請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84607完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高淑芬(Susan Shur-Fen Gau) | |
| dc.contributor.author | Hai-Ti Lin | en |
| dc.contributor.author | 林海笛 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:17:24Z | - |
| dc.date.copyright | 2022-10-13 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-20 | |
| dc.identifier.citation | 1. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health. 2017;38:81-102. 2. Chien YL, Wu YY, Chiu YN, Liu SK, Tsai WC, Lin PI, et al. Association study of the CNS patterning genes and autism in Han Chinese in Taiwan. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(6):1512-7. 3. Chen YL, Chen WJ, Lin KC, Shen LJ, Gau SS. Prevalence of DSM-5 mental disorders in a nationally representative sample of children in Taiwan: methodology and main findings. Epidemiol Psychiatr Sci. 2019;29:e15. 4. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. 5th ed ed. Arlinton, VA: American Psychiatric Association; 2013. 5. Lord C, Risi S, DiLavore PS, Shulman C, Thurm A, Pickles A. Autism from 2 to 9 years of age. Arch Gen Psychiatry. 2006;63(6):694-701. 6. Simonoff E, Jones CR, Baird G, Pickles A, Happé F, Charman T. The persistence and stability of psychiatric problems in adolescents with autism spectrum disorders. J Child Psychol Psychiatry. 2013;54(2):186-94. 7. Georgiades S, Bishop SL, Frazier T. Editorial Perspective: Longitudinal research in autism - introducing the concept of 'chronogeneity'. J Child Psychol Psychiatry. 2017;58(5):634-6. 8. van Heijst BF, Geurts HM. Quality of life in autism across the lifespan: a meta-analysis. Autism. 2015;19(2):158-67. 9. Lai M-C, Kassee C, Besney R, Bonato S, Hull L, Mandy W, et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. The Lancet Psychiatry. 2019;6(10):819-29. 10. Kelly AB, Garnett MS, Attwood T, Peterson C. Autism spectrum symptomatology in children: the impact of family and peer relationships. J Abnorm Child Psychol. 2008;36(7):1069-81. 11. Kim JA, Szatmari P, Bryson SE, Streiner DL, Wilson FJ. The Prevalence of Anxiety and Mood Problems among Children with Autism and Asperger Syndrome. Autism. 2000;4(2):117-32. 12. Shriberg LD, Paul R, McSweeny JL, Klin AM, Cohen DJ, Volkmar FR. Speech and prosody characteristics of adolescents and adults with high-functioning autism and Asperger syndrome. J Speech Lang Hear Res. 2001;44(5):1097-115. 13. Rapin I, Dunn M. Update on the language disorders of individuals on the autistic spectrum. Brain Dev. 2003;25(3):166-72. 14. Naigles LR, Tek S. 'Form is easy, meaning is hard' revisited: (re) characterizing the strengths and weaknesses of language in children with autism spectrum disorder. Wiley Interdiscip Rev Cogn Sci. 2017;8(4). 15. Girolamo T, Rice ML. Language Impairment in Autistic Adolescents and Young Adults. J Speech Lang Hear Res. 2022:1-13. 16. Groen WB, Zwiers MP, van der Gaag RJ, Buitelaar JK. The phenotype and neural correlates of language in autism: an integrative review. Neurosci Biobehav Rev. 2008;32(8):1416-25. 17. Henderson LM, Clarke PJ, Snowling MJ. Accessing and selecting word meaning in autism spectrum disorder. J Child Psychol Psychiatry. 2011;52(9):964-73. 18. Herringshaw AJ, Ammons CJ, DeRamus TP, Kana RK. Hemispheric differences in language processing in autism spectrum disorders: A meta-analysis of neuroimaging studies. Autism Res. 2016;9(10):1046-57. 19. Moseley RL, Mohr B, Lombardo MV, Baron-Cohen S, Hauk O, Pulvermuller F. Brain and behavioral correlates of action semantic deficits in autism. Front Hum Neurosci. 2013;7:725. 20. Phan L, Tariq A, Lam G, Pang EW, Alain C. The Neurobiology of Semantic Processing in Autism Spectrum Disorder: An Activation Likelihood Estimation Analysis. J Autism Dev Disord. 2021;51(9):3266-79. 21. McCleery JP, Ceponiene R, Burner KM, Townsend J, Kinnear M, Schreibman L. Neural correlates of verbal and nonverbal semantic integration in children with autism spectrum disorders. J Child Psychol Psychiatry. 2010;51(3):277-86. 22. Curl A, Coderre EL. The time-locked neurodynamics of semantic processing in autism spectrum disorder: an EEG study. Cogn Neurodyn. 2022;16(1):43-72. 23. Braeutigam S, Swithenby SJ, Bailey AJ. Contextual integration the unusual way: a magnetoencephalographic study of responses to semantic violation in individuals with autism spectrum disorders. Eur J Neurosci. 2008;27(4):1026-36. 24. Ogawa R, Kagitani-Shimono K, Matsuzaki J, Tanigawa J, Hanaie R, Yamamoto T, et al. Abnormal cortical activation during silent reading in adolescents with autism spectrum disorder. Brain Dev. 2019;41(3):234-44. 25. Pina-Camacho L, Villero S, Fraguas D, Boada L, Janssen J, Navas-Sánchez FJ, et al. Autism spectrum disorder: does neuroimaging support the DSM-5 proposal for a symptom dyad? A systematic review of functional magnetic resonance imaging and diffusion tensor imaging studies. J Autism Dev Disord. 2012;42(7):1326-41. 26. Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896-910. 27. Fan LY, Booth JR, Liu M, Chou TL, Gau SS. Developmental differences in neural connectivity for semantic processing in youths with autism. J Child Psychol Psychiatry. 2021;62(9):1090-9. 28. Baron-Cohen S, & Swettenham, J. Theory of mind in autism: Its relationship to executive function and central coherence. In: Volkmar CF, editor. Handbook of autism and pervasive developmental disorders. New York: John Wiley & Sons; 1997. p. 880-93. 29. Ozonoff S, McEvoy RE. A longitudinal study of executive function and theory of mind development in autism. Development and Psychopathology. 1994;6(3):415-31. 30. Lai CLE, Lau Z, Lui SSY, Lok E, Tam V, Chan Q, et al. Meta-analysis of neuropsychological measures of executive functioning in children and adolescents with high-functioning autism spectrum disorder. Autism Res. 2017;10(5):911-39. 31. Barendse EM, Hendriks MP, Jansen JF, Backes WH, Hofman PA, Thoonen G, et al. Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. J Neurodev Disord. 2013;5(1):14. 32. Wang Y, Zhang YB, Liu LL, Cui JF, Wang J, Shum DH, et al. A Meta-Analysis of Working Memory Impairments in Autism Spectrum Disorders. Neuropsychol Rev. 2017;27(1):46-61. 33. Sinzig J, Morsch D, Bruning N, Schmidt MH, Lehmkuhl G. Inhibition, flexibility, working memory and planning in autism spectrum disorders with and without comorbid ADHD-symptoms. Child Adolesc Psychiatry Ment Health. 2008;2(1):4. 34. Landry O, Al-Taie S. A Meta-analysis of the Wisconsin Card Sort Task in Autism. J Autism Dev Disord. 2016;46(4):1220-35. 35. Yerys BE, Wallace GL, Harrison B, Celano MJ, Giedd JN, Kenworthy LE. Set-shifting in children with autism spectrum disorders: reversal shifting deficits on the Intradimensional/Extradimensional Shift Test correlate with repetitive behaviors. Autism. 2009;13(5):523-38. 36. Geurts HM, van den Bergh SF, Ruzzano L. Prepotent response inhibition and interference control in autism spectrum disorders: two meta-analyses. Autism Res. 2014;7(4):407-20. 37. Olde Dubbelink LM, Geurts HM. Planning Skills in Autism Spectrum Disorder Across the Lifespan: A Meta-analysis and Meta-regression. J Autism Dev Disord. 2017;47(4):1148-65. 38. Seng GJ, Tseng WL, Chiu YN, Tsai WC, Wu YY, Gau SS. Executive functions in youths with autism spectrum disorder and their unaffected siblings. Psychol Med. 2021;51(15):2571-80. 39. Demetriou EA, Lampit A, Quintana DS, Naismith SL, Song YJC, Pye JE, et al. Autism spectrum disorders: a meta-analysis of executive function. Mol Psychiatry. 2018;23(5):1198-204. 40. Chen SF, Chien YL, Wu CT, Shang CY, Wu YY, Gau SS. Deficits in executive functions among youths with autism spectrum disorders: an age-stratified analysis. Psychol Med. 2016;46(8):1625-38. 41. Leung RC, Vogan VM, Powell TL, Anagnostou E, Taylor MJ. The role of executive functions in social impairment in Autism Spectrum Disorder. Child Neuropsychol. 2016;22(3):336-44. 42. Pellicano E. Testing the predictive power of cognitive atypicalities in autistic children: evidence from a 3-year follow-up study. Autism Res. 2013;6(4):258-67. 43. Faja S, Nelson Darling L. Variation in restricted and repetitive behaviors and interests relates to inhibitory control and shifting in children with autism spectrum disorder. Autism. 2019;23(5):1262-72. 44. St John T, Dawson G, Estes A. Brief Report: Executive Function as a Predictor of Academic Achievement in School-Aged Children with ASD. J Autism Dev Disord. 2018;48(1):276-83. 45. Roestorf A, Howlin P, Bowler DM. Ageing and autism: A longitudinal follow-up study of mental health and quality of life in autistic adults. Front Psychol. 2022;13:741213. 46. Ikeda E, Hinckson E, Krägeloh C. Assessment of quality of life in children and youth with autism spectrum disorder: a critical review. Quality of Life Research. 2014;23(4):1069-85. 47. Zhang Z, Peng P, Zhang D. Executive Function in High-Functioning Autism Spectrum Disorder: A Meta-analysis of fMRI Studies. J Autism Dev Disord. 2020;50(11):4022-38. 48. Hawco C, Yoganathan L, Voineskos AN, Lyon R, Tan T, Daskalakis ZJ, et al. Greater Individual Variability in Functional Brain Activity during Working Memory Performance in young people with Autism and Executive Function Impairment. Neuroimage Clin. 2020;27:102260. 49. Han YM, Chan AS. Disordered cortical connectivity underlies the executive function deficits in children with autism spectrum disorders. Res Dev Disabil. 2017;61:19-31. 50. Hasson U, Egidi G, Marelli M, Willems RM. Grounding the neurobiology of language in first principles: The necessity of non-language-centric explanations for language comprehension. Cognition. 2018;180:135-57. 51. Moser DC, Fridriksson J, Healy EW. Sentence comprehension and general working memory. Clin Linguist Phon. 2007;21(2):147-56. 52. Novick JM, Trueswell JC, Thompson-Schill SL. Cognitive control and parsing: reexamining the role of Broca's area in sentence comprehension. Cogn Affect Behav Neurosci. 2005;5(3):263-81. 53. Hirshorn EA, Thompson-Schill SL. Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia. 2006;44(12):2547-57. 54. Grindrod CM, Bilenko NY, Myers EB, Blumstein SE. The role of the left inferior frontal gyrus in implicit semantic competition and selection: An event-related fMRI study. Brain Res. 2008;1229:167-78. 55. Strijkers K, Chanoine V, Munding D, Dubarry AS, Trébuchon A, Badier JM, et al. Grammatical class modulates the (left) inferior frontal gyrus within 100 milliseconds when syntactic context is predictive. Sci Rep. 2019;9(1):4830. 56. Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci. 2010;14(4):172-9. 57. Duncan J. The structure of cognition: attentional episodes in mind and brain. Neuron. 2013;80(1):35-50. 58. Fedorenko E, Duncan J, Kanwisher N. Broad domain generality in focal regions of frontal and parietal cortex. Proc Natl Acad Sci U S A. 2013;110(41):16616-21. 59. Hugdahl K, Raichle ME, Mitra A, Specht K. On the existence of a generalized non-specific task-dependent network. Front Hum Neurosci. 2015;9:430. 60. Diachek E, Blank I, Siegelman M, Affourtit J, Fedorenko E. The Domain-General Multiple Demand (MD) Network Does Not Support Core Aspects of Language Comprehension: A Large-Scale fMRI Investigation. J Neurosci. 2020;40(23):4536-50. 61. Haebig E, Kaushanskaya M, Ellis Weismer S. Lexical Processing in School-Age Children with Autism Spectrum Disorder and Children with Specific Language Impairment: The Role of Semantics. J Autism Dev Disord. 2015;45(12):4109-23. 62. Ellis Weismer S, Kaushanskaya M, Larson C, Mathee J, Bolt D. Executive Function Skills in School-Age Children With Autism Spectrum Disorder: Association With Language Abilities. J Speech Lang Hear Res. 2018;61(11):2641-58. 63. You Y, Correas A, Jao Keehn RJ, Wagner LC, Rosen BQ, Beaton LE, et al. MEG Theta during Lexico-Semantic and Executive Processing Is Altered in High-Functioning Adolescents with Autism. Cereb Cortex. 2021;31(2):1116-30. 64. Lovaas OI. Behavioral treatment and normal educational and intellectual functioning in young autistic children. J Consult Clin Psychol. 1987;55(1):3-9. 65. Morgan L, Hooker JL, Sparapani N, Reinhardt VP, Schatschneider C, Wetherby AM. Cluster randomized trial of the classroom SCERTS intervention for elementary students with autism spectrum disorder. J Consult Clin Psychol. 2018;86(7):631-44. 66. Kenworthy L, Anthony LG, Naiman DQ, Cannon L, Wills MC, Luong-Tran C, et al. Randomized controlled effectiveness trial of executive function intervention for children on the autism spectrum. J Child Psychol Psychiatry. 2014;55(4):374-83. 67. Laugeson EA, Frankel F, Gantman A, Dillon AR, Mogil C. Evidence-based social skills training for adolescents with autism spectrum disorders: the UCLA PEERS program. J Autism Dev Disord. 2012;42(6):1025-36. 68. Whitehouse AJ, Watt HJ, Line EA, Bishop DV. Adult psychosocial outcomes of children with specific language impairment, pragmatic language impairment and autism. Int J Lang Commun Disord. 2009;44(4):511-28. 69. St Clair-Thompson HL, Gathercole SE. Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Q J Exp Psychol (Hove). 2006;59(4):745-59. 70. Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659-85. 71. Gau SS-F, Lee C-M, Lai M-C, Chiu Y-N, Huang Y-F, Kao J-D, et al. Psychometric properties of the Chinese version of the Social Communication Questionnaire. Research in Autism Spectrum Disorders. 2011;5(2):809-18. 72. Gau SS, Chong MY, Chen TH, Cheng AT. A 3-year panel study of mental disorders among adolescents in Taiwan. Am J Psychiatry. 2005;162(7):1344-50. 73. Wechsler D. Wechsler intelligence scale for children - Third Edition (WISC-III) Manual. San Antonio, TX: The Psychological Corporation; 1991. 74. Wechsler D. Wechsler adult intelligence scale (4th edn). San Antonio, TX: Psychological Corporation; 2008. 75. J. Fray P, W. Robbins T, J. Sahakian B. Neuorpsychiatyric applications of CANTAB. International Journal of Geriatric Psychiatry. 1996;11(4):329-36. 76. Veale JF. Edinburgh Handedness Inventory – Short Form: A revised version based on confirmatory factor analysis. Laterality. 2014;19(2):164-77. 77. Gau SS, Shang CY. Executive functions as endophenotypes in ADHD: evidence from the Cambridge Neuropsychological Test Battery (CANTAB). J Child Psychol Psychiatry. 2010;51(7):838-49. 78. Kim HS, An YM, Kwon JS, Shin MS. A preliminary validity study of the cambridge neuropsychological test automated battery for the assessment of executive function in schizophrenia and bipolar disorder. Psychiatry Investig. 2014;11(4):394-401. 79. Chiang HL, Chen YJ, Shang CY, Tseng WY, Gau SS. Different neural substrates for executive functions in youths with ADHD: a diffusion spectrum imaging tractography study. Psychol Med. 2016;46(6):1225-38. 80. Ozonoff S, Cook I, Coon H, Dawson G, Joseph RM, Klin A, et al. Performance on Cambridge Neuropsychological Test Automated Battery subtests sensitive to frontal lobe function in people with autistic disorder: evidence from the Collaborative Programs of Excellence in Autism network. J Autism Dev Disord. 2004;34(2):139-50. 81. Tung YH, Lin HY, Chen CL, Shang CY, Yang LY, Hsu YC, et al. Whole Brain White Matter Tract Deviation and Idiosyncrasy From Normative Development in Autism and ADHD and Unaffected Siblings Link With Dimensions of Psychopathology and Cognition. Am J Psychiatry. 2021;178(8):730-43. 82. Seng GJ, Lai MC, Goh JOS, Tseng WI, Gau SS. Gray matter volume alteration is associated with insistence on sameness and cognitive flexibility in autistic youth. Autism Res. 2022;15(7):1209-21. 83. Chien YL, Lin HY, Tung YH, Hwang TJ, Chen CL, Wu CS, et al. Neurodevelopmental model of schizophrenia revisited: similarity in individual deviation and idiosyncrasy from the normative model of whole-brain white matter tracts and shared brain-cognition covariation with ADHD and ASD. Mol Psychiatry. 2022. 84. Hill EL. Executive dysfunction in autism. Trends Cogn Sci. 2004;8(1):26-32. 85. Egerházi A, Berecz R, Bartók E, Degrell I. Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(3):746-51. 86. Tsai TH, Chen YL, Gau SS. Relationships between autistic traits, insufficient sleep, and real-world executive functions in children: a mediation analysis of a national epidemiological survey. Psychol Med. 2021;51(4):579-86. 87. Baron IS. Behavior rating inventory of executive function. Child Neuropsychol. 2000;6(3):235-8. 88. Cheng CY, Tseng WL, Chang CF, Chang CH, Gau SS. A Deep Learning Approach for Missing Data Imputation of Rating Scales Assessing Attention-Deficit Hyperactivity Disorder. Frontiers in psychiatry. 2020;11:673. 89. Chen PJ, Gau SS, Lee SH, Chou TL. Differences in age-dependent neural correlates of semantic processing between youths with autism spectrum disorder and typically developing youths. Autism Res. 2016;9(12):1263-73. 90. Chou TL, Chen CW, Fan LY, Chen SY, Booth JR. Testing for a cultural influence on reading for meaning in the developing brain: the neural basis of semantic processing in chinese children. Front Hum Neurosci. 2009;3:27. 91. Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport. 1998;9(16):3735-9. 92. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995;57(1):289-300. 93. Thissen D, Steinberg L, Kuang D. Quick and Easy Implementation of the Benjamini-Hochberg Procedure for Controlling the False Positive Rate in Multiple Comparisons. Journal of Educational and Behavioral Statistics. 2002;27(1):77-83. 94. Wu CY, Ho MH, Chen SH. A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage. 2012;63(1):381-91. 95. Hoffmann F, Koehne S, Steinbeis N, Dziobek I, Singer T. Preserved Self-other Distinction During Empathy in Autism is Linked to Network Integrity of Right Supramarginal Gyrus. J Autism Dev Disord. 2016;46(2):637-48. 96. Zhang A, Shi L, Lin X, Chang S, Li P, Bao Y, et al. Neural Correlations Between Executive Function and Social Function in Autism Spectrum Disorder: A Mediation Analysis of fMRI. 2021. 97. Raposo A, Mendes M, Marques JF. The hierarchical organization of semantic memory: executive function in the processing of superordinate concepts. Neuroimage. 2012;59(2):1870-8. 98. Burke MR, Bramley P, Gonzalez CC, McKeefry DJ. The contribution of the right supra-marginal gyrus to sequence learning in eye movements. Neuropsychologia. 2013;51(14):3048-56. 99. McKenna R, Rushe T, Woodcock KA. Informing the Structure of Executive Function in Children: A Meta-Analysis of Functional Neuroimaging Data. Frontiers in Human Neuroscience. 2017;11. 100. Wiener M, Hamilton R, Turkeltaub P, Matell MS, Coslett HB. Fast forward: supramarginal gyrus stimulation alters time measurement. J Cogn Neurosci. 2010;22(1):23-31. 101. Samson F, Mottron L, Soulières I, Zeffiro TA. Enhanced visual functioning in autism: an ALE meta-analysis. Hum Brain Mapp. 2012;33(7):1553-81. 102. Mottron L, Dawson M, Soulières I, Hubert B, Burack J. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord. 2006;36(1):27-43. 103. Khan S, Michmizos K, Tommerdahl M, Ganesan S, Kitzbichler MG, Zetino M, et al. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale. Brain. 2015;138(Pt 5):1394-409. 104. Chou TL, Booth JR, Bitan T, Burman DD, Bigio JD, Cone NE, et al. Developmental and skill effects on the neural correlates of semantic processing to visually presented words. Hum Brain Mapp. 2006;27(11):915-24. 105. Jackson RL, Hoffman P, Pobric G, Lambon Ralph MA. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions. The Journal of Neuroscience. 2016;36(5):1490. 106. Sahyoun CP, Belliveau JW, Soulières I, Schwartz S, Mody M. Neuroimaging of the functional and structural networks underlying visuospatial vs. linguistic reasoning in high-functioning autism. Neuropsychologia. 2010;48(1):86-95. 107. Hull JV, Dokovna LB, Jacokes ZJ, Torgerson CM, Irimia A, Van Horn JD. Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review. Front Psychiatry. 2016;7:205. 108. Price CJ. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci. 2010;1191:62-88. 109. Rossion B, Bodart J-M, Pourtois G, Thioux M, Bol A, Cosnard G, et al. Functional Imaging of Visual Semantic Processing in the Human Brain. Cortex. 2000;36(4):579-91. 110. Prabhakaran V, Narayanan K, Zhao Z, Gabrieli JD. Integration of diverse information in working memory within the frontal lobe. Nat Neurosci. 2000;3(1):85-90. 111. Swick D, Ashley V, Turken AU. Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci. 2008;9:102. 112. Barahona-Corrêa JB, Velosa A, Chainho A, Lopes R, Oliveira-Maia AJ. Repetitive Transcranial Magnetic Stimulation for Treatment of Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Front Integr Neurosci. 2018;12:27. 113. Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208-13. 114. Baruth JM, Casanova MF, El-Baz A, Horrell T, Mathai G, Sears L, et al. Low-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Evoked-Gamma Frequency Oscillations in Autism Spectrum Disorder (ASD). J Neurother. 2010;14(3):179-94. 115. Sokhadze EM, Baruth JM, Sears L, Sokhadze GE, El-Baz AS, Casanova MF. Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism. Appl Psychophysiol Biofeedback. 2012;37(2):91-102. 116. Sokhadze EM, El-Baz AS, Tasman A, Sears LL, Wang Y, Lamina EV, et al. Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: an exploratory study. Appl Psychophysiol Biofeedback. 2014;39(3-4):237-57. 117. Sokhadze EM, Lamina EV, Casanova EL, Kelly DP, Opris I, Tasman A, et al. Exploratory Study of rTMS Neuromodulation Effects on Electrocortical Functional Measures of Performance in an Oddball Test and Behavioral Symptoms in Autism. Front Syst Neurosci. 2018;12:20. 118. Cole EJ, Enticott PG, Oberman LM, Gwynette MF, Casanova MF, Jackson SLJ, et al. The Potential of Repetitive Transcranial Magnetic Stimulation for Autism Spectrum Disorder: A Consensus Statement. Biol Psychiatry. 2019;85(4):e21-e2. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84607 | - |
| dc.description.abstract | 自閉症類群障礙症是常見的神經發展疾病之一,兩大核心症狀分別為社交溝通缺損及重複、侷限的行為和興趣。除了上述核心症狀,執行功能缺損亦為自閉症孩童常有的表現,且執行功能缺損理論可以同時解釋自閉症的社交及非社交症狀。語義處理與執行功能缺損對於自閉症患者的生活影響顯著,包括學習成就與社會功能。過往研究發現針對自閉症孩童之語言發展遲緩的介入治療,同時可以改善其執行功能;以執行功能為治療目標,也同步促進自閉症孩童之社交發展。雖然分別以語義處理和執行功能為主題的研究在自閉症族群已有一定的進展,不過探討兩者關聯的研究卻很鮮少。此研究希望透過分析語義處理之腦影像變化、與劍橋神經認知測驗與執行功能行為評定量表測量之執行功能,進一步了解自閉症之病生理機轉。 本研究包含54位自閉症類群障礙症男孩與56位典型發展男孩,兩組受試者的年齡、智力及慣用手分佈均相當。受試者接受完整的臨床評估、以劍橋神經認知測驗與父母版執行功能行為評定量表測量其執行功能,進行語義處理任務(受試者需判斷先後出現在螢幕上的中文字語義是否相近)時同步接受腦部功能性磁振造影掃描。本研究使用迴歸分析來探討語義處理之神經活化及執行功能之間的關聯。 研究結果顯示相較於典型發展兒童,自閉症孩童有顯著之執行功能缺損。語義處理之腦部影像則發現自閉症孩童於右側緣上回(supramarginal gyrus)的活化增加,而在傳統語言區之左側額下回(inferior frontal gyrus)及額中回(middle frontal gyrus)之活化下降。上述腦區之神經活化程度與執行功能表現具相關性。 研究結果指出典型發展兒童傾向使用較高階之神經網絡來處理語義相關訊息,而自閉症孩童則倚賴較初級之視覺補償機制來進行語義處理。前述神經活化之變化與執行功能之行為表現相關。上述結果促進我們對於自閉症兒童語義處理與執行功能交互作用的理解。 | zh_TW |
| dc.description.abstract | Objective: The neural alteration during semantic judgments and executive functions has been extensively investigated separately in autism. However, no studies have examined these two domains simultaneously. Therefore, the integrated understanding of the relationship between semantic processing and executive function is very important in the autistic population because both domains have prominent impacts. Methods: Functional magnetic resonance imaging (fMRI) was used to investigate 54 autistic boys and 56 age-, handedness-, and intelligence quotient-matched non-autistic boys from age 7 to 18. Participants had to determine if the visually presented pairs of Chinese characters were semantically related during fMRI scanning. The assessment of executive functions was based on three tasks from the Cambridge neuropsychological test automated battery (CANTAB) and behavior rating inventory of executive function (BRIEF) parent form. In addition, the correlation between neural activation during semantic processing and executive function was examined through regression analysis. Results: ASD group had prominent executive dysfunction compared to the comparison group. The brain imaging results revealed pronounced activation in the right supramarginal gyrus and reduced activation in the left inferior and middle frontal gyrus in autistic boys than in non-autistic boys. Neural activation over the above brain regions was associated with some dimensions of executive function measured by CANTAB and BRIEF. Conclusions: Our findings implicate that autistic boys might depend on lower-level visual compensation during semantic processing. On the contrary, non-autistic boys might involve more in higher-level semantic networks. Such neural correlates were also related to the behavioral performance of the executive functions. The findings might shed light on the interplay between the semantic system and executive function in autistic children. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:17:24Z (GMT). No. of bitstreams: 1 U0001-1809202220504200.pdf: 3012439 bytes, checksum: 2b897667ea13a86c15ae2a6a5276ea41 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書…………………...……………...………………..………………i 致謝……………………………………………...…………………………………ii 中文摘要………………………………………...………………………………...iii Abstract………………………………..…………………………………………..v 1. Introduction………………………………………………………..….……….1 1.1 Prevalence and diagnosis of autism spectrum disorder (ASD)……...….1 1.2 Autism is a lifetime condition with multi-dimensional impairments..…1 1.3 Semantic processing in autism....……………………..…………………..2 1.4 Executive function in autism..……………………….……………………3 1.5 The role of executive function in language processing……………….....4 1.6 The targets of intervention for autistic children ………..………...….....5 1.7 Aim and hypothesis……………………………..………………………....6 2. Methods…………………………………..………………...…….…………….6 2.1 Participants and procedures………………………………………………6 2.2 Measurement of executive function………………….…………………...8 2.2.1 Cambridge neuropsychological test automated battery…….……..8 2.2.2 Behavior Rating Inventory of Executive Function………...…….....9 2.3 Functional activation task: semantic judgment task………………..….10 2.4 MRI data acquisition……………………..………………………………11 2.5 Statistical analysis……………...…………………………………………11 3. Results………………………………...………….……………………………13 3.1 Demographic characteristics and clinical features……………………..13 3.2 Executive function…………..……………………………………………13 3.3 Behavioral results………………..……………………………………….14 3.4 fMRI results…………………..…………………………………………..14 3.5 Association between neural activation during semantic processing and executive function……………………………………...…………………15 4. Discussion…………………………...………………………………………...16 4.1 Main findings……...……………………………………………………...16 4.2 Hyperactivation in right supramarginal gyrus during semantic processing in autistic children ……………………...……………………16 4.3 Hypoactivation in frontal regions during semantic processing in autistic children…………..………………………………………………17 4.4 Visual-semantic processing vs. lexico-semantic processing…...……….18 4.5 The relationship between semantic processing and executive functions.……..……………………………………………………………18 4.6 Strengths and limitations…………………….…………………………..19 4.7 Clinical implication……………..………………………………………..20 4.8 Conclusions..………………......………………………………………….20 4.9 Future Directions…………..……………………………………………..21 Reference………………………………………….…………………………...…22 Table 1. Demographic characteristics, IQ profiles, clinical features (autism only) and executive functions of autistic boys and the comparison group…....30 Table 2. Accuracy and response time of the semantic judgement task for autism and the comparison group..…...……...….…...……………...……...…...32 Table 3. Regions of activation for the related versus perceptual conditions for autism and the comparison group…….......……...……………………...33 Table 4. Age effects between autism and the comparison group for the related versus perceptual control condition....……...............…………………...34 Table 5. Brain activation of semantic processing and performance of executive function in all participants...……………………………………..……...35 Table 6. Brain activation of semantic processing and performance of executive function in autistic boys...…………..……………..……………….....…36 Table 7. Brain activation of semantic processing and performance of executive function in non-autistic boys….…………………………….……......…37 Figure 1. The procedure of the semantic judgment task.………………….……...38 Figure 2. Results of within-group analysis of autism and the comparison group..39 Figure 3. Results of between-group analysis of autism and the comparison group..…………………………………………………………………..40 Figure 4. The relationship between brain activations and performances of executive functions..………….. ……..………………………………...41 Appendix………………………………………………………………………….42 1. Parameters of MRI data acquisition and more details of preprocessing procedure..………………………………………………………………...42 | |
| dc.language.iso | en | |
| dc.subject | 語義處理 | zh_TW |
| dc.subject | 自閉症類群障礙症 | zh_TW |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | 執行功能 | zh_TW |
| dc.subject | 緣上回 | zh_TW |
| dc.subject | Supramarginal gyrus | en |
| dc.subject | Functional MRI | en |
| dc.subject | Autism | en |
| dc.subject | Semantic | en |
| dc.subject | Executive function | en |
| dc.title | 探討自閉症兒童青少年語義處理與執行功能之關聯 | zh_TW |
| dc.title | The Relationship between Semantic Processing and Executive Function in Autistic Children and Children without Autism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-0976-4926 | |
| dc.contributor.oralexamcommittee | 周泰立(Tai-Li Chou),吳恩賜(Joshua O. Goh) | |
| dc.subject.keyword | 自閉症類群障礙症,語義處理,功能性磁振造影,執行功能,緣上回, | zh_TW |
| dc.subject.keyword | Autism,Semantic,Functional MRI,Executive function,Supramarginal gyrus, | en |
| dc.relation.page | 42 | |
| dc.identifier.doi | 10.6342/NTU202203533 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-13 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1809202220504200.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
