請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84635完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳宏(Ping-Hung Chen) | |
| dc.contributor.author | Yun-Yi Lee | en |
| dc.contributor.author | 李昀怡 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:18:28Z | - |
| dc.date.copyright | 2022-10-07 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-16 | |
| dc.identifier.citation | Balar, A.V., D.E. Castellano, P.H. O'Donnell, P. Grivas, J. Vuky, T. Powles, E.R. Plimack, N.M. Hahn, R. De Wit, and L. Pang. 2017. Pembrolizumab as first-line therapy in cisplatin-ineligible advanced urothelial cancer: Results from the total KEYNOTE-052 study population. American Society of Clinical Oncology. Bannas, P., J. Hambach, and F. Koch-Nolte. 2017. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Frontiers in immunology. 8:1603. Brekke, O.H., and I. Sandlie. 2003. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nature reviews Drug discovery. 2:52-62. Brunet, J.-F., F. Denizot, and P. Golstein. 1988. A differential molecular biology search for genes preferentially expressed in functional T lymphocytes: the CTLA genes. Immunological reviews. 103:21-36. Buchbinder, E.I., and A. Desai. 2016. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol. 39:98-106. Chen, G., A.C. Huang, W. Zhang, G. Zhang, M. Wu, W. Xu, Z. Yu, J. Yang, B. Wang, and H. Sun. 2018. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382-386. Chen, L., and D.B. Flies. 2013. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature reviews immunology. 13:227-242. Chen, N., W. Fang, J. Zhan, S. Hong, Y. Tang, S. Kang, Y. Zhang, X. He, T. Zhou, and T. Qin. 2015. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. Journal of Thoracic Oncology. 10:910-923. Cyprian, F.S., S. Akhtar, Z. Gatalica, and S. Vranic. 2019. Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: a new clinical paradigm in the treatment of triple-negative breast cancer. Bosnian Journal of Basic Medical Sciences. 19:227. Diggs, L.P., and E.C. Hsueh. 2017. Utility of PD-L1 immunohistochemistry assays for predicting PD-1/PD-L1 inhibitor response. Biomarker research. 5:1-6. Dine, J., R. Gordon, Y. Shames, M.K. Kasler, and M. Barton-Burke. 2017. Immune checkpoint inhibitors: an innovation in immunotherapy for the treatment and management of patients with cancer. Asia-Pacific journal of oncology nursing. 4:127-135. Dong, H., G. Zhu, K. Tamada, and L. Chen. 1999. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature medicine. 5:1365-1369. Freeman, G.J., A.J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L.J. Fitz, N. Malenkovich, T. Okazaki, and M.C. Byrne. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. The Journal of experimental medicine. 192:1027-1034. Furukawa, F. 2018. The Nobel Prize in Physiology or Medicine 2018 was awarded to cancer therapy by inhibition of negative immune regulation. Trends in Immunotherapy. 2. Galea-Lauri, J., D. Darling, G. Mufti, P. Harrison, and F. Farzaneh. 2002. Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell–leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination. Cancer Immunology, Immunotherapy. 51:299-310. Gandhi, L., D. Rodríguez-Abreu, S. Gadgeel, E. Esteban, E. Felip, F. De Angelis, M. Domine, P. Clingan, M.J. Hochmair, and S.F. Powell. 2018. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. New England journal of medicine. 378:2078-2092. Hoos, A. 2016. Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nature reviews Drug discovery. 15:235-247. Hudson, K., N. Cross, N. Jordan-Mahy, and R. Leyland. 2020. The extrinsic and intrinsic roles of PD-L1 and its receptor PD-1: implications for immunotherapy treatment. Frontiers in immunology:2362. Ishida, Y., Y. Agata, K. Shibahara, and T. Honjo. 1992. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO journal. 11:3887-3895. Iwai, Y., J. Hamanishi, K. Chamoto, and T. Honjo. 2017. Cancer immunotherapies targeting the PD-1 signaling pathway. Journal of biomedical science. 24:1-11. Keir, M.E., M.J. Butte, G.J. Freeman, and A.H. Sharpe. 2008. PD-1 and its ligands in tolerance and immunity. Annual review of immunology. 26:677-704. Krummel, M.F., and J.P. Allison. 1995. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. The Journal of experimental medicine. 182:459-465. Larkin, J., V. Chiarion-Sileni, R. Gonzalez, J.J. Grob, C.L. Cowey, C.D. Lao, D. Schadendorf, R. Dummer, M. Smylie, and P. Rutkowski. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England journal of medicine. 373:23-34. Lee, H.-H., Y.-N. Wang, W. Xia, C.-H. Chen, K.-M. Rau, L. Ye, Y. Wei, C.-K. Chou, S.-C. Wang, and M. Yan. 2019. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer cell. 36:168-178. e164. Leemans, C.R., P.J. Snijders, and R.H. Brakenhoff. 2018. The molecular landscape of head and neck cancer. Nature Reviews Cancer. 18:269-282. Li, C.-W., S.-O. Lim, W. Xia, H.-H. Lee, L.-C. Chan, C.-W. Kuo, K.-H. Khoo, S.-S. Chang, J.-H. Cha, and T. Kim. 2016. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature communications. 7:1-11. Li, S., K. Jiang, T. Wang, W. Zhang, M. Shi, B. Chen, and Z. Hua. 2020. Nanobody against PDL1. Biotechnology Letters. 42:727-736. Marin-Acevedo, J.A., B. Dholaria, A.E. Soyano, K.L. Knutson, S. Chumsri, and Y. Lou. 2018. Next generation of immune checkpoint therapy in cancer: new developments and challenges. Journal of hematology & oncology. 11:1-20. McMahon, C., A.S. Baier, R. Pascolutti, M. Wegrecki, S. Zheng, J.X. Ong, S.C. Erlandson, D. Hilger, S.G. Rasmussen, and A.M. Ring. 2018. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature structural & molecular biology. 25:289-296. Menzel, S., N. Schwarz, F. Haag, and F. Koch-Nolte. 2018. Nanobody-based biologics for modulating purinergic signaling in inflammation and immunity. Frontiers in Pharmacology. 9:266. Mishra, A.K., and R.A. Mariuzza. 2018. Insights into the structural basis of antibody affinity maturation from next-generation sequencing. Frontiers in immunology. 9:117. Morad, G., B.A. Helmink, P. Sharma, and J.A. Wargo. 2021. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 184:5309-5337. Moutel, S., A. El Marjou, O. Vielemeyer, C. Nizak, P. Benaroch, S. Dübel, and F. Perez. 2009. A multi-Fc-species system for recombinant antibody production. BMC biotechnology. 9:1-9. Muyldermans, S. 2013. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 82:775-797. Oliveira, S., R. Heukers, J. Sornkom, R.J. Kok, and P.M.v.B. en Henegouwen. 2013. Targeting tumors with nanobodies for cancer imaging and therapy. Journal of Controlled Release. 172:607-617. Ou-Yang, F., C.-L. Li, C.-C. Chen, Y.-C. Shen, S.-H. Moi, C.-W. Luo, W.-Y. Xia, Y.-N. Wang, H.-H. Lee, and L.-H. Wang. 2022. De-glycosylated membrane PD-L1 in tumor tissues as a biomarker for responsiveness to atezolizumab (Tecentriq) in advanced breast cancer patients. American Journal of Cancer Research. 12:123. Plimack, E.R., J. Bellmunt, S. Gupta, R. Berger, L.Q. Chow, J. Juco, J. Lunceford, S. Saraf, R.F. Perini, and P.H. O'Donnell. 2017. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. The Lancet Oncology. 18:212-220. Poggio, M., T. Hu, C.-C. Pai, B. Chu, C.D. Belair, A. Chang, E. Montabana, U.E. Lang, Q. Fu, and L. Fong. 2019. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 177:414-427. e413. Robbins, P.D., and A.E. Morelli. 2014. Regulation of immune responses by extracellular vesicles. Nature Reviews Immunology. 14:195-208. Salas, J., T. Liu, Q. Lu, J.D. Kulman, T. Ashworth, E. Kistanova, N. Moore, G.F. Pierce, H. Jiang, and R. Peters. 2015. Enhanced pharmacokinetics of factor VIIa as a monomeric Fc fusion. Thrombosis research. 135:970-976. Sharma, P., S. Hu-Lieskovan, J.A. Wargo, and A. Ribas. 2017. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707-723. Steeland, S., R.E. Vandenbroucke, and C. Libert. 2016. Nanobodies as therapeutics: big opportunities for small antibodies. Drug discovery today. 21:1076-1113. Strohl, W.R. 2018. Current progress in innovative engineered antibodies. Protein & cell. 9:86-120. Sunshine, J., and J.M. Taube. 2015. Pd-1/pd-l1 inhibitors. Current opinion in pharmacology. 23:32-38. Taube, J.M., A. Klein, J.R. Brahmer, H. Xu, X. Pan, J.H. Kim, L. Chen, D.M. Pardoll, S.L. Topalian, and R.A. Anders. 2014. Association of PD-1, PD-1 Ligands, and Other Features of the Tumor Immune Microenvironment with Response to Anti–PD-1 TherapyAssociation of PD-1 and Ligands with Response to Anti–PD-1. Clinical cancer research. 20:5064-5074. Théry, C. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30:255-289. Topalian, S.L., F.S. Hodi, J.R. Brahmer, S.N. Gettinger, D.C. Smith, D.F. McDermott, J.D. Powderly, R.D. Carvajal, J.A. Sosman, and M.B. Atkins. 2012. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. New England Journal of Medicine. 366:2443-2454. Twomey, J.D., and B. Zhang. 2021. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. The AAPS Journal. 23:1-11. Valdés-Tresanco, M.S., A. Molina-Zapata, A.G. Pose, and E. Moreno. 2022. Structural insights into the design of synthetic nanobody libraries. Molecules. 27:2198. Wang, S., K. Xie, and T. Liu. 2021. Cancer immunotherapies: from efficacy to resistance mechanisms–not only checkpoint matters. Frontiers in immunology:2904. Wang, Y.-N., H.-H. Lee, J.L. Hsu, D. Yu, and M.-C. Hung. 2020. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. Journal of biomedical science. 27:1-11. Yu, S., G. Xiong, S. Zhao, Y. Tang, H. Tang, K. Wang, H. Liu, K. Lan, X. Bi, and S. Duan. 2021. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging. International Journal of Molecular Medicine. 47:444-454. Zhu, L., Y. Xu, X. Wei, H. Lin, M. Huang, B. Lin, Y. Song, and C. Yang. 2021. Coupling Aptamer‐based Protein Tagging with Metabolic Glycan Labeling for In Situ Visualization and Biological Function Study of Exosomal Protein‐Specific Glycosylation. Angewandte Chemie. 133:18259-18263. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84635 | - |
| dc.description.abstract | 目前對於獲得抗藥性帶有突變表皮生長因子受體非小細胞肺癌,酪氨酸激酶抑製劑治療的療效不彰。因此,在臨床上迫切需要開發新的癌症治療方法。程序性死亡蛋白-1 (programmed death protein 1, PD-1)/程序性死亡配體-1 (programmed death-ligand 1, PD-L1) 靶向免疫檢查點抑制劑為癌症治療提供了新希望。PD-L1是一種在癌細胞表面表達的膜結合配體。PD-L1與其受體PD-1結合,在T細胞上表達訊息,進而抑制 T 細胞活性。腫瘤細胞會透過PD-L1/PD-1抑制T細胞,干擾抗癌免疫來進行免疫逃避。 PD-L1在臨床上可作為一種生物標誌物,預測多種腫瘤類型中病患對 PD-1/PD-L1 阻斷治療的反應。然而,PD-L1 胞外結構域的重度醣基化影響了 FDA 批准的 PD-L1 抗體在免疫組織化學檢測的準確性。對 PD-L1表現量的錯誤評估,導致對 PD-1/PD-L1 阻斷治療的治療反應的預測不佳。此外,PD-L1 也存在於細胞外囊泡表面,稱為外泌體 PD-L1 (exosomal PD-L1)。越來越多的證據發現外泌體 PD-L1 會影響全身 T 細胞所參與的免疫反應,促進腫瘤發展。然而,外泌體 PD-L1 的調控機制尚不完全清楚,追蹤PD-L1運輸的工具也尚待發展建立。因此,我們計劃開發對針對醣基化人類PD-L1的奈米抗體,使臨床樣本的檢測能更精準,並且應用於研究PD-L1。與傳統的IgG單株抗體相比,奈米抗體是一種小型的單變異區抗體。除了體積小外,奈米抗體具有更好的水溶性,在極端環境中也相對穩定以及對蛋白酶具有較好的抵抗性等優點。在這項研究中,我們從奈米抗體的合成庫中篩選出了辨認PD-L1的奈米抗體,並獲得了兩株奈米抗體 (Nb 4-9 和 Nb 15H)。另外,我們製造了重組PD-L1 Nb 4-9-Fc融合蛋白 (Nb 4-9-Fc),在未來將測試其應用於免疫組織化學染色測定法 (IHC) 的可能性。我們將進一步測試開發的PD-L1奈米抗體是否可作為改善PD-L1檢測和探討癌細胞中PD-L1運輸機制的工具。 | zh_TW |
| dc.description.abstract | The acquired resistance of non-small cell lung cancer (NSCLC) harboring mutant epidermal growth factor receptor (EGFR) limits the treatment efficacy of tyrosine kinase inhibitors (TKIs). Therefore, it is urgent to develop new therapies for NSCLC. Programmed death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1)-targeted immune checkpoint inhibitors provide new hope for cancer treatment. PD-L1 is a membrane-bound ligand expressed on the surface of cancer cells. PD-L1 is associated with PD-1 expressed on T cells to suppress T cell activity. Tumor cells adapt the PD-1/PD-L1 pathway to evade the immune system by inhibiting T cell-mediated anti-cancer immunity. Therefore, PD-L1 can be used as a biomarker to predict the patient response to PD-1/PD-L1 blockade treatment in multiple tumor types. However, the heavy glycosylation of the PD-L1 extracellular domain hinders immunohistochemistry detection using FDA-approved PD-L1 antibodies. Inaccurate assessment of PD-L1 levels in clinical biopsies leads to the poor prediction of therapeutic response of PD-1/PD-L1 blockade treatment. In addition, PD-L1 also exists on the surface of extracellular vesicles (EVs), known as exosomal PD-L1. Growing evidence showed that exosomal PD-L1 influences systemic T cell-mediated immunity to promote tumor progression. However, the regulatory mechanisms of exosomal PD-L1 are not fully understood, and the PD-L1 tracking tool is unavailable. Therefore, we plan to develop anti-glycosylated human PD-L1 nanobodies for better detecting abilities in clinical diagnosis and research application. Nanobody is a small-size single variable domain antibody compared to conventional monoclonal IgG antibodies. In addition to the small size, nanobodies have better solubility and stability in extreme environments and resistance to proteases. In this study, we screened PD-L1 nanobodies from the synthetic nanobody library and got two candidates (Nb 4-9 and Nb 15H). We further fused PD-L1 Nb 4-9 with a fragment crystallizable (Fc) region for immunohistochemical (IHC) assay purposes. We will test whether the anti-human PD-L1 Nb 4-9 and 15H can be used to improve the detection of PD-L1 in clinical samples and study the PD-L1 trafficking in cancer cells. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:18:28Z (GMT). No. of bitstreams: 1 U0001-1308202220511300.pdf: 12747945 bytes, checksum: 9754f014466636941311787719667a5a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgment i 中文摘要 ii Abstract iv Table of contents vi Table of figures ix Table of appendix x Chapter 1. Introduction 1 1.1 Breakthrough of cancer therapy: immune checkpoint blockade 1 1.2 PD-l/PD-L1 targeting treatment for cancer 2 1.3 Primary and secondary against anti-PD-1/PD-L1 targeted immunotherapy 3 1.4 PD-L1 as a biomarker for clinical diagnosis and the limitation 4 1.5 Soluble form of PD-L1- exosomal PD-L1 5 1.6 Nanobody- a new tool for cancer therapeutics 6 1.7 Specific aim of this study 8 Chapter 2. Materials and Methods 9 2.1 Materials 9 2.1.1 Cell lines 9 2.1.2 Competent cells 9 2.1.3 Plasmids 10 2.1.4 Chemicals and Reagents 11 2.1.5 Commercial Kits 16 2.1.6 Antibody 16 2.1.7 Enzymes 17 2.1.8 Primers 18 2.2 Methods 19 2.2.1 Cell culture 19 2.2.2 DNA transfection 19 2.2.3 Expression and purification of recombinant protein 20 2.2.4 Lentivirus production and transduction 21 2.2.5 De-glycosylation of PD-L1 ECD recombinant proteins 22 2.2.6 Nanobody library recovery and expansion 22 2.2.7 Nanobody screening 23 2.2.8 Cloning of nanobodies to bacterial expression plasmids 24 2.2.9 Expression of nanobodies 24 2.2.10 Binding analysis of PD-L1 nanobody by In vitro pull-down assay 25 2.2.11 Binding analysis of PD-L1 nanobody by 293T cells ectopic expressing PD-L1 26 2.2.12 Non-reducing SDS-PAGE and western blot analysis 27 2.2.13 Cell viability assay 28 2.2.14 Western blotting 28 Chapter 3. Results 30 3.1 Screening anti-PD-L1 nanobodies by Fc-tagged PD-L1 extracellular domain proteins. 30 3.2 Identification of anti-PD-L1 Nbs from a synthetic nanobody library. 31 3.3 Validation and characterization of PD-L1 Nb 4-9. 31 3.4 Generation of Fc-fused PD-L1 Nb 4-9 proteins. 33 3.5 Screening anti-PD-L1 nanobody by PD-L1 extracellular domain proteins with 6xHis-tag. 34 3.6 One new PD-L1 nanobody (Nb 15H) from three-round His-tagged PD-L1 screening. 35 3.7 Nb15H has a better binding affinity. 36 3.8 Generation of published PD-L1 nanobodies 1, 2, and 3 and all of them suppress the intrinsic function of PD-L1. 37 Chapter 4. Discussion 39 Chapter 5. References 43 Chapter 6. Figures 52 Figure 1. Expression of PD-L1 extracellular domain proteins in HEK293T cells. 52 Figure 2. PD-L1 extracellular domain is highly glycosylated. 53 Figure 3. Schematic of PD-L1 nanobody screen and amino acid sequences of candidate PD-L1 nanobodies. 54 Figure 4. Characterization of candidate anti-PD-L1 ECD nanobody clones. 56 Figure 5. Purification and characterization of anti-PD-L1 Nb 4-9. 57 Figure 6. Construction and expression of Fc-fused PD-L1 Nb 4-9. 59 Figure 7. Expression of His-tagged PD-L1 extracellular domain proteins in HEK293T cells. 60 Figure 8. Screening of PD-L1 nanobodies by His-tagged PD-L1 extracellular domain proteins. 61 Figure 9. Anti-PD-L1 candidate nanobodies after screening by His-tagged PD-L1 extracellular domain proteins. 62 Figure 10. Purification and characterization of anti-PD-L1 Nb 15H. 63 Figure 11. Nb 15H binding affinity is better than Nb 4-9. 65 Figure 12. Expression and purification of inhibitory PD-L1 nanobodies 1, 2, and 3 in HEK293T cells. 67 Chapter 7. Appendix 69 Appendix 1. Predicted protease cleavage sites of Fc-fused PD-L1 Nb 4-9. 69 | |
| dc.language.iso | en | |
| dc.subject | 細胞程式死亡配體-1診斷 | zh_TW |
| dc.subject | 免疫療法 | zh_TW |
| dc.subject | 細胞程式死亡配體-1 | zh_TW |
| dc.subject | 奈米抗體 | zh_TW |
| dc.subject | Fc融合蛋白 | zh_TW |
| dc.subject | nanobody | en |
| dc.subject | PD-L1 diagnosis | en |
| dc.subject | Fc-fusion protein | en |
| dc.subject | programmed death-ligand-1 | en |
| dc.subject | immunotherapy | en |
| dc.title | 發展針對人類程序性死亡配體-1的奈米抗體 | zh_TW |
| dc.title | Development of anti-human PD-L1 nanobody | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明學(Ming-Shyue Lee),劉旻禕(Min-Yi Liu) | |
| dc.subject.keyword | 免疫療法,細胞程式死亡配體-1,奈米抗體,Fc融合蛋白,細胞程式死亡配體-1診斷, | zh_TW |
| dc.subject.keyword | immunotherapy,programmed death-ligand-1,nanobody,Fc-fusion protein,PD-L1 diagnosis, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202202369 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-16 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202220511300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
