-Fc nanobodies. 57 Figure 10. Characterization of the candidate anti-EGFR nanobodies. 58 Figure 11. Expression and purification of EGFR ECD-6xHis proteins. 59 Figure 12. Characterization of ani-EGFR Nbs, Nb12, and Nb16. 60 Figure 13. Purified EGFR-interacting Nb 16 does not interfere Akt activation 61 Figure 14. Flow cytometry assay of dose-dependent binding of Nb 16. 63 Supplementary Figures 64 Supplementary Figure 1. Genes expression analysis of DNM genes in tumor and normal lung tissues. 64 Supplementary Figure 2. DNM1 is predicted as a high-risk factor in NSCLC. 65 Supplementary Figure 3. Dyn1 proteins are significantly up-regulated in gefitinib-resistant HCC827 cells. 66 References 67
dc.language.isoen
dc.subjectgefitinib 抗藥性zh_TW
dc.subject表皮生長因子受體zh_TW
dc.subject第一型縊斷蛋白zh_TW
dc.subject內吞運輸zh_TW
dc.subject細胞遷移zh_TW
dc.subject奈米抗體zh_TW
dc.subject非小細胞肺癌zh_TW
dc.subjectEGFRen
dc.subjectgefitinib resistanceen
dc.subjectNSCLCen
dc.subjectnanobodyen
dc.subjectcell migrationen
dc.subjectendocytic traffickingen
dc.subjectDynamin 1en
dc.title研究縊斷蛋白(Dynamin)在有突變表皮生長因子受體的非小細胞肺癌中調節受體運輸及細胞遷移能力的作用zh_TW
dc.titleTo study the role of dynamins in regulating EGFR trafficking and migration of gefitinib-resistant NSCLC cellsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明學(Ming-Shyue Lee),余永倫(Yung-Luen Yu)
dc.subject.keyword表皮生長因子受體,第一型縊斷蛋白,內吞運輸,細胞遷移,奈米抗體,非小細胞肺癌,gefitinib 抗藥性,zh_TW
dc.subject.keywordEGFR,Dynamin 1,endocytic trafficking,cell migration,nanobody,NSCLC,gefitinib resistance,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202203309
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
dc.date.embargo-lift2024-09-12-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
U0001-1209202216285200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved