請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84625完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅弘岳(PETER HONG-YUEH LO) | |
| dc.contributor.author | Wen-Yu Shih | en |
| dc.contributor.author | 施文育 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:18:06Z | - |
| dc.date.copyright | 2022-09-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-16 | |
| dc.identifier.citation | 1. Adrian, R. J. (1986). Statistical properties of particle image velocimetry measurements in turbulent flow. Proceedings of Laser Anemometry in Fluid Mechanics III. 2. Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23(1), 261-304. 3. Adrian, R. J. (2005). Twenty years of particle image velocimetry. Experiments in Fluids, 39(2), 159-169. 4. Adrian, R. J., & Yao, C. S. (1985). Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Applied Optics, 24(1), 44-52. 5. Boussinesq, J. (1871). Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. CR Acad. Sci. Paris, 72(755-759), 1871. 6. Briggs, M. J., Synolakis, C. E., Harkins, G. S., & Green, D. R. (1995). Laboratory experiments of tsunami runup on a circular island. Pure and Applied Geophysics, 144(3), 569-593. 7. Cheng, A. C., Suppasri, A., Pakoksung, K., & Imamura, F. (2022). Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the doublet earthquakes on 26 December 2006. Natural Hazards and Earth System Sciences Discussions, 1-37. 8. Craig, W., Guyenne, P., Hammack, J., Henderson, D., & Sulem, C. (2006). Solitary water wave interactions. Physics of fluids, 18(5), 057106. 9. Daily, J. W., & Stephan Jr, S. C. (1952). The solitary wave: its celerity, profile, internal velocities and amplitude attenuation in a horizontal smooth channel. Coastal Engineering Proceedings, (3), 2-2. 10. Garcia, D. (2010). Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis, 54(4), 1167-1178. 11. Goring, D. G. (1978). Tsunamis--the propagation of long waves onto a shelf. 12. Goring, D., & Raichlen, F. (1980). The generation of long waves in the laboratory. Coastal Engineering Proceedings, (17), 46-46. 13. Grilli, S., & Svendsen, I. A. (1990). Computation of nonlinear wave kinematics during propagation and runup on a slope. In Water Wave Kinematics (pp. 387-412). Springer, Dordrecht. 14. Grimshaw, R. (1971). The solitary wave in water of variable depth. Part 2. Journal of Fluid Mechanics, 46(3), 611-622. 15. Hammack Jr, J. L. (1972). Tsunamis—a model of their generation and propagation. 16. Hammack, J. L., & Segur, H. (1974). The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments. Journal of Fluid Mechanics, 65(2), 289-314. 17. Hammack, J. L., & Segur, H. (1978). The Korteweg-de Vries equation and water waves. Part 3. Oscillatory waves. Journal of Fluid Mechanics, 84(2), 337-358. 18. Hassan, Y. A., Blanchat, T. K., & Seeley Jr, C. H. (1992). PIV flow visualisation using particle tracking techniques. Measurement Science and Technology, 3(7), 633. 19. Higuera, P., Lara, J. L., & Losada, I. J. (2013). Realistic wave generation and active wave absorption for Navier–Stokes models: Application to OpenFOAM®. Coastal Engineering, 71, 102-118. 20. Higuera, P., Losada, I. J., & Lara, J. L. (2015). Three-dimensional numerical wave generation with moving boundaries. Coastal Engineering, 101, 35-47. 21. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. 22. Hsu, H. C., Chen, Y. Y., & Hwung, H. H. (2012). Experimental study of the particle paths in solitary water waves. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1964), 1629-1637. 23. Huang, H. T., Fiedler, H. E., & Wang, J. J. (1993). Limitation and improvement of PIV. Experiments in Fluids, 15(4), 263-273. 24. Jasak, H., Jemcov, A., & Tukovic, Z. (2007, September). OpenFOAM: A C++ library for complex physics simulations. In International Workshop on Coupled Methods in Numerical Dynamics (Vol. 1000, pp. 1-20). IUC Dubrovnik Croatia. 25. Keane, R. D., & Adrian, R. J. (1990). Optimization of particle image velocimeters. I. Double pulsed systems. Measurement Science and Technology, 1(11), 1202. 26. Keane, R. D., & Adrian, R. J. (1991). Optimization of particle image velocimeters: II. Multiple pulsed systems. Measurement Science and Technology, 2(10), 963. 27. Keane, R. D., & Adrian, R. J. (1991, December). Cross-correlation analysis of particle image fields for velocity measurement. In Winter Annual Meeting of the American Society of Mechanical Engineers (pp. 1-8). Publ by ASME. 28. Korteweg, D. J., & De Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422-443. 29. Lima, V. V., Avilez-Valente, P., Baptista, M. A. V., & Miranda, J. M. (2019). Generation of N-waves in laboratory. Coastal Engineering, 148, 1-18. 30. Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., & Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259-285. 31. Liu, P. L. F., Park, Y. S., & Cowen, E. A. (2007). Boundary layer flow and bed shear stress under a solitary wave. Journal of Fluid Mechanics, 574, 449-463. 32. Madsen, P. A., Fuhrman, D. R., & Schäffer, H. A. (2008). On the solitary wave paradigm for tsunamis. Journal of Geophysical Research: Oceans, 113(C12). 33. McCowan, J. (1891). VII. On the solitary wave. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32(194), 45-58. 34. Melling, A. (1997). Tracer particles and seeding for particle image velocimetry. Measurement science and technology, 8(12), 1406. 35. Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run‐up. Geophysical research letters, 38(7). 36. Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(6), 618-638. 37. Powell, D. M. (2014). Flow resistance in gravel-bed rivers: Progress in research. Earth-Science Reviews, 136, 301-338. 38. Prandtl, L. (1904). Über Flussigkeitsbewegung bei sehr kleiner Reibung. Verhandl. III, Internat. Math.-Kong., Heidelberg, Teubner, Leipzig, 1904, 484-491. 39. Raffel, M., Willert, C. E., & Kompenhans, J. (1998). Particle image velocimetry: a practical guide (Vol. 2). Berlin: Springer. 40. Rayleigh, Lord (1876). “On waves.” Philos. Mag., 1(4), 257–279. 41. Russell, J. S. (1844). Report on Waves, 14th Mtg. of the British Assoc. for the Advance. of Science. 42. Russell, J.S. , Report on waves, Proc. 14th Meeting, Brit. Ass. Adv. Sci., York (1845), p 311-390. 43. Satake, K. (1994). Mechanism of the 1992 Nicaragua tsunami earthquake. Geophysical Research Letters, 21(23), 2519-2522. 44. Scarano, F., & Riethmuller, M. L. (1999). Iterative multigrid approach in PIV image processing with discrete window offset. Experiments in Fluids, 26(6), 513-523. 45. Schlichting, H., & Kestin, J. (1961). Boundary layer theory (Vol. 121). New York: McGraw-Hill. 46. Schimmels, S., Sriram, V., & Didenkulova, I. (2016). Tsunami generation in a large scale experimental facility. Coastal Engineering, 110, 32-41. 47. Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523-545. 48. Synolakis, C. E.: 1986, The runup of long waves, PhD Thesis, California Institute of Technology, Pasadena. 49. Tadepalli, S., & Synolakis, C. E. (1994). The run-up of N-waves on sloping beaches. Proceedings of The Royal Society of London. Series A: Mathematical and Physical Sciences, 445(1923), 99-112. 50. Thielicke, W., & Sonntag, R. (2021). Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software, 9(1). 51. Thielicke, W., & Stamhuis, E. (2014). PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software, 2(1). 52. Umeyama, M. (2013). Investigation of single and multiple solitary waves using superresolution PIV. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(4), 304-313. 53. Westerweel, J. (1993, December). Analysis of PIV interrogation with low-pixel resolution. In Optical Diagnostics in Fluid and Thermal Flow (Vol. 2005, pp. 624-635). SPIE. 54. Westerweel, J. (1997). Fundamentals of digital particle image velocimetry. Measurement Science and Technology, 8(12), 1379. 55. Willert, C. E., & Gharib, M. (1991). Digital particle image velocimetry. Experiments in fluids, 10(4), 181-193. 56. Wu, T. R., & Huang, H. C. (2009). Modeling tsunami hazards from Manila trench to Taiwan. Journal of Asian Earth Sciences, 36(1), 21-28. 57. Zhao, B. B., Ertekin, R. C., Duan, W. Y., & Hayatdavoodi, M. (2014). On the steady solitary-wave solution of the Green–Naghdi equations of different levels. Wave Motion, 51(8), 1382-1395. 58. 林立剛. (2021):「N 型波傳遞之數值模擬與實驗驗證.」,國立台灣大學工程科學與海洋工程學系研究所碩士論文,台北 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84625 | - |
| dc.description.abstract | 本文旨在利用高速攝影機及高強度LED建立一低成本之PIV量測系統,並使用本研究室長20 m、寬0.34 m、高0.5 m之二維推板式造波水槽進行造波,用以量測前導下沉N型波作用下之速度場。首先以孤立波實驗進行實驗設置的驗證,針對孤立波的傳遞過程,對其速度場以不同實驗條件之波高水深比(H/h=0.086、0.127、0.166)進行速度場之分析。並以PIVlab分析實驗結果,再與前人所提出的解析解理論和開源軟體OpenFOAM的數值結果進行比較,比較後發現PIV量測結果與解析解還有數值結果都非常貼合。同時利用可視化的方法針對其粒子軌跡,進行定量及定性的分析。 在眾多N型波研究中,相較於孤立波已有較完整的速度場理論,N型波並沒有速度場之解析解。此篇文章將以PIV量測方式提供前導下沉N型波傳遞下之速度場的實驗數據結果,以利後續相關的研究做為實驗數據參照。由實驗結果可發現N型波於水平速度場和垂直速度場,在深度上的變化與孤立波相似,隨著初始水深越淺,垂直速度有遞減的趨勢。但在時間相位的變化上,本文所研究之N型波,則因其前導下沉及尾波的特徵,相較於孤立波恆為正的水平速度,其具有負方向上的水平速度。我們也以可視化的方法將N型波的粒子軌跡與相對應波高之孤立波粒子軌跡進行比較與分析,可發現針對不同條件的N型波,其粒子軌跡會有漩渦狀收斂以及繼續向後飄送兩種結果,且兩種結果中其最大垂直方向位移皆略大於相對應波高之孤立波之最大垂直位移。 最後本文針對不同實驗條件的N型波下之速度剖面,驗證其是否滿足長波理論。結果顯示,本研究所探討的N型波案例,其速度剖面與長波理論下的速度剖面有非常好的貼合,此結果也說明了N型波做為海嘯替代模型的適用性。 | zh_TW |
| dc.description.abstract | The purpose of this study is to establish a low-cost PIV measurement system using a high-speed camera and a high power LED source. The experiments were conducted in the 20m long wave flume using a piston-type wavemaker, and to analyze the velocity field of the leading-depression N-waves. First of all, we verified the experiment setup by analyzing three different wave height-to-depth ratios (H/h=0.086、0.127、0.166) of the solitary waves propagation process. The PIV experimental results are compared with existing theories and the numerical results of OpenFOAM, and we found that the experimental data are in close agreement with the analytical solution and numerical results. The quantitative and qualitative analysis of the particle trajectories are also performed by visualization methods. Compared with solitary waves, there is a relatively complete theory, but in many studies of N-waves, there is no analytical solution of the velocity field for N-waves. This study will provide the experimental data results of velocity field under the leading-depression N-waves propagation by the PIV measurement as the experimental data reference for related research. Experimental results show that the variation of the horizontal and vertical velocity profile in depth is similar to solitary wave. But for the variation in time phase, compared with the constant positive horizontal velocity of the solitary wave, the N-waves in this study has a negative horizontal velocity. Meanwhile, we also compare the N-waves particle trajectory with the solitary wave particle trajectory of the corresponding wave height by visualization methods, the results show that N-waves have vortex convergence and drifting forward two phenomena under different condition, respecticely. And the maximum vertical displacement of N-waves is slightly larger than the maximum vertical displacement of the solitary wave of the corresponding wave height. Finally, in this study we verify whether the velocity profiles of N-waves under different experimental conditions satisfy the long-wave theory, and the results show that the velocity profile of N-waves in this study is in close agreement with the velocity profile under the long wave theory, which also illustrates the applicability of N-waves as an alternative model for tsunamis. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:18:06Z (GMT). No. of bitstreams: 1 U0001-1409202216545800.pdf: 8817806 bytes, checksum: 87c1255a6395c26de6e4a252a82076b7 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 I 謝誌 II 摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XII 1 第一章 緒論 1 1-1 研究動機 1 1-2 相關文獻回顧 2 1-3 本文組織架構 5 2 第二章 孤立波與N型波理論 7 2-1 孤立波 7 2-2 孤立波造波理論 8 2-3 N型波 9 2-4 N型波造波理論 10 3 第三章 實驗方法、設備及布置 11 3-1 實驗水槽之架構 11 3-2 實驗條件 15 3-3 超音波感測器 16 3-4 可視化及PIV量測系統 17 3-4-1 高速攝影機 18 3-4-2 流場追蹤物質 20 3-4-3 高強度LED光源系統 21 3-5 座標系統、量測視野規劃與拍攝參數設定 22 4 第四章 PIV系統之建立及分析原理 24 4-1 PIV量測原理 24 4-2 影像前處理 26 4-3 PIV系統之建置 28 4-4 PIV量測系統之分析方法 29 5 第五章 OpenFOAM數值模型及驗證 32 5-1 數值造波水槽 32 5-2 收斂性測試 35 5-3 數值模型驗證 39 6 第六章 速度實驗驗證 44 6-1 於循環水槽進行系統驗證 44 6-1-1 循環水槽系統 44 6-1-2 以紊流速度剖面進行驗證 46 7 第七章 實驗結果與討論 51 7-1 孤立波下速度場之量測與粒子軌跡分析 51 7-2 N型波下速度場之特性分析 65 7-3 N型波速度場與長波理論之較 84 8 第八章 結論與未來展望 87 8-1 結論 87 8-2 未來展望 88 9 參考文獻 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | N型波 | zh_TW |
| dc.subject | 孤立波 | zh_TW |
| dc.subject | 速度場 | zh_TW |
| dc.subject | 粒子圖像測速法 | zh_TW |
| dc.subject | 粒子軌跡 | zh_TW |
| dc.subject | Velocity field | en |
| dc.subject | PIV | en |
| dc.subject | N-waves | en |
| dc.subject | Solitary wave | en |
| dc.subject | Particle trajectory | en |
| dc.title | 前導下沉N型波下速度場之探討 | zh_TW |
| dc.title | A study on the velocity field of leading-depression N-waves | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴璽恆(HSI-HENG DAI),吳昀達(Yun-Ta Wu),莊偉良(Wei-Liang Chuang) | |
| dc.subject.keyword | N型波,孤立波,速度場,粒子圖像測速法,粒子軌跡, | zh_TW |
| dc.subject.keyword | Solitary wave,N-waves,Velocity field,PIV,Particle trajectory, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202203408 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-26 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1409202216545800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
