請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84580完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙(HSIU-HSI CHEN) | |
| dc.contributor.author | Jui-Yi Yen | en |
| dc.contributor.author | 顏睿誼 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:16:24Z | - |
| dc.date.copyright | 2022-10-13 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-21 | |
| dc.identifier.citation | Akinleye, S. D., Garofolo, G., Culbertson, M. D., Homel, P., &Erez, O. (n.d.). The Role of BMI in Hip Fracture Surgery. https://doi.org/10.1177/2151458517747414 Bartolomeo, N., Trerotoli, P., Moretti, A., &Serio, G. (2008). A markov model to evaluate hospital readmission. https://doi.org/10.1186/1471-2288-8-23 Berggren, M., Stenvall, M., Englund, U., Olofsson, B., &Gustafson, Y. (2016). Co-morbidities, complications and causes of death among people with femoral neck fracture - A three-year follow-up study. BMC Geriatrics, 16(1), 1–10. https://doi.org/10.1186/s12877-016-0291-5 Bland, J. M., &Altman, D. G. (1998). Bayesians and frequentists. Bmj, 317(7166), 1151. https://doi.org/10.1136/bmj.317.7166.1151 Brauer, C. A., Coca-Perraillon, M., Cutler, D. M., &Rosen, A. B. (2009). Incidence and mortality of hip fractures in the United States. JAMA - Journal of the American Medical Association, 302(14), 1573–1579. https://doi.org/10.1001/jama.2009.1462 Brown, J., &Morgan-Hughes, N. J. (2005). Aortic stenosis and non-cardiac surgery. Continuing Education in Anaesthesia, Critical Care and Pain, 5(1), 1–4. https://doi.org/10.1093/bjaceaccp/mki001 Daabiss, M. (n.d.). American Society of Anaesthesiologists physical status classification. Indian Journal of Anaesthesia |, 55, 111–116. https://doi.org/10.4103/0019-5049.79879 DeSanctis, S., Alonzo, R., Frontini, S., Nicolosi, I., Belvederi, F., Monaco, E., …D’Arrigo, C. (2016). Early Surgery in Femoral Neck Fractures in Elderly: Does Preoperative ASA Score Matter? International Journal of Clinical Medicine, 07(12), 829–836. https://doi.org/10.4236/ijcm.2016.712090 Edelmuth, S. V. C. L., Sorio, G. N., Sprovieri, F. A. A., Gali, J. C., &Peron, S. F. (2018). Comorbidities, clinical intercurrences, and factors associated with mortality in elderly patients admitted for a hip fracture. Revista Brasileira de Ortopedia, 53(5), 543–551. https://doi.org/10.1016/j.rbo.2017.07.009 Faraj, A. A. (2008). Non-operative treatment of elderly patients with femoral neck fracture. Acta Orthopaedica Belgica, 74(5), 627–629. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19058696 Fukuda, T., Imai, S., Shimoda, S., Maruo, K., Nakadera, M., &Horiguchi, H. (n.d.). Aspiration pneumonia and anesthesia techniques in hip fracture surgery in elderly patients: A retrospective cohort study using administrative data. Journal of Orthopaedic Surgery, 30(1), 1–11. https://doi.org/10.1177/10225536221078622 Goldacre, M. J., Roberts, S. E., &Yeates, D. (n.d.). Mortality after admission to hospital with fractured neck of femur: database study. https://doi.org/10.1136/bmj.325.7369.868 Halm, E. A., Wang, J. J., Boockvar, K., Penrod, J., Silberzweig, S. B., Magaziner, J., …Siu, A. L. (2004). The Effect of Perioperative Anemia on Clinical and Functional Outcomes in Patients With Hip Fracture. Journal of Orthopaedic Trauma, 18(6), 369–374. https://doi.org/10.1097/00005131-200407000-00007 Hogendoorn, W., Moll, F. L., Sumpio, B. E., &Hunink, M. G. M. (2016). Clinical Decision Analysis and Markov Modeling for Surgeons. Annals of Surgery, 264(2), 268–274. https://doi.org/10.1097/SLA.0000000000001569 Hongo, T., Naito, H., Fujiwara, T., Inaba, M., Fujisaki, N., &Nakao, A. (2020). Incidence and related factors of hypoxia associated with elderly femoral neck fractures in the emergency department setting. https://doi.org/10.1002/ams2.618 Horlocker, T. T. (2011). Regional anaesthesia in the patient receiving antithrombotic and antiplatelet therapy. British Journal of Anaesthesia, 107(SUPPL. 1), 96–106. https://doi.org/10.1093/bja/aer381 Jin, C.-N., Yu, C.-M., Sun, J.-P., Fang, F., Wen, Y.-N., Liu, M., &Lee, A. P.-W. (2013). The healthcare burden of hypertension in Asia. Heart Asia, 5(1), 238–243. https://doi.org/10.1136/heartasia-2013-010408 Johansen, A., Tsang, C., Boulton, C., Wakeman, R., &Moppett, I. (2017). Understanding mortality rates after hip fracture repair using ASA physical status in the National Hip Fracture Database. Anaesthesia, 72(8), 961–966. https://doi.org/10.1111/anae.13908 Kay, H. F., Sathiyakumar, V., Yoneda, Z. T., Lee, Y. M., Jahangir, A. A., Ehrenfeld, J. M., …Sethi, M. K. (2014). The Effects of American Society of Anesthesiologists Physical Status on Length of Stay and Inpatient Cost in the Surgical Treatment of Isolated Orthopaedic Fractures. Journal of Orthopaedic Trauma, 28(7), e153–e159. https://doi.org/10.1097/01.bot.0000437568.84322.cd Lee, S. H., Han, Y., Kim, S. J., Lee, S. J., &Ryu, Y. J. (2020). Impact of right ventricular systolic pressure in elderly patients admitted to intensive care unit after femur fracture surgery: A retrospective observational study. Medicine, 99(45), e22881. https://doi.org/10.1097/MD.0000000000022881 Lee, T. C., Lee, Y. L., Chen, J. C., Chen, C. H., &Ho, P. S. (2020). Impact of type 2 diabetes on postoperative outcome after hip fracture: Nationwide population-based study in Taiwan. BMJ Open Diabetes Research and Care, 8(1), 1–6. https://doi.org/10.1136/bmjdrc-2019-000843 Lefaivre, K. A., Macadam, S. A., Davidson, D. J., Gandhi, R., Chan, H., &Broekhuyse, H. M. (2009). Length of stay, mortality, morbidity and delay to surgery in hip fractures. Journal of Bone and Joint Surgery - Series B, 91(7), 922–927. https://doi.org/10.1302/0301-620X.91B7.22446 Lin, K. B., Yang, N. P., Lee, Y. H., Chan, C. L., Wu, C. H., Chen, H. C., &Chang, N. T. (2018). The incidence and factors of hip fractures and subsequent morbidity in Taiwan: An 11-year population-based cohort study. PLoS ONE, 13(2), 1–11. https://doi.org/10.1371/journal.pone.0192388 Lutnick, E., Kang, J., &Freccero, D. M. (n.d.). geriatrics Surgical Treatment of Femoral Neck Fractures: A Brief Review. https://doi.org/10.3390/geriatrics5020022 Major, L. J., &North, J. B. (2016). Predictors of mortality in patients with femoral neck fracture. Journal of Orthopaedic Surgery, 24(2), 150–152. https://doi.org/10.1177/1602400205 Marco-Martínez, J., Bernal-Sobrino, J. L., Fernández-Pérez, C., Elola-Somoza, F. J., Azaña-Gómez, J., García-Klepizg, J. L., …Méndez-Bailón, M. (2021). Impact of heart failure on in-hospital outcomes after surgical femoral neck fracture treatment. Journal of Clinical Medicine, 10(5), 1–10. https://doi.org/10.3390/jcm10050969 Mauermann, W. J., Shilling, A. M., &Zuo, Z. (2006). A comparison of neuraxial block versus general anesthesia for elective total hip replacement: a meta-analysis. Anesthesia and Analgesia, 103(4), 1018–1025. https://doi.org/10.1213/01.ane.0000237267.75543.59 Moran, C. G., Wenn, R. T., Sikand, M., &Taylor, A. M. (2005). Early mortality after hip fracture: is delay before surgery important? The Journal of Bone and Joint Surgery. American Volume, 87(3), 483–489. https://doi.org/10.2106/JBJS.D.01796 Morrissey, N., Iliopoulos, E., Osmani, A. W., &Newman, K. (2017). Neck of femur fractures in the elderly: Does every hour to surgery count? Injury, 48(6), 1155–1158. https://doi.org/10.1016/j.injury.2017.03.007 Müller, M., Gutwerk, A., Greve, F., Völker, L., Zyskowski, M., Kirchhoff, C., …Braun, K. (2076). Clinical Medicine The Association between High Body Mass Index and Early Clinical Outcomes in Patients with Proximal Femur Fractures. J. Clin. Med, 2020, 2076. https://doi.org/10.3390/jcm9072076 Mundi, S., Pindiprolu, B., Simunovic, N., &Bhandari, M. (2014). Similar mortality rates in hip fracture patients over the past 31 years A systematic review of RCTs. Acta Orthopaedica, 85(1), 54–59. https://doi.org/10.3109/17453674.2013.878831 Narouze, S., Benzon, H. T., Provenzano, D., Buvanendran, A., DeAndres, J., Deer, T., …Huntoon, M. A. (2018). Interventional Spine and Pain Procedures in Patients on Antiplatelet and Anticoagulant Medications (Second Edition): Guidelines from the American Society of Regional Anesthesia and Pain Medicine, the European Society of Regional Anaesthesia and Pain Thera. In Regional Anesthesia and Pain Medicine (Vol. 43). https://doi.org/10.1097/AAP.0000000000000700 Neuman, M. D., Feng, R., Carson, J. L., Gaskins, L. J., Dillane, D., Sessler, D. I., …Ellenberg, S. S. (2021). Spinal Anesthesia or General Anesthesia for Hip Surgery in Older Adults. New England Journal of Medicine, 385(22), 2025–2035. https://doi.org/10.1056/nejmoa2113514 Neuman, M. D., Rosenbaum, P. R., Ludwig, J. M., Zubizarreta, J. R., &Silber, J. H. (2014). Anesthesia technique, mortality, and length of stay after hip fracture surgery. JAMA - Journal of the American Medical Association, 311(24), 2508–2517. https://doi.org/10.1001/jama.2014.6499 Neuman, M. D., Silber, J. H., Elkassabany, N. M., Ludwig, J. M., &Fleisher, L. A. (2012). Comparative effectiveness of regional versus general anesthesia for hip fracture surgery in adults. Anesthesiology, 117(1), 72–92. https://doi.org/10.1097/ALN.0b013e3182545e7c Nikkel, L. E., Kates, S. L., Schreck, M., Maceroli, M., Mahmood, B., &Elfar, J. C. (2015). Length of hospital stay after hip fracture and risk of early mortality after discharge in New York state: retrospective cohort study. BMJ, h6246. https://doi.org/10.1136/bmj.h6246 Norris, R., &Parker, M. (2011). Diabetes mellitus and hip fracture: A study of 5966 cases. Injury, 42(11), 1313–1316. https://doi.org/10.1016/j.injury.2011.03.021 O’Brien, J. M., Phillips, G. S., Ali, N. A., Lucarelli, M., Marsh, C. B., &Lemeshow, S. (2006). Body mass index is independently associated with hospital mortality in mechanically ventilated adults with acute lung injury*. Critical Care Medicine, 34(3), 738–744. https://doi.org/10.1097/01.CCM.0000202207.87891.FC Paté-Cornell, E., Murphy, D., Lakats, L., &Gaba, D. (1996). Patient risk in anesthesia: Probabilistic risk analysis and management improvements. Annals of Operations Research, 67(1), 211–233. https://doi.org/10.1007/BF02187030 Petersen, M. B., Jørgensen, H. L., Hansen, K., &Duus, B. R. (2006). Factors affecting postoperative mortality of patients with displaced femoral neck fracture. Injury, 37(8), 705–711. https://doi.org/10.1016/j.injury.2006.02.046 Rez, A. P., Chan, A. W., Chan, W., Dennis, R. J., Pé, A., Wenyaw, A. E., …Dennis, R. J. (2006). Predicting the length of stay of patients admitted for intensive care using a first step analysis. Health Serv Outcomes Res Method, 6, 127–138. https://doi.org/10.1007/s10742-006-0009-9 Richards, T., Glendenning, A., Benson, D., Alexander, S., &Thati, S. (2018). The independent patient factors that affect length of stay following hip fractures. Annals of the Royal College of Surgeons of England, 100(7), 556–562. https://doi.org/10.1308/rcsann.2018.0068 Rodgers, A. (2000). Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised. BMJ, 321(7275), 1493–1493. https://doi.org/10.1136/bmj.321.7275.1493 Saklad, M. (1941). GRADING OF PATIENTS FOR SURGICAL PROCEDURES. Anesthesiology, 2(3), 281–284. https://doi.org/10.1097/00000542-194105000-00004 Salvador Marín, J., Ferrández Martínez, F. J., Fuster Such, C., Seguí Ripoll, J. M., Orozco Beltrán, D., Carratalá Munuera, M. C., …Marzo Campos, J. C. (2021). Risk factors for high length of hospital stay and in-hospital mortality in hip fractures in the elderly. Revista Española de Cirugía Ortopédica y Traumatología (English Edition), 65(5), 322–330. https://doi.org/10.1016/j.recote.2021.05.009 Scheike, T. H., &Zhang, M.-J. (2007). Direct Modelling of Regression Effects for Transition Probabilities in Multistate Models. 34, 17–32. https://doi.org/10.1111/j.1467-9469.2006.00544.x Schwartsmann, C. R., Jacobus, L. S., De, L., Spinelli, F., Boschin, L. C., Gonçalves, R. Z., …Silva, M. F. (2014). Dynamic Hip Screw for the Treatment of Femoral Neck Fractures: A Prospective Study with 96 Patients. https://doi.org/10.1155/2014/257871 Scurrah, A., Shiner, C. T., Stevens, J. A., &Faux, S. G. (2018). Regional nerve blockade for early analgesic management of elderly patients with hip fracture - a narrative review. Anaesthesia, 73(6), 769–783. https://doi.org/10.1111/anae.14178 Shelton, C., &White, S. (2020). Anaesthesia for hip fracture repair. BJA Education, 20(5), 142–149. https://doi.org/10.1016/j.bjae.2020.02.003 Smith, T., Pelpola, K., Ball, M., Ong, A., &Myint, P. K. (2014). Pre-operative indicators for mortality following hip fracture surgery: a systematic review and meta-analysis. Age and Ageing, 43(4), 464–471. https://doi.org/10.1093/ageing/afu065 Söderqvist, A., Ekström, W., Ponzer, S., Pettersson, H., Cederholm, T., Dalén, N., …Tidermark, J. (2009). Fax +41 61 306 12 34 E-Mail karger@karger.ch Clinical Section Prediction of Mortality in Elderly Patients with Hip Fractures: A Two-Year Prospective Study of 1,944 Patients Prediction of Mortality in Elderly Patients with Hip Fractures. Gerontology, 55, 496–504. https://doi.org/10.1159/000230587 Soliman, S. S., Jordan, G. B., Bilaniuk, J. W., Benfante, A., Kong, K., Rolandelli, R. H., …Nemeth, Z. H. (2022). The impact of BMI on morbidity and mortality after femoral fractures. European Journal of Trauma and Emergency Surgery, 48(3), 2441–2447. https://doi.org/10.1007/s00068-021-01787-w Sonnenberg, F. A., &Beck, J. R. (1993). Markov Models in Medical Decision Making. Medical Decision Making, 13(4), 322–338. https://doi.org/10.1177/0272989X9301300409 Su, H., Aharonoff, G. B., Hiebert, R., Zuckerman, J. D., &Koval, K. J. (2003). In-hospital mortality after femoral neck fracture: do internal fixation and hemiarthroplasty differ? American Journal of Orthopedics (Belle Mead, N.J.), 32(3), 151–155. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12647882 Urwin, S. C., Parker, M. J., &Griffiths, R. (2000). General versus regional anaesthesia for hip fracture surgery: A meta-analysis of randomized trials. British Journal of Anaesthesia, 84(4), 450–455. https://doi.org/10.1093/oxfordjournals.bja.a013468 vanVeen, J. J., Nokes, T. J., &Makris, M. (2010). The risk of spinal haematoma following neuraxial anaesthesia or lumbar puncture in thrombocytopenic individuals. British Journal of Haematology, 148(1), 15–25. https://doi.org/10.1111/j.1365-2141.2009.07899.x Willems, J. M., DeCraen, A. J. M., Nelissen, R. G. H. H., VanLuijt, P. A., Westendorp, R. G. J., &Blauw, G. J. (2012). Haemoglobin predicts length of hospital stay after hip fracture surgery in older patients. Maturitas, 72(3), 225–228. https://doi.org/10.1016/j.maturitas.2012.03.016 Williamson, S., Landeiro, F., McConnell, T., Fulford-Smith, L., Javaid, M. K., Judge, A., &Leal, J. (2017). Costs of fragility hip fractures globally: a systematic review and meta-regression analysis. Osteoporosis International, 28(10), 2791–2800. https://doi.org/10.1007/s00198-017-4153-6 Wise, K., Blaschke, B. L., Parikh, H. R., Gorman, T., Casnovsky, L., McMilan, L. J., …Cunningham, B. P. (2020). Variation of the Inpatient Cost of Care in the Treatment of Isolated Geriatric Intertrochanteric Hip Fractures. Geriatric Orthopaedic Surgery and Rehabilitation, 11, 1–7. https://doi.org/10.1177/2151459320976533 Woo, S. H., Cha, D. H., Park, E., Kim, S. J. U., &Kim, S. J. (2019). The association of under-weight and obesity with mortality after hip arthroplasty. Age and Ageing, 48, 94–100. https://doi.org/10.1093/ageing/afy161 Wu, A. M., Bisignano, C., James, S. L., Abady, G. G., Abedi, A., Abu-Gharbieh, E., …Vos, T. (2021). Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity, 2(9), e580–e592. https://doi.org/10.1016/S2666-7568(21)00172-0 Wu, T. Y., Hu, H. Y., Lin, S. Y., Chie, W. C., Yang, R. S., &Liaw, C. K. (2017). Trends in hip fracture rates in Taiwan: a nationwide study from 1996 to 2010. Osteoporosis International, 28(2), 653–665. https://doi.org/10.1007/s00198-016-3783-4 Yeoh, C. J. C., &Fazal, M. A. (2014). ASA Grade and Elderly Patients With Femoral Neck Fracture. Geriatric Orthopaedic Surgery & Rehabilitation, 5(4), 195–199. https://doi.org/10.1177/2151458514560471 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84580 | - |
| dc.description.abstract | 研究背景 股骨頸骨折為年老族群常見之骨折型態,由於年長者之脆弱狀態,低能量的傷害即可對該族群中造成股骨頸骨折。雖然對於股骨頸骨折的治療共識為盡早進行外科介入,但由於此族群之多重共病症以及脆弱狀態之影響,外科介入所需的麻醉方式以及術後照護皆有許多複雜因素的考量。股骨頸骨折手術之麻醉方式通常為半身麻醉或是全身麻醉,惟半身麻醉為避免造成脊髓腔血腫,與下肢癱瘓,因此禁忌症包含病患凝血功能異常與服用口服抗凝血劑等。此外年長族群經常受到多重共病症以及其脆弱狀態的影響,以及術後可能需要到接受加護病房照護而延長住院康復日數之可能性,亦影響患者最佳麻醉方式之選擇。目前麻醉醫療對於此脆弱族群運用半身麻醉或全身麻醉何者為佳仍未有定論。 研究目的 本研究主要目的有三 (1)探討影響股骨頸骨折年長族群術後須接受一般病房、加護病房照護,以及死亡之病患層面因素與麻醉風險因素之影響因子; (2)建立以實證為基礎包含前述術後狀態轉移之多階段風險預測模式; (3)依據(1)與(2)發展以病患術風險為基礎之精準麻醉方式評估架構。 材料與方法 本研究納入臺北榮民總醫院自2016年至2020年間股骨頸骨折手術病患,以貝氏網路建立包含術後四種狀態(病房、加護病房、出院、死亡)以及包含病患層級因子、麻醉方式層級因子,以及術後併發症因子之轉移狀態多重影響因素結構。本研究運用寇斯等比風險迴歸模型(Cox proportional hazards regression model,Cox PHREG)評估病患術後於前述四種狀態間的轉移影響因子與轉移風險,並據以建立術後危險分數。運用此術後危險分數結合貝氏離散時間與離散狀態馬可夫迴歸模型(Markov regression model with discrete-state and discrete-time)評估不同風險層級之股骨頸骨折病患於術後狀態間轉移機率建立其轉移機率矩陣。利用此實證風險為基礎之轉移機率矩陣,本研究架構含括多因素之多階段術後風險評估模型作為麻醉方式之實證決策依據。 結果 本研究共納入1605位股骨頸骨折病患建立貝氏網路麻醉決策。由Cox PHREG 模式分析結果顯示,影響術後出院轉移機率的因子包含年齡、麻醉方式、ASA評分、術中出血、肺炎、心臟衰竭、糖尿病、術前血紅素低於10g/d。術後發生肺炎則顯著提高由住院轉加護病房之風險(風險對比值(HR): 12.7,95% CI: 3.73-42.88),並延後由加護病房轉回病房之可能(HR: 0.31,95% CI: 0.13-0.73)。癌症為術後死亡之顯著風險因子(HR: 3.84,95% CI: 1.19-12.43)。本研究運用此寇斯迴歸分析建立之術後轉移風險分數評估此脆弱族群之臨床結果變化。其中康復出院速率以接受半身麻醉方式且術前為低風險病患最快,手術後一週已有85%的病患出院。而同時間(一周)接受半身麻醉但屬於中風險以及高風險病患出院比例分別為75%和71%。若同為接受半身麻醉但具有肺炎且屬於中風險之病患之病患,則需三週後才能達到74%出院。而具有肺炎且術前評估為高風險之病患族群三周出院比率則僅為57%。 肺炎對於接受全身麻醉患者之出院速率亦有顯著影響,接受全身麻醉中具有肺炎者其出院速率遠低於無肺炎者。如同接受半身麻醉病患,全身麻醉病患其術前風險越高之病患,出院速率越慢。接受全身麻醉病患中,無肺炎且術前風險低、中、高者其術後第七天出院機率分別為81.5%、70.1%,以及55.6%,對於接受全身麻醉且發生肺炎族群其21天出院機率分別為68.7%(術前風險為低)、41.2%(術前風險為中),以及36.7%(術前風險為高)。 不論麻醉方式為半身或全身麻醉,術後發生肺炎對於病患臨床狀態惡化至需要加護病房治療皆為重要影響因素。而無肺炎的病患則是受到其術前風險影響,此術前風險對於病患術後臨床狀態轉移之影響在接受全身麻醉之病患相較於接受半身麻醉這又更為重要。 結論 本研究運用Cox PHREG 評估病患因素、麻醉術式因素,以及術後是否發生肺炎等多層面因素評估其對於病患術後不同臨床狀態進展之影響並且結合貝氏網絡架構以離散時間離散狀態馬可夫模型建立包含術前風險層級,術後是否發生肺炎之病患多階段臨床狀態進展路徑預測,據以提供此脆弱股骨頸骨折病患最佳麻醉方式選擇之實證依據。 | zh_TW |
| dc.description.abstract | Background Femoral neck fracture (FNF) is a common injury among the elderly population caused by even low-energy falls. Current consensus on FNF treatment is surgery at earliest as soon as possible after diagnosis. To reach this goal, two types of anesthesia for FNF surgery, general (GA) and spinal anesthesia (SA) can be selected. Contraindications, such as coagulopathy, under anticoagulant or antiplatelet treatment, may lead to spinal hematoma and paralysis following SA. The elder population are also suffered from comorbidities and associated physiological limitations, which may increase the perioperative risk of unplanned ICU (intensive care unit) admission and death and thus render the type of anesthesia crucial for an optimal recovery after surgical intervention for FNF. Aims The aims of my thesis are (1)to explore the multifaced factors in terms of patient-level and types of anesthesia in associate with the perioperative progression of multiple clinical outcomes including ward, ICU care, recovery and discharge, and death for FNF patients; (2)to construct a risk-based multistate transition across the clinical outcomes stemming from the state-specific risks elucidated in (1); and (3)to establish a framework for precision decision for types of anesthesia on the basis of (1) and (2). Materials and Methods Data on patients receiving FNF surgery between January 1, 2016 and February 29, 2020 were collected from Taipei Veterans General Hospital. Under the framework of the Bayesian Network approach, multifaceted factors including patient-level, types and risks of anesthesiology, and post-operative complications on the risk of the evolution across multiple clinical outcomes (ward care, ICU care, death, and recovery and discharge) were constructed. A Cox proportional hazards regression model (Cox PHREG) was first applied to evaluated the impact of the multifaced factors on the clinical outcomes mentioned above. On the basis of the risk scores estimated from Cox PHREG, a Markov regression model with discrete-state and discrete-time was used to assess their effect on the probabilities of state-specific transitions. Supported by the data driven estimates on the probability transition matrix across defied clinical outcomes, a framework for optimal decision on the types of anesthesiology was then established. Result A total of 1605 subjects receiving FNF surgery were enrolled in this study. From the results of Cox PHREG analysis, factors associated with the risk of delayed discharge include older age, general anesthesia, higher ASA score, blood loss of more than 500ml, heart failure, pneumonia, diabetes, and a preoperative hemoglobin less than 10mg/dl. Among these factors, pneumonia increased the risk of being transferred to ICU (hazard ratio, HR: 12.7,95% CI: 3.73-42.88) and prolonged ICU stay by decreasing the force of transition from ICU to ward (HR: 0.31,95% CI: 0.13-0.73). The comorbidity of cancer increase the risk of in-hospital mortality by 4 fold (HR: 3.84,95% CI: 1.19-12.43). Supported by these quantitative results derived from Cox PHREG, we further construct the transition across the four clinical outcomes defined above by using a discrete-time and discrete-state Markov regression model. Patients with low preoperative risk under SA have the lowest length of stay (LOS). The probability of discharge on the 7th postoperative day for patients under SA and GA without pneumonia were 81% and 85% (low preoperative risk), 75% and 70% (moderate preoperative risk), and 71% and 55% (high preoperative risk), respectively. For subjects receiving SA but with pneumonia and high preoperative risk, it takes three weeks for these subpopulation to reach 74% probability of recovery and discharge, which is 57% among the subpopulation with high preoperative risk. There is significant impact of pneumonia on the chance of discharge among those receiving GA. Consistent with those receive SA, pre-operative risk exerts a significant impact on the chance of discharge for this subpopulation. For the subpopulation receiving GA without pneumonia, the chance of discharge was 81.5%, 70.1%, 55.6% at 7th day for those at low, medium, and high pre-operative risk, respectively. For this subpopulation with pneumonia, the corresponding figures at 21th day were 68.7% (low risk), 41.2% (medium risk), and 36.7% (high risk), respectively. Higher preoperative risk is related to higher chance of ICU admission and prolonged LOS in ICU. Patients with pneumonia had much longer LOS and ICU stay, especially in GA. Discussion Stemming Cox PHREG, a series of risk factors including patient-level, types of anesthesiology, and pneumonia after surgery were incorporated to establish a multifaceted risk score. By using this risk score in conjunction with a Markov regression model in discrete-state and discrete-time with the Bayesian network, we construct the trajectory of the transition across the clinical outcomes of ward care, ICU care, recovery and discharge, and death, which further support an optimal decision on the type of anesthesiology. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:16:24Z (GMT). No. of bitstreams: 1 U0001-2009202221121900.pdf: 3148765 bytes, checksum: 10dda1d426807ff7c5f04660867f936c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書.........................................................................................................i 致謝................................................................................................................................ii 中文摘要......................................................................................................................iii Abstract.......................................................................................................................vii 第一章 緒論................................................................................................................1 1.1 股骨頸骨折之疾病負擔.................................................................................1 1.2 股骨頸骨折之臨床治療.................................................................................2 1.3股骨頸骨折手術之麻醉方式..........................................................................3 1.4 股骨頸骨折病患之圍術期照顧與醫療照護資源.........................................4 第二章 文獻回顧..........................................................................................................5 2.1 股骨頸骨折之圍術期風險因子.....................................................................5 2.1.1 年齡......................................................................................................5 2.1.2 身體質量指數......................................................................................5 2.1.3 麻醉風險評估分級:ASA分級..........................................................6 2.1.4共病症...................................................................................................7 2.1.5 肺部併發症..........................................................................................7 2.2 麻醉方式之選擇.............................................................................................8 2.3 馬可夫模型於醫學之應用.............................................................................9 2.4 術後照護所需醫療資源...............................................................................10 第三章 材料與方法....................................................................................................12 3.1 研究設計.......................................................................................................12 3.1.1術後臨床狀態轉移馬可夫模型.........................................................15 3.2 研究資料.......................................................................................................16 3.2.1 研究對象............................................................................................16 3.2.2 資料收集............................................................................................16 3.3 迴歸分析.......................................................................................................17 3.3.1 Cox迴歸分析......................................................................................17 3.3.2羅吉斯迴歸分析.................................................................................18 3.4模式建構........................................................................................................18 3.4.1多階段馬可夫模型.............................................................................18 3.4.2 馬可夫鍊轉移機率............................................................................19 3.4.3 出院風險分數建立............................................................................21 3.4.4 馬可夫決策樹....................................................................................22 第四章 結果................................................................................................................25 4.1 納入研究個案臨床特徵...............................................................................25 4.2 Cox PHREG分析結果..................................................................................27 4.2.1 從普通病房出院之單變項分析........................................................27 4.2.2 由加護病房轉至普通病房之單變項分析........................................29 4.2.3 由病房轉至加護病房之單變項分析................................................29 4.2.4 住院死亡率之單變項分析................................................................29 4.3 影響臨床結果之變數選擇...........................................................................30 4.4 貝氏多項式迴歸模型...................................................................................35 4.4.1單變項貝氏多項式模型單變項參數之事後分佈.............................35 4.4.2模型挑選之後之貝氏多項式模型參數之事後概率分布.................38 4.4.3由貝氏多項式模型得到的轉移機率.................................................40 4.5 馬可夫分析...................................................................................................40 第五章 討論與結論....................................................................................................76 參考資料......................................................................................................................81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 股骨頸骨折 | zh_TW |
| dc.subject | 馬可夫決策樹 | zh_TW |
| dc.subject | 貝氏多項式模型 | zh_TW |
| dc.subject | 多階段馬可夫模型 | zh_TW |
| dc.subject | 麻醉 | zh_TW |
| dc.subject | Femoral Neck Fracture | en |
| dc.subject | Bayesian multinomial models | en |
| dc.subject | Markov Decision tree | en |
| dc.subject | Anesthesia | en |
| dc.subject | Multistate Markov model | en |
| dc.title | 大數據決策分析於股骨頸骨折麻醉方式應用 | zh_TW |
| dc.title | Big Data Analysis: Applications of Decision Trees of Anesthesia for Femoral Neck Fracture Surgery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 陳秀熙(0000-0002-5799-6705) | |
| dc.contributor.oralexamcommittee | 張淑惠(SHU-HUI CHANG),張光宜(Kuang-Yi Chang) | |
| dc.contributor.oralexamcommittee-orcid | 張淑惠(0000-0002-6164-0875) | |
| dc.subject.keyword | 股骨頸骨折,麻醉,多階段馬可夫模型,貝氏多項式模型,馬可夫決策樹, | zh_TW |
| dc.subject.keyword | Femoral Neck Fracture,Anesthesia,Multistate Markov model,Bayesian multinomial models,Markov Decision tree, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU202203681 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-21 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-13 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2009202221121900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
