請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84655完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷(Chih-Ting Lin) | |
| dc.contributor.author | Po-Wei Tsai | en |
| dc.contributor.author | 蔡柏緯 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:19:16Z | - |
| dc.date.copyright | 2022-10-19 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2022-09-14 | |
| dc.identifier.citation | [1] J.-H. Jeon and W.-J. Cho, 'Ultrasensitive coplanar dual-gate ISFETs for point-of-care biomedical applications,' ACS omega, vol. 5, no. 22, pp. 12809-12815, 2020. [2] N.-Y. Teng, Y.-T. Wu, R.-X. Wang, and C.-T. Lin, 'Sensing characteristic enhancement of CMOS-based ISFETs with three-dimensional extended-gate architecture,' IEEE Sensors Journal, vol. 21, no. 7, pp. 8831-8838, 2021. [3] N.-Y. Teng and C.-T. Lin, 'CMOS ISFETs With 3D-Truncated Sensing Structure Resistant to Scaling Attenuation and Trapped Charge-Induced Offset,' IEEE Sensors Journal, vol. 21, no. 24, pp. 27282-27289, 2021. [4] D. M. Kim and Y.-H. Jeong, Nanowire Field Effect Transistors: Principles and Applications. Springer, 2014. [5] P. Bergveld, 'ISFET, theory and practice,' in IEEE Sensor Conference, Toronto, 2003, vol. 328. [6] P. Bergveld, 'Development of an ion-sensitive solid-state device for neurophysiological measurements,' IEEE Transactions on biomedical engineering, no. 1, pp. 70-71, 1970. [7] P. Bergveld, 'Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,' Sensors and Actuators B: Chemical, vol. 88, no. 1, pp. 1-20, 2003. [8] M. Kaisti, 'Detection principles of biological and chemical FET sensors,' Biosensors and Bioelectronics, vol. 98, pp. 437-448, 2017. [9] D. E. Yates, S. Levine, and T. W. Healy, 'Site-binding model of the electrical double layer at the oxide/water interface,' Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 70, pp. 1807-1818, 1974. [10] R. Van Hal, J. Eijkel, and P. Bergveld, 'A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters,' Sensors and Actuators B: Chemical, vol. 24, no. 1-3, pp. 201-205, 1995. [11] E. Bouty, 'H. HELMHOLTZ.—Studien über electrische Grenzschichten (Études sur les couches électriques limites); Ann. der Physik, nouvelle série, t. VII, p. 337; 1879,' J. Phys. Theor. Appl., vol. 8, no. 1, pp. 376-382, 1879. [12] N. Moser, T. S. Lande, C. Toumazou, and P. Georgiou, 'ISFETs in CMOS and emergent trends in instrumentation: A review,' IEEE Sensors Journal, vol. 16, no. 17, pp. 6496-6514, 2016. [13] L. L. Zhang and X. Zhao, 'Carbon-based materials as supercapacitor electrodes,' Chemical Society Reviews, vol. 38, no. 9, pp. 2520-2531, 2009. [14] Y. Liu, P. Georgiou, T. Prodromakis, T. G. Constandinou, and C. Toumazou, 'An extended CMOS ISFET model incorporating the physical design geometry and the effects on performance and offset variation,' IEEE Transactions on Electron Devices, vol. 58, no. 12, pp. 4414-4422, 2011. [15] M. J. Milgrew and D. R. Cumming, 'Matching the transconductance characteristics of CMOS ISFET arrays by removing trapped charge,' IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 1074-1079, 2008. [16] C. Z. Goh, P. Georgiou, T. G. Constandinou, T. Prodromakis, and C. Toumazou, 'A CMOS-based ISFET chemical imager with auto-calibration capability,' IEEE Sensors Journal, vol. 11, no. 12, pp. 3253-3260, 2011. [17] M. Sohbati and C. Toumazou, 'Dimension and shape effects on the ISFET performance,' IEEE Sensors Journal, vol. 15, no. 3, pp. 1670-1679, 2014. [18] S. Jamasb, S. Collins, and R. L. Smith, 'A physical model for drift in pH ISFETs,' Sensors and Actuators B: Chemical, vol. 49, no. 1-2, pp. 146-155, 1998. [19] S. Jamasb, S. D. Collins, and R. L. Smith, 'A physical model for threshold voltage instability in Si/sub 3/N/sub 4/-gate H/sup+/-sensitive FET's (pH ISFET's),' IEEE Transactions on Electron Devices, vol. 45, no. 6, pp. 1239-1245, 1998. [20] P. Georgiou and C. Toumazou, 'ISFET characteristics in CMOS and their application to weak inversion operation,' Sensors and Actuators B: Chemical, vol. 143, no. 1, pp. 211-217, 2009. [21] K. E. Toghill and R. G. Compton, 'Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation,' Int. J. Electrochem. Sci, vol. 5, no. 9, pp. 1246-1301, 2010. [22] N. Mano, 'Engineering glucose oxidase for bioelectrochemical applications,' Bioelectrochemistry, vol. 128, pp. 218-240, 2019. [23] D. S. Juang et al., 'Proton-ELISA: Electrochemical immunoassay on a dual-gated ISFET array,' Biosensors and Bioelectronics, vol. 117, pp. 175-182, 2018. [24] K. Koike, Y. Mori, S. Sasa, Y. Hirofuji, and M. Yano, 'Glucose sensing by an enzyme-modified ZnO-based FET,' Procedia Engineering, vol. 168, pp. 84-88, 2016. [25] C. Wang, Y. Dai, H. Gao, X. Ruan, J. Wang, and B. Sun, 'Surface properties of titanium nitride: A first-principles study,' Solid state communications, vol. 150, no. 29-30, pp. 1370-1374, 2010. [26] J. D. Weiland, D. J. Anderson, and M. S. Humayun, 'In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes,' IEEE transactions on biomedical engineering, vol. 49, no. 12, pp. 1574-1579, 2002. [27] J. R. Abbott, A. Joshi-Imre, and S. F. Cogan, 'In Vitro Electrochemical Properties of Titanium Nitride Neural Stimulating and Recording Electrodes as a Function of Film Thickness and Voltage Biasing,' in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021: IEEE, pp. 6647-6650. [28] G. Hasegawa et al., 'Impact of electrolyte on pseudocapacitance and stability of porous titanium nitride (TiN) monolithic electrode,' Journal of The Electrochemical Society, vol. 162, no. 1, p. A77, 2014. [29] A. Uranga, J. Verd, and N. Barniol, 'CMOS–MEMS resonators: From devices to applications,' Microelectronic Engineering, vol. 132, pp. 58-73, 2015. [30] C.-Y. Chen, M.-H. Li, A. A. Zope, and S.-S. Li, 'A CMOS-integrated MEMS platform for frequency stable resonators-Part I: Fabrication, implementation, and characterization,' Journal of Microelectromechanical Systems, vol. 28, no. 5, pp. 744-754, 2019. [31] K. Bhosale, C.-Y. Chen, M.-H. Li, and S.-S. Li, 'Standard CMOS integrated ultra-compact micromechanical Oscillating active pixel arrays,' in 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), 2021: IEEE, pp. 157-160. [32] J. D. Plummer, Silicon VLSI technology: fundamentals, practice and modeling. Pearson Education India, 2009. [33] S. Sinha et al., 'Design, fabrication and characterization of TiN sensing film-based ISFET pH sensor,' Materials Letters, vol. 304, p. 130556, 2021. [34] A. R. Yadav, R. Sriram, J. A. Carter, and B. L. Miller, 'Comparative study of solution–phase and vapor–phase deposition of aminosilanes on silicon dioxide surfaces,' Materials Science and Engineering: C, vol. 35, pp. 283-290, 2014. [35] M. Zhu, M. Z. Lerum, and W. Chen, 'How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica,' Langmuir, vol. 28, no. 1, pp. 416-423, 2012. [36] M. E. Marques, A. A. Mansur, and H. S. Mansur, 'Chemical functionalization of surfaces for building three-dimensional engineered biosensors,' Applied Surface Science, vol. 275, pp. 347-360, 2013. [37] N. Alfaraj, 'Reversibly Bistable Flexible Electronics,' 2015. [38] Y.-L. Chin, J.-C. Chou, Z.-C. Lei, T.-P. Sun, W.-Y. Chung, and S.-K. Hsiung, 'Titanium nitride membrane application to extended gate field effect transistor pH sensor using VLSI technology,' Japanese journal of applied physics, vol. 40, no. 11R, p. 6311, 2001. [39] K. Hu, X. Lian, S. Dai, and J. K. Rosenstein, 'Low noise CMOS isfets using in-pixel chopping,' in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2019: IEEE, pp. 1-4. [40] K. Hu, C. E. Arcadia, and J. K. Rosenstein, 'A large-scale multimodal CMOS biosensor array with 131,072 pixels and code-division multiplexed readout,' IEEE Solid-State Circuits Letters, vol. 4, pp. 48-51, 2021. [41] D. Bruen, C. Delaney, L. Florea, and D. Diamond, 'Glucose sensing for diabetes monitoring: recent developments,' Sensors, vol. 17, no. 8, p. 1866, 2017. [42] K. Koike, T. Sasaki, K. Hiraki, K. Ike, Y. Hirofuji, and M. Yano, 'Characteristics of an extended gate field-effect transistor for glucose sensing using an enzyme-containing silk fibroin membrane as the bio-chemical component,' Biosensors, vol. 10, no. 6, p. 57, 2020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84655 | - |
| dc.description.abstract | 離子感測場效電晶體(ISFET)在化學以及生醫感測上扮演了重要的角色,尤其是CMOS製程技術的微縮與進步,使ISFET在兼容於CMOS製程能夠大量生產製造並且與邏輯電路整合成能發展為晶片實驗室(Lab-on-a-chip, LoC)上獲得巨大的關注。然而感測器的微縮將造成ISFET感測等效電容的縮小,使訊號衰減,以及CMOS製程中隨機引入的電荷造成臨界電壓的不匹配,成為CMOS ISFET的非理想效應。 本研究參考Teng等人之設計,將具有氮化鈦感測層的ISFET以新的設計與蝕刻後製程的方式取得,並探討其感測佔地面積大小對靈敏度以及非理想效應之影響情況,結果顯示利用蝕刻方式取得之TiN-ISFET具有約55.28 mV/pH之靈敏度,並改善CMOS ISFET的非理想效應,以氮化鈦的化學穩定與導電的特性,減少因為感測電容所造成的電訊號分壓,減少了訊號衰減,也因為沒有二氧化矽感測層,減少因介電層於製程中隨機引入的電荷造成臨界電壓隨機分布的影響。本研究也利用表面改質方式將葡萄糖氧化酶固定於晶片表面,結合TiN-ISFET之優點,透過不同濃度的葡萄糖溶液,在晶片上感測葡萄糖溶液之可量測範圍。 | zh_TW |
| dc.description.abstract | Ion sensing field-effect transistors (ISFETs) play an important role in chemistry and biomedical sensing, especially in the miniaturization and advancement of CMOS process technology, which enables ISFETs to be mass-produced and manufactured compatible with CMOS processes and integrated with logic circuits to develop into the sensor of Lab-on-a-chip. However, the miniaturization of the sensor will cause the ISFET to decrease the equivalent sensing capacitance and attenuate the signal. The randomly trapped charge in the CMOS process also causes the mismatch of the threshold voltage, which becomes the non-ideal effect of CMOS ISFET. Referring to the design of Teng et al., this study obtained the ISFET with a titanium nitride sensing layer through a new design and etching process. We not only explored the influence of the sensitivity with different sensing footprint areas but also the non-ideal effect of the CMOS ISFET. The results showed that the TiN-ISFETs had high sensitivity and improved the non-ideal effect of CMOS ISFET through the chemical stability and conductivity of titanium nitride. This study also functionalized the surface of the chip through the surface modification process and measured the linear range of glucose detection with different concentrations of glucose. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:19:16Z (GMT). No. of bitstreams: 1 U0001-0909202201363100.pdf: 4463351 bytes, checksum: 020abed0ec3126e2e624dc2bd4cb1a29 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 緒論 1 1.1 緒言 1 1.2 動機 1 1.3 論文架構 2 Chapter 2 文獻回顧與原理 4 2.1 金氧半場效電晶體 4 2.2 離子感測場效電晶體 6 2.2.1 離子感測場效電晶體的運作機制 6 2.2.2 吸附鍵結模型(Site Binding Model) [5] 8 2.2.3 離子感測場效電晶體的等效電路 11 2.3 離子感測場效電晶體之非理想效應 13 2.3.1 受困電荷(Trapped Charge) 13 2.3.2 飄移效應(Drift Effect) 15 2.3.3 電容式衰減(Capacitive Attenuation) 17 2.4 3D-T-ISFET 19 2.5 葡萄糖感測機制 22 Chapter 3 元件設計與實現 24 3.1 晶片設計 24 3.1.1 介紹 24 3.1.2 2D-ISFET 25 3.1.3 TiN-ISFET 25 3.2 後製程 29 3.2.1 2D-ISFET 30 3.2.2 TiN-ISFET 33 3.3 晶片打線與封裝 37 3.4 表面改質 39 3.4.1 生物分子材料 39 3.4.2 表面改質步驟 41 3.5 量測步驟與流程 42 3.5.1 量測機台與環境 42 3.5.2 pH量測 43 3.5.3 葡萄糖感測 43 Chapter 4 結果與討論 46 4.1 pH量測 46 4.1.1 pH靈敏度 46 4.1.2 感測面積對ISFET訊號衰減之影響 48 4.1.3 受困電荷之改善 52 4.1.4 小結 53 4.2 葡萄糖檢測 55 4.2.1 表面改質之驗證 55 4.2.2 葡萄糖感測分析 56 4.2.3 小結 62 Chapter 5 結論與未來展望 64 REFERENCE 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 葡萄糖感測 | zh_TW |
| dc.subject | 離子感測場效電晶體 | zh_TW |
| dc.subject | 氮化鈦 | zh_TW |
| dc.subject | pH值感測 | zh_TW |
| dc.subject | ISFET | en |
| dc.subject | Titanium nitride | en |
| dc.subject | pH sensing | en |
| dc.subject | Glucose sensing | en |
| dc.title | 基於氮化鈦離子感測場效電晶體進行葡萄糖檢測之研究 | zh_TW |
| dc.title | The Research of Glucose Detection based on Titanium nitride Ion-Sensitive Field-Effect Transistor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林啟萬(Chii-Wann Lin),黃念祖(Nien-Tsu Huang) | |
| dc.subject.keyword | 離子感測場效電晶體,氮化鈦,pH值感測,葡萄糖感測, | zh_TW |
| dc.subject.keyword | ISFET,Titanium nitride,pH sensing,Glucose sensing, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU202203258 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-30 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0909202201363100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
