請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84567
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建錦(Chien Chin Chen) | |
dc.contributor.author | Ze-Han Fang | en |
dc.contributor.author | 方澤翰 | zh_TW |
dc.date.accessioned | 2023-03-19T22:15:55Z | - |
dc.date.copyright | 2022-09-26 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-21 | |
dc.identifier.citation | [1] Abbasi, A., Li, J., Adjeroh, D., Abate, M., Zheng, W., Don’t mention it? Analyzing user-generated content signals for early adverse event warnings, Information Systems Research, 30 (2019) 1007-1028. [2] Adomavicius, G., Tuzhilin, A., Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE transactions on knowledge and data engineering, 17 (2005) 734-749. [3] Afkhami, M., Cormack, L., Ghoddusi, H., Google search keywords that best predict energy price volatility, Energy Economics, 67 (2017) 17-27. [4] Almazro, D., Shahatah, G., Albdulkarim, L., Kherees, M., Martinez, R., Nzoukou, W., A survey paper on recommender systems, arXiv preprint arXiv:1006.5278, DOI (2010). [5] Altshuler, Y., Pan, W., Pentland, A.S., Trends prediction using social diffusion models, International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, Springer, 2012, pp. 97-104. [6] Baeza-Yates, R., Tiberi, A., Extracting semantic relations from query logs, Google Patents, 2011. [7] Bansal, A., Kauffman, R.J., Mark, R.M., Peters, E., Financial risk and financial risk management technology (RMT): issues and advances, Information & management, 24 (1993) 267-281. [8] Barr, C., Jones, R., Regelson, M., The linguistic structure of English web-search queries, Proceedings of the conference on empirical methods in natural language processing, Association for Computational Linguistics, 2008, pp. 1021-1030. [9] Berenson, M., Levine, D., Szabat, K.A., Krehbiel, T.C., Basic business statistics: Concepts and applications, Pearson Higher Education AU2012. [10] Birchenhall, C.R., Jessen, H., Osborn, D.R., Simpson, P., Predicting US business-cycle regimes, Journal of Business & Economic Statistics, 17 (1999) 313-323. [11] Birtolo, C., Ronca, D., Advances in clustering collaborative filtering by means of fuzzy C-means and trust, Expert Systems with Applications, 40 (2013) 6997-7009. [12] Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A., Recommender systems survey, Knowledge-based systems, 46 (2013) 109-132. [13] Brynjolfsson, E., Geva, T., Reichman, S., Crowd-Squared, MIS quarterly, 40 (2016) 941-962. [14] Can, E.F., Croft, W.B., Manmatha, R., Incorporating query-specific feedback into learning-to-rank models, Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, ACM, 2014, pp. 1035-1038. [15] Cawley, G.C., Talbot, N.L., Fast exact leave-one-out cross-validation of sparse least-squares support vector machines, Neural networks, 17 (2004) 1467-1475. [16] Chauvet, M., Piger, J., A comparison of the real-time performance of business cycle dating methods, Journal of Business & Economic Statistics, 26 (2008) 42-49. [17] Chen, C.C., Tsai, Y.-T., A novel business cycle surveillance system using the query logs of search engines, Knowledge-Based Systems, 30 (2012) 104-114. [18] Choi, H., Varian, H., Predicting the present with google trends, Economic Record, 88 (2012) 2-9. [19] Dimpfl, T., Jank, S., Can internet search queries help to predict stock market volatility?, European Financial Management, 22 (2016) 171-192. [20] Doan, A., Ramakrishnan, R., Halevy, A.Y., Crowdsourcing systems on the world-wide web, Communications of the ACM, 54 (2011) 86-96. [21] Dong, J., Dai, W., Liu, Y., Yu, L., Wang, J., Forecasting Chinese stock market prices using Baidu search index with a learning-based data collection method, International Journal of Information Technology & Decision Making, 18 (2019) 1605-1629. [22] Dou, W., Lim, K.H., Su, C., Zhou, N., Cui, N., Brand positioning strategy using search engine marketing, Mis Quarterly, 34 (2010) 261-279. [23] Emang, D., Shitan, M., Abd Ghani, A.N., Noor, K.M., Forecasting with univariate time series models: A case of export demand for peninsular Malaysia's moulding and chipboard, Journal of Sustainable Development, 3 (2010) 157. [24] Ericson, K., Pallickara, S., On the performance of high dimensional data clustering and classification algorithms, Future Generation Computer Systems, 29 (2013) 1024-1034. [25] Eysenbach, G., Infodemiology: tracking flu-related searches on the web for syndromic surveillance, AMIA Annual Symposium Proceedings, American Medical Informatics Association, 2006, pp. 244. [26] Fan, J., Wu, H., Li, G., Zhou, L., Suggesting topic-based query terms as you type, Web Conference (APWEB), 2010 12th International Asia-Pacific, IEEE, 2010, pp. 61-67. [27] Fang, Z.-H., Tzeng, J.-S., Chen, C.C., Chou, T.-C., A Study of Machine Learning Models in Epidemic Surveillance: Using the Query Logs of Search Engines, PACIS, 2010, pp. 137. [28] Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant, L., Detecting influenza epidemics using search engine query data, Nature, 457 (2009) 1012-1014. [29] Goldberg, D., Nichols, D., Oki, B.M., Terry, D., Using collaborative filtering to weave an information tapestry, Communications of the ACM, 35 (1992) 61-70. [30] Guo, Z., Wong, W.K., Li, M., A multivariate intelligent decision-making model for retail sales forecasting, Decision Support Systems, 55 (2013) 247-255. [31] Halavais, A., Search engine society, John Wiley & Sons2013. [32] Hamilton, J.D., Perez-Quiros, G., What do the leading indicators lead?, Journal of Business, DOI (1996) 27-49. [33] Hinkle, D.E., Wiersma, W., Jurs, S.G., Applied statistics for the behavioral sciences, Houghton Mifflin College Division2003. [34] Hisada, S., Murayama, T., Tsubouchi, K., Fujita, S., Yada, S., Wakamiya, S., Aramaki, E., Surveillance of early stage COVID-19 clusters using search query logs and mobile device-based location information, Scientific Reports, 10 (2020) 1-8. [35] Hu, H., Tang, L., Zhang, S., Wang, H., Predicting the direction of stock markets using optimized neural networks with Google Trends, Neurocomputing, 285 (2018) 188-195. [36] James, H., A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle, Econometrica, DOI (1989). [37] Jeong, J.-W., Morris, M.R., Teevan, J., Liebling, D., A crowd-powered socially embedded search engine, Seventh International AAAI Conference on Weblogs and Social Media, 2013. [38] Joachims, T., Optimizing search engines using clickthrough data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2002, pp. 133-142. [39] Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G., Accurately interpreting clickthrough data as implicit feedback, Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, ACM, 2005, pp. 154-161. [40] Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., Gay, G., Evaluating the accuracy of implicit feedback from clicks and query reformulations in web search, ACM Transactions on Information Systems (TOIS), 25 (2007) 7. [41] Jun, D.B., Joo, Y.J., Predicting turning points in business cycles by detection of slope changes in the leading composite index, Journal of Forecasting, 12 (1993) 197-213. [42] Kazai, G., In search of quality in crowdsourcing for search engine evaluation, European Conference on Information Retrieval, Springer, 2011, pp. 165-176. [43] Ketter, W., Collins, J., Gini, M., Gupta, A., Schrater, P., Detecting and forecasting economic regimes in multi-agent automated exchanges, Decision Support Systems, 47 (2009) 307-318. [44] Kim, Y., Collins-Thompson, K., Teevan, J., Crowdsourcing for Robustness in Web Search, Proceedings of NIST Special Publication: The Twenty-Second Text REtrieval Conference, 2013. [45] Lü, L., Medo, M., Yeung, C.H., Zhang, Y.-C., Zhang, Z.-K., Zhou, T., Recommender systems, Physics reports, 519 (2012) 1-49. [46] Lam, M., Neural network techniques for financial performance prediction: integrating fundamental and technical analysis, Decision Support Systems, 37 (2004) 567-581. [47] Lampos, V., Majumder, M.S., Yom-Tov, E., Edelstein, M., Moura, S., Hamada, Y., Rangaka, M.X., McKendry, R.A., Cox, I.J., Tracking COVID-19 using online search, NPJ digital medicine, 4 (2021) 1-11. [48] Landau, L., An introduction to recommender systems, Cambridge University Press, New York, 2011. [49] Layton, A.P., Dating and predicting phase changes in the US business cycle, International Journal of Forecasting, 12 (1996) 417-428. [50] Lewis, C., International and Business Forecasting Methods Butterworths: London, DOI (1982). [51] Li, Z., Xu, W., Zhang, L., Lau, R.Y., An ontology-based Web mining method for unemployment rate prediction, Decision Support Systems, 66 (2014) 114-122. [52] Lin, R.-T., Cheng, Y., Jiang, Y.-C., Exploring Public Awareness of Overwork Prevention With Big Data From Google Trends: Retrospective Analysis, Journal of Medical Internet Research, 22 (2020) e18181. [53] Liu, T.-Y., Learning to rank for information retrieval, Foundations and Trends in Information Retrieval, 3 (2009) 225-331. [54] Lu, C.-J., Lee, T.-S., Chiu, C.-C., Financial time series forecasting using independent component analysis and support vector regression, Decision Support Systems, 47 (2009) 115-125. [55] Manning, C.D., Raghavan, P., Schütze, H., Introduction to information retrieval, Cambridge university press Cambridge2008. [56] Moradi, M., Crowdsourcing for search engines: perspectives and challenges, International Journal of Crowd Science, DOI (2019). [57] Mukaka, M.M., A guide to appropriate use of correlation coefficient in medical research, Malawi medical journal, 24 (2012) 69-71. [58] Osborn, D.R., Sensier, M., The prediction of business cycle phases: financial variables and international linkages, National Institute Economic Review, 182 (2002) 96-105. [59] Park, D.H., Kim, H.K., Choi, I.Y., Kim, J.K., A literature review and classification of recommender systems research, Expert Systems with Applications, 39 (2012) 10059-10072. [60] Park, S., Cho, K., Choi, K., Information seeking behavior of shopping site users: a log analysis of popshoes, a korean shopping search engine, Journal of the Korean Society for information Management, 32 (2015) 289-305. [61] Polgreen, P.M., Chen, Y., Pennock, D.M., Nelson, F.D., Weinstein, R.A., Using internet searches for influenza surveillance, Clinical infectious diseases, 47 (2008) 1443-1448. [62] Poongodi, M., Nguyen, T.N., Hamdi, M., Cengiz, K., Global cryptocurrency trend prediction using social media, Information Processing & Management, 58 (2021) 102708. [63] Radlinski, F., Joachims, T., Query chains: learning to rank from implicit feedback, Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, ACM, 2005, pp. 239-248. [64] Rath, T.M., Carreras, M., Sebastiani, P., Automated detection of influenza epidemics with hidden Markov models, Advances in Intelligent data analysis V, Springer2003, pp. 521-532. [65] Rho, H., Choi, K., Yoo, D., Predicting agricultural and livestock products purchases using the Internet search index and data mining techniques, Data Technologies and Applications, DOI (2021). [66] Rho, H., Choi, K., Yoo, D., Predicting agricultural and livestock products purchases using the Internet search index and data mining techniques, Data Technologies and Applications, 55 (2021) 788-809. [67] Serfling, R.E., Methods for current statistical analysis of excess pneumonia-influenza deaths, Public health reports, 78 (1963) 494. [68] Shih, S.-Y., Lee, M., Chen, C.C., An Effective Friend Recommendation Method Using Learning to Rank and Social Influence, Proceedings of the 19th Pacific Asia Conference on Information Systems, 2015, pp. 242. [69] Shih, S.-Y., Lee, M., Chen, C.C., An Effective Friend Recommendation Method Using Learning to Rank and Social Influence, DOI (2015). [70] Surowiecki, J., The wisdom of crowds, Anchor2005. [71] Surowiecki, J., Silverman, M.P., The wisdom of crowds, American Journal of Physics, 75 (2007) 190-192. [72] Tran, T.Q., Sakuma, J., Seasonal-adjustment Based Feature Selection Method for Predicting Epidemic with Large-scale Search Engine Logs, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2857-2866. [73] Tsai, C.-F., Hsiao, Y.-C., Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches, Decision Support Systems, 50 (2010) 258-269. [74] Volchek, K., Liu, A., Song, H., Buhalis, D., Forecasting tourist arrivals at attractions: Search engine empowered methodologies, Tourism Economics, 25 (2019) 425-447. [75] Vosen, S., Schmidt, T., Forecasting private consumption: survey‐based indicators vs. Google trends, Journal of Forecasting, 30 (2011) 565-578. [76] Wakamiya, S., Lee, R., Sumiya, K., Crowd-based urban characterization: extracting crowd behavioral patterns in urban areas from twitter, Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based social networks, 2011, pp. 77-84. [77] Wang, L., Zhang, J., Chen, G., Qiao, D., Identifying comparable entities with indirectly associative relations and word embeddings from web search logs, Decision Support Systems, 141 (2021) 113465. [78] Wang, Z., Huang, Y., Cai, B., Ma, R., Wang, Z., Stock turnover prediction using search engine data, Journal of Circuits, Systems and Computers, 30 (2021) 2150122. [79] Wang, Z., Yu, X., Feng, N., Wang, Z., Computing, An improved collaborative movie recommendation system using computational intelligence, Journal of Visual Languages, 25 (2014) 667-675. [80] Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., Xu, H., Time series data augmentation for deep learning: A survey, arXiv preprint arXiv:2002.12478, DOI (2020). [81] Zadeh, A.H., Zolbanin, H.M., Sharda, R., Delen, D., Social media for nowcasting flu activity: Spatio-temporal big data analysis, Information Systems Frontiers, 21 (2019) 743-760. [82] Zahedi, M.S., Mansouri, B., Moradkhani, S., Farhoodi, M., Oroumchian, F., How questions are posed to a search engine? An empiricial analysis of question queries in a large scale Persian search engine log, 2017 3th International Conference on Web Research (ICWR), IEEE, 2017, pp. 84-89. [83] Zhitomirsky-Geffet, M., Bar-Ilan, J., Levene, M., Testing the stability of “wisdom of crowds” judgments of search results over time and their similarity with the search engine rankings, Aslib Journal of Information Management, DOI (2016). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84567 | - |
dc.description.abstract | 主題事件趨勢長久以來都是各國政府及企業所關心的議題,透過主題事件趨勢預測,可以分析一個國家目前的社會經濟狀況及未來國家發展的走向,進而制定適當的決策。隨著資訊科技快速的演進,搜尋引擎已成為群眾在網路上蒐集資訊的重要工具,使用者於搜尋引擎上的行為模式與當前主題事件的發展息息相關,存在於搜尋引擎中的群眾智慧對於主題事件趨勢預測也深具研究發展的潛力。 在本研究中,我們基於隱含於搜尋引擎中的群眾智慧提出了協同式主題事件預測架構以評估主題事件當前的發展狀態。此架構包含兩個主要的貢獻,首先,我們提出了基於群眾智慧的特徵選取方法以找出具有代表性的特徵詞彙當作預測主題事件發展的關鍵指標。接著,我們進一步的基於搜尋引擎中的群眾智慧設計了一套新式的主題事件預測方法,以評估當前主題事件的發展狀態。實驗結果顯示,我們所提出的協同式主題事件預測架構能夠精準的進行預測,並且證明搜尋引擎中的群眾智慧能夠有效的運用於主題事件趨勢預測領域。 | zh_TW |
dc.description.abstract | In response to rapidly changing situations at the national and international levels, it is important for decision makers to monitor the development of trending topics which are associated with long-running events that affect people’s lives and activities. In recent years, web search engines have become a major platform for the general public to access information. Because the search patterns of search engine users are often correlated with emerging events, the crowdsourcing of search engines has the potential for trend surveillance. In this dissertation, we provide a collaborative trend surveillance framework to estimate the status of trending topics by crowdsourcing the collective wisdom in web search engines. First, we propose a crowdsourced-wisdom-based feature selection method to select representative indicators showing trending topics and concerns of the general public. Then, we describe the design of our novel prediction method to estimate the trending topic statuses by crowdsourcing public opinion in web search engines. The experiment results show that the collaborative trend surveillance framework performs well and the crowdsourcing of web search engines are helpful for trend surveillance. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:15:55Z (GMT). No. of bitstreams: 1 U0001-2009202220393500.pdf: 2686238 bytes, checksum: 152aa050dcfbc563c19626c4db3cb677 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 謝辭 i 中文摘要 ii 英文摘要 iii Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 Trend Surveillance Systems Using Web Search Engines 5 2.2 Benefits of Crowdsourcing for Web Search Engines 6 2.3 Recommendation Systems and Collaborative Filtering 8 2.4 Serfling Method 10 Chapter 3 Feature Selection Using Crowdsourcing of Web Search Engines 12 3.1 Problem Definition 12 3.2 The Proposed Feature Selection Method 14 3.3 Prediction Model Construct 19 3.4 Performance Evaluation 21 3.4.1 Data Description and Evaluation Metrics 21 3.4.2 Prediction Performance on UIC 25 3.4.3 Prediction Performance on ILI 28 3.4.4 Prediction Performance on NCI 31 3.4.5 Prediction Performance on XBOX 33 3.4.6 Experiment Based on the Sliding Window Approach 35 3.4.7 Experiment Discussion 46 3.5 Conclusion 50 Chapter 4 Trend Prediction Using Crowdsourcing of Web Search Engines 51 4.1 Problem Definition 51 4.2 Feature Selection 52 4.3 The Proposed Prediction Method 56 4.4 Performance Evaluation 60 4.4.1 Dataset description and evaluation metrics 60 4.4.2 Prediction performance on UIC 65 4.4.3 Prediction performance on ILI 68 4.4.4 Prediction performance on NCI 70 4.4.5 Prediction performance on XBOX 72 4.4.6 Experiment Discussion 74 4.5 Query Term Analysis 78 4.6 Conclusion 80 Chapter 5 Conclusions and Future Works 81 References 82 Appendix A 88 Appendix B 89 | |
dc.language.iso | en | |
dc.title | 主題事件趨勢研究 | zh_TW |
dc.title | A Study of Trending Topic Prediction | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳孟彰(Meng Chang Chen),張嘉惠(Chia-Hui Chang),盧信銘(Hsin-Min Lu),孔令傑(Ling-Chieh Kung) | |
dc.subject.keyword | 主題事件趨勢預測,排序學習,特徵選取,機器學習,群眾智慧, | zh_TW |
dc.subject.keyword | Topic Trend Surveillance,Learning to Rank,Feature Selection,Machine Learning,Crowdsourcing, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU202203676 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-22 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-26 | - |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2009202220393500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.62 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。