Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84616
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正剛(Argon Chen)
dc.contributor.authorHUANZE ZENGen
dc.contributor.author曾煥澤zh_TW
dc.date.accessioned2023-03-19T22:17:45Z-
dc.date.copyright2022-09-26
dc.date.issued2022
dc.date.submitted2022-09-17
dc.identifier.citationK. J. Chang et al., 'Method for multi-layer classifier,' U.S. Patent No. 8,572,006. , 2013. L.-L. Wang, H. Y. T. Ngan, and N. H. C. Yung, 'Automatic incident classification for large-scale traffic data by adaptive boosting SVM,' Information Sciences, vol. 467, pp. 59-73, 2018. M. Khashei and M. Bijari, 'A novel hybridization of artificial neural networks and ARIMA models for time series forecasting,' Applied Soft Computing, vol. 11, no. 2, pp. 2664-2675, 2011. P. Angelov and X. Gu, 'MICE: Multi-Layer Multi-Model Images Classifier Ensemble,' in 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), 2017, pp. 1-8. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees. Boca Raton: Chapman & Hall/CRC, 1984. J. R. Quinlan, 'Induction of decision trees,' Machine Learning, journal article vol. 1, no. 1, pp. 81-106, March 01 1986. J. R. Quinlan, C4. 5: programs for machine learning. San Mateo, CA: Morgan Kaufmann, 1993. S. K. Murthy, 'Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey,' Data Mining and Knowledge Discovery, vol. 2, no. 4, pp. 345-389, 1998. L. Rokach and O. Maimon, 'Top-down induction of decision trees classifiers - a survey,' IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 35, no. 4, pp. 476-487, 2005. Y.-L. Chen, C.-C. Wu, and K. Tang, 'Time-constrained cost-sensitive decision tree induction,' Information Sciences, vol. 354, pp. 140-152, 2016. J. Zhai, X. Wang, S. Zhang, and S. Hou, 'Tolerance rough fuzzy decision tree,' Information Sciences, vol. 465, pp. 425-438, 2018. X. Ai, J. Wu, Z. Cui, and V. S. Sheng, 'Broaden the minority class space for decision tree induction using antigen-derived detectors,' Knowledge-Based Systems, vol. 137, pp. 196-205, 2017. V. Podgorelec, P. Kokol, B. Stiglic, and I. Rozman, 'Decision trees: an overview and their use in medicine,' Journal of medical systems, vol. 26, no. 5, pp. 445-463, 2002. W. Y. Loh, 'Fifty years of classification and regression trees,' International Statistical Review, vol. 82, no. 3, pp. 329-348, 2014. J. R. Quinlan, 'Simplifying decision trees,' International Journal of Man-Machine Studies, vol. 27, no. 3, pp. 221-234, 1987. D. Dua and E. K. Taniskidou, 'UCI machine learning repository [http://archive.ics.uci.edu/ml]. University of California, School of Information and Computer Science,' Irvine, CA, vol. 144, 2017. A. P. Bradley, 'The use of the area under the ROC curve in the evaluation of machine learning algorithms,' Pattern Recognition, vol. 30, no. 7, pp. 1145-1159, 1997. W.-Y. Loh, 'Classification and regression trees,' WIREs Data Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14-23, 2011. X. Wang, X. Liu, W. Pedrycz, and L. Zhang, 'Fuzzy rule based decision trees,' Pattern Recognition, vol. 48, no. 1, pp. 50-59, 2015. D. Bertsimas and J. Dunn, 'Optimal classification trees,' Machine Learning, vol. 106, no. 7, pp. 1039-1082, 2017. N. V. Chawla, 'C4. 5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure,' in Proceedings of the Twentieth International Conference (ICML 2003), Washington, DC, USA, 2003, vol. 3, p. 66. F. Wang, Q. Wang, F. Nie, Z. Li, W. Yu, and F. Ren, 'A linear multivariate binary decision tree classifier based on K-means splitting,' Pattern Recognition, vol. 107, p. 107521, 2020. S. K. Murthy, S. Kasif, and S. Salzberg, 'A system for induction of oblique decision trees,' Journal of artificial intelligence research, vol. 2, pp. 1-32, 1994. N. Manwani and P. Sastry, 'Geometric decision tree,' IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 1, pp. 181-192, 2011. C. E. Brodley and P. E. Utgoff, 'Multivariate decision trees,' Machine learning, vol. 19, no. 1, pp. 45-77, 1995. H. K. Sok, M. P.-L. Ooi, Y. C. Kuang, and S. Demidenko, 'Multivariate alternating decision trees,' Pattern Recognition, vol. 50, pp. 195-209, 2016. W.-Y. Loh and Y.-S. Shih, 'Split selection methods for classification trees,' Statistica sinica, pp. 815-840, 1997. T. Hothorn, K. Hornik, and A. Zeileis, 'Unbiased Recursive Partitioning: A Conditional Inference Framework,' Journal of Computational and Graphical Statistics, vol. 15, no. 3, pp. 651-674, 2006. H. Strasser and C. Weber, 'On the asymptotic theory of permutation statistics,' Mathematical Methods of Statistics, vol. 8, pp. 220-250, 1999. W.-Y. Loh, 'Improving the precision of classification trees,' The Annals of Applied Statistics, vol. 3, no. 4, pp. 1710-1737, 2009. B. Chandra and P. Paul Varghese, 'Moving towards efficient decision tree construction,' Information Sciences, vol. 179, no. 8, pp. 1059-1069, 2009. B. Chandra, R. Kothari, and P. Paul, 'A new node splitting measure for decision tree construction,' Pattern Recognition, vol. 43, no. 8, pp. 2725-2731, 2010. Q. Hu, M. Guo, D. Yu, and J. Liu, 'Information entropy for ordinal classification,' Science China Information Sciences, journal article vol. 53, no. 6, pp. 1188-1200, June 01 2010. C. Marsala and D. Petturiti, 'Rank discrimination measures for enforcing monotonicity in decision tree induction,' Information Sciences, vol. 291, pp. 143-171, 2015. Y. Wang, S.-T. Xia, and J. Wu, 'A less-greedy two-term Tsallis Entropy Information Metric approach for decision tree classification,' Knowledge-Based Systems, vol. 120, pp. 34-42, 2017. Y. Wang, C. Song, and S.-T. Xia, 'Unifying decision trees split criteria using tsallis entropy,' arXiv preprint arXiv:1511.08136, 2015. F. Li, X. Zhang, X. Zhang, C. Du, Y. Xu, and Y.-C. Tian, 'Cost-sensitive and hybrid-attribute measure multi-decision tree over imbalanced data sets,' Information Sciences, vol. 422, pp. 242-256, 2018. P. Langley, W. Iba, and K. Thompson, 'An analysis of Bayesian classifiers,' in Proc. 10th National Conference on Artificial Intelligence (AAAI-92), San Jose, California, 1992, vol. 90, pp. 223-228. R. E. Schapire and Y. Singer, 'Improved Boosting Algorithms Using Confidence-rated Predictions,' Machine Learning, vol. 37, no. 3, pp. 297-336, 1999. H. Shi, 'Best-first decision tree learning,' Ph.D. thesis, The University of Waikato, 2007. R. Kohavi, 'Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid,' in Second International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996, vol. 96, pp. 202-207. Y. Freund and L. Mason, 'The alternating decision tree learning algorithm,' in Proceeding of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 1999, vol. 99, pp. 124-133. G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall, 'Multiclass Alternating Decision Trees,' in European Conference on Machine Learning, Berlin, Heidelberg, 2002, pp. 161-172: Springer Berlin Heidelberg. S. Pei, Q. Hu, and C. Chen, 'Multivariate decision trees with monotonicity constraints,' Knowledge-Based Systems, vol. 112, pp. 14-25, 2016. W.-Y. Loh and N. Vanichsetakul, 'Tree-structured classification via generalized discriminant analysis,' Journal of the American Statistical Association, vol. 83, no. 403, pp. 715-725, 1988. A. López-Chau, J. Cervantes, L. López-García, and F. G. Lamont, 'Fisher’s decision tree,' Expert Systems with Applications, vol. 40, no. 16, pp. 6283-6291, 2013. D. C. Wickramarachchi, B. L. Robertson, M. Reale, C. J. Price, and J. Brown, 'HHCART: An oblique decision tree,' Computational Statistics & Data Analysis, vol. 96, pp. 12-23, 2016. R. Blaser and P. Fryzlewicz, 'Random rotation ensembles,' The Journal of Machine Learning Research, vol. 17, no. 1, pp. 126-151, 2016. W. J. Youden, 'Index for rating diagnostic tests,' Cancer, vol. 3, no. 1, pp. 32-35, 1950. R. Fluss, D. Faraggi, and B. Reiser, 'Estimation of the Youden Index and its associated cutoff point,' Biometrical journal, vol. 47, no. 4, pp. 458-472, 2005. J. Hilden and P. Glasziou, 'Regret graphs, diagnostic uncertainty and Youden's Index,' Statistics in medicine, vol. 15, no. 10, pp. 969-986, 1996. H. Zeng and A. Chen, 'Classification Tree with Hybrid Splitting Mechanism,' in 2019 IEEE 17th International Symposium on Intelligent Systems and Informatics (SISY), 2019, pp. 61-66. J. Ouyang, N. Patel, and I. Sethi, 'Induction of multiclass multifeature split decision trees from distributed data,' Pattern Recognition, vol. 42, no. 9, pp. 1786-1794, 2009. J. Alcala-Fdez et al., 'KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework,' Journal of Multiple-Valued Logic and Soft Computing, vol. 17, pp. 255-287, 2010. A. Cano, A. Masegosa, and S. Moral, 'ELVIRA biomedical data set repository [Online]. Available: https://leo.ugr.es/elvira/DBCRepository/index.html,' ed, 2005. F. Borovecki et al., 'Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease,' Proceedings of the National Academy of Sciences, vol. 102, no. 31, pp. 11023-11028, 2005. F. Wilcoxon, 'Individual Comparisons by Ranking Methods,' Biometrics, vol. 1, no. 6, pp. 80-83, 1945. J. Demšar, 'Statistical comparisons of classifiers over multiple data sets,' Journal of Machine learning research, vol. 7, no. Jan, pp. 1-30, 2006. T. Therneau, B. Atkinson, and B. Ripley, 'rpart: Recursive partitioning and regression trees,' R package version, vol. 4, pp. 1-9, 2015. K. Hornik, C. Buchta, and A. Zeileis, 'Open-source machine learning: R meets Weka,' Computational Statistics, vol. 24, no. 2, pp. 225-232, 2009. T. Majumder, 'Ensembles of Oblique Decision Trees,' The University of Texas at Dallas, 2020. Z.-H. Zhou and J. Feng, 'Deep forest,' National Science Review, vol. 6, no. 1, pp. 74-86, 2018. K. D. Humbird, J. L. Peterson, and R. G. Mcclarren, 'Deep Neural Network Initialization With Decision Trees,' IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 5, pp. 1286-1295, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84616-
dc.description.abstract雙叉決策樹(binary decision trees, BDTs)屬於最常用的分類方法之一,它透過每次將候選節點分割為兩個子節點來建構,每個子節點皆可再繼續分割下去,直到滿足停止條件為止,建構成最後的分類樹模型。文獻上,有學者提出另一種分類樹方法,它每次會將一個候選節點分割為兩種類型的子節點,一種是可以確定分類的子節點,一種是尚未分類確定的子節點,只有尚未分類的子節點可以再繼續分割下去,換句話說,每層分割產生之子節點中只有一個子節點允許繼續往下分割,所以稱為多層次分類器(multi-layer classifier, MLC)。雖然MLC有簡單的單一樹幹結構且其建構機制從統計資料分佈觀點上看似乎是合理的,但是它未被廣泛使用的原因主要在於缺乏理論根基及大量真實案例的測試。 多層次分類器中的每層所分割出的確定分類子節點又可以是一個或兩個,當每層分割產生之子節點只有一個確定分類節點和一個未分類節點,我們稱此簡化版MLC為雙叉多層次分類器 (Binary MLC, BMLC),我們先針對BMLC奠定其理論基礎,並提出利用變異比率 (variance ratio)的演算法建構BMLC,也稱爲變異比率雙叉多層次分類器(Variance-Ratio Binary MLC, VRBMLC)。除了理論基礎及演算法的建立,我們也透過公開數據集驗證了VRBMLC的優越分類效能。 儘管VRBMLC具有更好的可解釋性及分類效能,然而雙叉分割導致建構的樹層比较深,爲了進一步降低VRBMLC所建構的樹的深度並提高其分類表現,本研究在VRBMLC基礎上,於每個候選節點允許分割出兩個確定分類子節點及一個未分類子節點的的三叉分割,稱為變異比率多層次分類器(Variance-Ratio MLC, VRMLC)。VRMLC每一層中只能用一個特徵來分割候選節點,本研究也進一步提出了一種新的多元多層次分類器,稱爲變異比率多元多層次分類器(Variance-Ratio Multivariate MLC, VRMMLC),除了可於每一節點整合多個特徵構建多元判別超平面 (multivariate discriminant hyperplane),再一樣利用變異比率進行三叉分割,所建構的分類樹不但更加簡潔也可更有效率。 本研究使用40個公開數據集及3個高維度數據集驗證VRBMLC,VRMLC和VRMMLC的效能。實驗結果表明VRBMLC比經典的三種BDT都來得容易解釋且能夠達到更好的分類效果。VRMLC和VRMMLC能進一步簡化VRBMLC所建構的分類樹,也因此解釋性可以更好,且比三種BDTs及四種经典的多元決策樹分類表現來得好。zh_TW
dc.description.abstractBinary decision trees (BDTs) are among the most common classifiers. Typically, the tree model of a BDT is constructed by recursively splitting each node into two less impure child nodes. The child nodes can be split further until the stopping criteria are met. In the literature, Chang et.al., [1] proposed another type of classification tree called Multi-Layer Classifier (MLC) that split candidate nodes into two types of child nodes, i.e., the classified child node with purer instances and the unclassified child node with rather impure instances, from which only the unclassified node in each layer can be split further into the next layer, resulting in a single straight trunk structure. Despite the plausibility of MLC from the perspective of statistical data distributions, it has not been widely used due to the lack of theoretical basis and thorough performance tests of real cases. A typical MLC can generate one or two classified child nodes and one classified child node in each layer. Thus, a simpler version of MLC, called binary MLC (BMLC), is first proposed to allow only one classified child node and one unclassified child node. For BMLC, we first lay the theoretical basis, and then propose a variance ratio algorithm, referred to as the Variance-Ratio Binary MLC (VRBMLC). In addition to the theoretical and algorithmic development, we validate the superiority of VRBMLC’s performance over BDTs’ on various publicly available datasets. Though VRBMLC is effective with better interpretability, it generates a deep single straight trunk because only a univariate binary split is adopted in each layer. To further reduce the tree depth of VRBMLC and improve its classification performance, this study, on the theoretical basis of VRBMLC, further develops the theoretical foundation for the ternary split that allows two classified child nodes and one unclassified child node at each layer. Based on the developed theories, we propose a new variance ratio algorithm, referred to as Variance-Ratio MLC (VRMLC). Moreover, a multivariate version of VRMLC, called Variance-Ratio Multivariate MLC (VRMMLC), is proposed to integrate multiple features to construct a multivariate discriminant hyperplane at the node to be split. The variance-ratio algorithm to perform binary or ternary splits on the hyperplane can be also applied to efficiently construct a shorter, more compact single straight trunk. This study validates the performance of VRBMLC, VRMLC, and VRMMLC using 40 regular datasets and 3 high-dimensional datasets collected from well-known repositories. The experimental results show that VRBMLC methods are easier to interpret and achieve better classification results than the three state-of-the-art BDT methods. Furthermore, the proposed VRMLC and VRMMLC are found to have not only better interpretability than the VRBMLC by simplifying its tree structure but also better classification results than three state-of-the-art BDTs and four state-of-the-art multivariate trees.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:17:45Z (GMT). No. of bitstreams: 1
U0001-1709202215041300.pdf: 3476928 bytes, checksum: 581d5e07ecb945b85c2355ac5db279c0 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 ii 中文摘要 v ABSTRACT vii CONTENTS ix LIST OF FIGURES xii LIST OF TABLES xiv Abbreviations xv Notations xvii Chapter 1 Introduction 1 1.1 Background and motivation 1 1.1.1 Binary decision trees and limitations 1 1.1.2 Multi-layer classifiers and limitations 4 1.1.3 Importance of multivariate classifiers 7 1.2 Research objectives 10 1.3 Chapter outlines 11 Chapter 2 Literature Review 12 2.1 Binary decision trees 12 2.1.1 Impurity indexes 13 2.1.2 Tree construction of BDT 15 2.2 Multivariate trees 15 2.2.1 Sequential forward selection 16 2.2.2 Fisher’s linear discriminant 17 2.2.3 Tree construction of multivariate tree 17 2.3 Multi-layer classifier 18 2.3.1 Youden’s index 18 2.3.2 Tree construction of MLC 19 Chapter 3 Theoretical development of multi-layer classifier 21 3.1 Theoretical development of binary multi-layer classifier under normal assumption 21 3.2 Theoretical development of generalized multi-layer classifier under normal assumption 27 Chapter 4 Variance Ratio Binary Multi-layer Classifier 31 4.1 Selection of the cut-point and determination of the classified node for VRBMLC 31 4.2 Selection of single feature for VRBMLC 32 4.3 The stopping criterion and node assignment rule 32 4.4 Algorithm of VRBMLC 33 Chapter 5 Variance Ratio Multivariate Multi-layer Classifier 35 5.1 Selection of the cut-point and determination of the classified node for VRMLC 35 5.2 Selection of single feature for VRMLC 36 5.3 Construction of the oblique hyperplane for VRMMLC 36 5.4 The stopping criterion and node assignment rule 37 5.5 Algorithm of VRMMLC 37 Chapter 6 Experiments 40 6.1 Datasets 40 6.2 Evaluation criteria 41 6.3 Performance analysis 43 Chapter 7 Discussion and Conclusions 54 APPENDIX 59 A. Proof of proposition 1 59 B. Proof of proposition 2 59 C. Proof of proposition 3 62 D. Detailed results of the evaluation measures 65 REFERENCE 73 Curriculum Vitae 77 LIST OF PUBLICATIONs 78
dc.language.isoen
dc.title多層次分類器的理論研究及效能提升zh_TW
dc.titleTheories and Enhancement of Multi-layer Classifiersen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊烽正(Feng-Cheng Yang),藍俊宏(Jakey Blue),張時中(Shi-Chung Chang),陳中明(Chung-Ming Chen)
dc.subject.keyword分類,分類器,決策樹,多元決策樹,機器學習,樹的建構方法,zh_TW
dc.subject.keywordclassification,classifiers,decision tree,multivariate decision tree,machine learning,tree construction,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202203508
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
dc.date.embargo-lift2022-09-26-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1709202215041300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved