請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84626完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許少瑜(Shao-Yiu Hsu) | |
| dc.contributor.author | Shang-En Tang | en |
| dc.contributor.author | 唐上恩 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:18:08Z | - |
| dc.date.copyright | 2022-09-23 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-16 | |
| dc.identifier.citation | 行政院農業委員會(2009)。土壤管理。2022年2月3日。取自:https://kmweb.coa.gov.tw/subject/subject.php?id=6723 李榮棟(2021)。利用大型入滲儀觀測動態土壤水力特性:動態毛細壓力、流速與舊水響應波速(碩士論文)。國立臺灣大學,台北市。 林明義(2000)。九份二山崩塌地土壤水份特性之研究(碩士論文)。國立中興大學,台中市。 林俐玲、蘇煒哲、蔡義誌(2008)。不同土地利用下土壤飽和水力傳導度與粗孔隙之探討。水土保持學報40 (2):195 - 204 (2008)。 美瑞農業技術(2016)。土壤對柑橘生長的影響。2022年2月28日。取自:https://kknews.cc/zh-tw/agriculture/ygamxn.html 張文亮(1996)。淺層地下水毛管上升對於大豆灌溉補助水量之分析。農業工程學報第42卷第3期。 眾植農業技術(2017)。柑橘園六種灌溉方法。2022年2月3日。取自:https://kknews.cc/zh-tw/agriculture/ezjngrz.html 陳榮民(1985)。不同灌溉頻度下蔗田土壤水分收支與養分利用(碩士論文)。國立中興大學,台中市。 雲南優科綠都農業研究院(2018)。柑橘根系生長特性與科學施肥。2022年2月3日。取自:http://ynykld.com/view/cnIndex/3/106/view/120.html 葉信富、李振誥、陳忠偉、張格綸(2008)。評估蒸發皿係數以推估台灣南部地區蒸發散量之研究。農業工程學報,54(3),27-35。 經濟部水利署(2022)。109年水資源供需統計表。2022年7月16日。取自: https://www.wra.gov.tw/News_Content.aspx?n=2945&s=7394 劉滄棽、彭宗仁、范家華、郭鴻裕(2007)。應用土壤轉換方程式(PTF)評估台灣平地土壤之飽和水力傳導度。西太平洋地質科學,7,61-76。 Abdelbaki, A. M., Youssef, M. A., Naguib, E. M., Kiwan, M. E., & El-giddawy, E. I. (2009). Evaluation of pedotransfer functions for predicting saturated hydraulic conductivity for US soils. Paper presented at the 2009 Reno, Nevada, June 21-June 24, 2009. Akan, O. A. (1993). Urban stormwater hydrology: a guide to engineering calculations: Crc Press. Assouline, S., & Or, D. (2014). The concept of field capacity revisited: Defining intrinsic static and dynamic criteria for soil internal drainage dynamics. Water resources research, 50(6), 4787-4802. Bear, J. (1972). Dynamics of fluids in porous media,' Dover Publications, 764p. Brito, A. d. S., Libardi, P. L., Mota, J. C. A., & Moraes, S. O. (2011). Field capacity estimation based on retention curve and soil water flux density. Revista Brasileira de Ciência do Solo, 35(6), 1939-1948. Cavazza, L., Patruno, A., & Cirillo, E. (2007). Field capacity in soils with a yearly oscillating water table. Biosystems Engineering, 98(3), 364-370. Cosby, B., Hornberger, G., Clapp, R., & Ginn, T. (1984). A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water resources research, 20(6), 682-690. Cronshey, R. (1986). Urban hydrology for small watersheds. Retrieved from Dane, J., & Puckett, W. (1994). Field soil hydraulic properties based on physical and mineralogical information. Paper presented at the Proceedings of the International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. Eds MTh van Genuchten et al. de Oliveira, R. A., Ramos, M. M., & de Aquino, L. A. (2015). Irrigation management. In Sugarcane (pp. 161-183): Elsevier. Dingman, S. L. (2015). Physical hydrology: Waveland press. Drost, D., Black, B., & Stock, M. (2021). Irrigation Management in High Tunnels. Feddes, R., Kowalik, P., & Zaradny, H. (1978). Simulation of field water use and crop yield. Simulation monographs. Pudoc, Wageningen, 9-30. Hoogland, F., Lehmann, P., Mokso, R., & Or, D. (2016). Drainage mechanisms in porous media: From piston‐like invasion to formation of corner flow networks. Water resources research, 52(11), 8413-8436. Horton, R. E. (1939). Analysis of runoff‐plat experiments with varying infiltration‐capacity. Eos, Transactions American Geophysical Union, 20(4), 693-711. Jabro, J., Evans, R., Kim, Y., & Iversen, W. (2009). Estimating in situ soil–water retention and field water capacity in two contrasting soil textures. Irrigation Science, 27(3), 223-229. Julià, M. F., Monreal, T. E., del Corral Jiménez, A. S., & Meléndez, E. G. a. (2004). Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma, 123(3-4), 257-277. Lena, B. P., Bondesan, L., Pinheiro, E. A. R., Ortiz, B. V., Morata, G. T., & Kumar, H. (2022). Determination of irrigation scheduling thresholds based on HYDRUS-1D simulations of field capacity for multilayered agronomic soils in Alabama, USA. Agricultural Water Management, 259, 107234. Liang, X., Liakos, V., Wendroth, O., & Vellidis, G. (2016). Scheduling irrigation using an approach based on the van Genuchten model. Agricultural Water Management, 176, 170-179. Malan, C., et al. (2020). Irrigation of citrus trees – A Practical Approach. Retrieved June 11, 2022, from https://www.safj.co.za/irrigation-of-citrus-trees-a-practical-approach/ Mallants, D., Phogat, V., Oliver, D., Ouzman, J., Beiraghdar, Y., & Cox, J. (2019). Sustainable expansion of irrigated agriculture and horticulture in Northern Adelaide Corridor: Task 2-Modelling nutrient and chemical fate to support the long-term sustainability of the use of recycled water. Goyder Institute for Water Research Technical Report Series(19/15). Marshall, T. J., Holmes, J. W., & Rose, C. W. (1996). Soil physics: Cambridge university press. Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522. doi:10.1029/WR012i003p00513 Puckett, W., Dane, J., & Hajek, B. (1985). Physical and mineralogical data to determine soil hydraulic properties. Soil science society of America journal, 49(4), 831-836. Raes, D. (2016). Introducing AquaCrop. Retrieved July 15, 2022 from https://www.fao.org/documents/card/en/c/ba35b63c-596a-467d-95fe-dfcfca6da2a9/ Raj, R., Suradhaniwar, S., Nandan, R., Jagarlapudi, A., & Walker, J. (2019). Drone-based sensing for leaf area index estimation of citrus canopy. Paper presented at the International Conference on Unmanned Aerial System in Geomatics. Richards, L. (1931). Soil-water conduction of liquids in porous mediums. Physics, 1, 318-333. Richards, L., & Wadleigh, C. (1952). Soil water and plant growth. Soil physical conditions and plant growth, 2, 74-253. Richards, L., & Weaver, L. (1944). Moisture retention by some irrigated soils as related to soil moisture tension. J. agric. Res, 69(6), 215-235. Rivers, E., & Shipp, R. (1972). Available water capacity of sandy and gravelly North Dakota soils. Soil Science, 113(2), 74-80. Romano, N., Santini, A., Dane, J., & Topp, G. (2002). Water retention and storage: Field. Methods of soil analysis, Part, 4, 721-738. Saxton, K., Rawls, W. J., Romberger, J. S., & Papendick, R. (1986). Estimating generalized soil-water characteristics from texture. Schaap, M. G., Leij, F. J., & Van Genuchten, M. T. (2001). Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of hydrology, 251(3-4), 163-176. Seki, K. (2007). SWRC fit–a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrology and Earth System Sciences Discussions, 4(1), 407-437. Simunek, J., van Genuchten, M. T., & Sejna, M. (2008). Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal, 7(2), 587-600. Surendar, K. K., Devi, D. D., Ravi, I., Jeyakumar, P., & Velayudham, K. (2013). Effect of water stress on leaf temperature, transpiration rate, stomatal diffusive resistance and yield of banana. Plant Gene and Trait, 4(1). Twarakavi, N. K., Sakai, M., & Šimůnek, J. (2009). An objective analysis of the dynamic nature of field capacity. Water resources research, 45(10). USDA. (1987). Soil Mechanics Level I. Module 3–USDA Textural Soil Classification. Study Guide. In: National Employee Development Staff, Soil Conservation Service, United …. Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898. Veihmeyer, F., & Hendrickson, A. (1927). The relation of soil moisture to cultivation and plant growth. Proc. 1st Intern. Congr. Soil Sci, 3, 498-513. Zheng, C., Lu, Y., Guo, X., Li, H., Sai, J., & Liu, X. (2017). Application of HYDRUS-1D model for research on irrigation infiltration characteristics in arid oasis of northwest China. Environmental Earth Sciences, 76(23), 1-10. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84626 | - |
| dc.description.abstract | 高精準灌溉策略能同時確保糧食安全及永續管理農業水資源。灌溉強度及時間會顯著影響灌溉效率與作物生長。然而,過去研究鮮少針對灌溉強度、時間及期距並搭配土壤質地做系統性的探討。此外,決定灌溉策略的關鍵參數「田間含水量」的定量方法,也尚未有統一定論。因此本研究目的為探討不同土壤質地適合的灌溉強度與對應策略,並重新檢視田間含水量的量化方式,其研究結果將有助於訂定高精準灌溉策略。本研究首先彙整臺灣土壤資料,分析土壤水力特性並比較不同的田間含水量量化方式。進一步利用Hydrus-1D模式推估田間含水量與有效水分含量,搭配土壤與作物(柑橘類果樹)等參數進行灌溉及排水模擬。透過分析得出不同灌溉強度與其對應的田間灌溉效率,並以此回歸出不同土壤質地之合適灌溉強度、時間及期距,制定出合適灌溉策略公式。另外,本研究也補充探討不同地下水位對灌溉策略之影響,及不同灌溉強度之CN值變化,提供未來作物模式參考。此外,本研究也發現當地下水位較深時,Hydrus-1D模式的排水模擬無法重現排水實驗結果,主因為排水過程中土壤會產生水力連續性中斷及角落流現象,造成實驗排水速度遠低於模擬。修正後的Hydrus-1D模式排水模擬除了可以吻合實驗結果外,也用於修正灌溉策略。修正後的灌溉策略與傳統田間張力模擬的灌溉策略相比,發現其灌溉期距可以延長好幾小時,且所需每日灌溉量較少但產量卻可維持。因此代表過往的田間含水量推估方式,可能會高估所需的灌溉量與頻率。最後本研究點出以現有方式推估出的田間含水量無法完善代表真實田間含水量,未來應投入更多研究以增進對田間含水量的掌握度。 | zh_TW |
| dc.description.abstract | High-precision irrigation strategies can simultaneously ensure food security and sustainable management of agricultural water resources. Irrigation intensity and time can significantly affect irrigation efficiency and crop growth. However, few previous studies have systematically discussed the irrigation intensity, time and interval in combination with soil texture. In addition, the quantitative method of 'field capacity', a key parameter that determines irrigation strategies, has not yet been unified. Therefore, the purpose of this study is to explore the appropriate irrigation intensity and corresponding strategies for different soil textures, and to re-examine the quantification method of field capacity. The research results will help to formulate high-precision irrigation strategies. This study first compiled soil data in Taiwan, analyzed soil hydraulic properties, and compared different methods of quantifying field capacity. The Hydrus-1D model was further used to estimate the field capacity and effective water content, and the irrigation and drainage simulations were carried out with parameters such as soil and crops (citrus fruit trees). Through analysis, different irrigation intensities and their corresponding field irrigation efficiencies were obtained, and then the appropriate irrigation intensity, time and interval of different soil textures were regressed, and the appropriate irrigation strategy formula was formulated. In addition, this study also explores the influence of different groundwater levels on irrigation strategies and the changes in CN value of different irrigation intensities, so as to provide a reference for future crop models. Furthermore, this study also found that when the groundwater table was deep, the drainage simulation of the Hydras-1D model could not reproduce the drainage experimental results, mainly because the soil would produce hydraulic continuity interruption and corner flow during the drainage process, resulting in the experimental drainage rate much lower than the simulation. The modified Hydrus-1D model drainage simulation can match the experimental results and can also be used to modify the irrigation strategy The modified irrigation strategy was found to extend the irrigation interval by several hours compared with the irrigation strategy of the traditional field tension simulation, and required less daily irrigation while maintaining yields. Therefore, the method of estimating field capacity in the past might overestimate the amount and frequency of irrigation required. Finally, this study points out that the estimated field capacity by the existing method cannot fully represent the real field capacity, and more research should be invested in the future to improve the grasp of the field capacity. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:18:08Z (GMT). No. of bitstreams: 1 U0001-1409202221333600.pdf: 4634133 bytes, checksum: 16101efc0aa2840ce07be73d38366465 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 緒論 1 1.1 研究背景及動機 1 1.2 研究目的 2 Chapter 2 文獻探討 3 2.1 Hydrus-1D模式 3 2.2 田間含水量 3 2.3 灌溉策略 7 Chapter 3 研究方法 8 3.1 研究架構及流程 8 3.2 土壤資料處理 10 3.2.1 土壤調查數據整理 10 3.2.2 保水曲線參數取得 14 3.2.3 飽和水力傳導係數取得及現地飽和水力傳導係數推估 14 3.3 Hydrus-1D模擬設定 17 3.3.1 幾何及時間設定 17 3.3.2 土壤及水力參數設定 17 3.3.3 上下邊界條件設定 17 3.3.4 作物根系深度及吸水設定 17 3.3.5 土壤蒸發及作物蒸散設定 18 3.4 制定合適灌溉策略之分析方法 19 3.4.1 灌溉策略概念及模擬流程 19 3.4.2 以模擬結果評估出合適灌溉策略之方法 22 3.4.3 各土壤質地合適之灌溉策略制定方法 23 3.4.4 探討不同地下水位對灌溉策略影響之方法 24 3.4.5 探討不同灌溉強度下CN值變化之方法 24 3.5 以排水實驗及Hydrus-1D模擬驗證田間含水量推估方法 24 3.5.1 砂土管柱排水實驗及模擬方法 25 3.5.2 入滲試驗場排水實驗及模擬方法 27 Chapter 4 研究結果與討論 29 4.1 土壤資料處理結果 29 4.1.1 保水曲線參數取得 29 4.1.2 飽和水力傳導係數取得 30 4.2 Hydrus-1D灌溉模擬結果與討論 32 4.2.1 灌溉模擬結果及水平衡分析 32 4.2.2 以模擬結果評估出合適灌溉策略 34 4.2.3 各土壤質地合適之灌溉策略制定結果 38 4.2.4 不同地下水位對灌溉策略影響之結果與討論 40 4.2.5 不同灌溉強度下CN值變化之結果與討論 42 4.3 以排水實驗及Hydrus-1D模擬驗證田間含水量推估方法之結果與討論 43 4.3.1 砂土管柱排水實驗及模擬結果 43 4.3.2 入滲試驗場排水實驗及模擬結果 45 4.3.3 實驗及模擬排水機制探討 48 4.4 變更模擬設定以修正Hydrus-1D排水模擬 49 4.4.1 變更模擬設定以修正排水模擬吻合實驗結果 50 4.4.2 變更模擬設定以修正灌溉策略模擬 51 4.5 田間張力簡便計算方法之探討 55 Chapter 5 結論與建議 58 5.1 結論 58 5.2 建議 59 REFERENCE 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 田間含水量 | zh_TW |
| dc.subject | Hydrus-1D | zh_TW |
| dc.subject | 角落流 | zh_TW |
| dc.subject | 土壤排水 | zh_TW |
| dc.subject | 灌溉策略 | zh_TW |
| dc.subject | field capacity | en |
| dc.subject | corner flow | en |
| dc.subject | soil drainage | en |
| dc.subject | irrigation strategy | en |
| dc.subject | Hydrus-1D | en |
| dc.title | 利用Hydrus-1D與土壤水力特性探討作物灌溉策略與田間含水量 | zh_TW |
| dc.title | Using Hydrus-1D and Soil Hydraulic Properties to Discuss Irrigation Strategies and Field Capacity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余化龍(Hua-Long Yu),許健輝(Jian-Hui Xu),譚智宏(Zhi-Hong Tan) | |
| dc.subject.keyword | Hydrus-1D,灌溉策略,田間含水量,土壤排水,角落流, | zh_TW |
| dc.subject.keyword | Hydrus-1D,irrigation strategy,field capacity,soil drainage,corner flow, | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU202203414 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-23 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1409202221333600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
