請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84555完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑華(Shu-Wha Lin) | |
| dc.contributor.author | Shu-Lun Chang | en |
| dc.contributor.author | 張書綸 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:15:29Z | - |
| dc.date.copyright | 2022-10-14 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-23 | |
| dc.identifier.citation | 1.Palta, S., R. Saroa, and A. Palta, Overview of the coagulation system. Indian journal of anaesthesia, 2014. 58(5): p. 515-523. 2.Adams, R.L. and R.J. Bird, Review article: Coagulation cascade and therapeutics update: relevance to nephrology. Part 1: Overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton), 2009. 14(5): p. 462-70. 3.F. I. Mulder E. Horva´ th-Puho´ , N.v.E., Venous thromboembolism in cancer patients: a population-based cohort study. Blood, 2021. 137(14): p. 1959-1969. 4.Michael B. Streiff, S.A.A., Dominique Farge, Martina Murphy, Jean M. Connors, Gregory Piazza Update on Guidelines for the Management of Cancer‐Associated Thrombosis. The Oncologist, 2021. 26(1): p. e24-e40. 5.Mulder FI, H.a.-P.o.E., van Es N, et al., Venous thromboembolism in cancer patients: a population-based cohort study. Blood, 2021. 2021:137: p. 1959-1969. 6.Falanga, A., et al., Management of Cancer-Associated Thrombosis: Unmet Needs and Future Perspectives. TH Open, 2021. 05(03): p. e376-e386. 7.Hisada, Y. and N. Mackman, Cancer-associated pathways and biomarkers of venous thrombosis. Blood, 2017. 130(13): p. 1499-1506. 8.Basu, A. and A.A. Khorana, Gastrointestinal Cancers and Thrombosis, in Textbook of Gastrointestinal Oncology, S. Yalcin and P.A. Philip, Editors. 2019, Springer International Publishing: Cham. p. 367-378. 9.Zhu, S., et al., Roles of Microvesicles in Tumor Progression and Clinical Applications. International journal of nanomedicine, 2021. 16: p. 7071-7090. 10.van Doormaal, F., et al., Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study. Thromb Haemost, 2012. 108(1): p. 160-5. 11.Thaler, J., et al., Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost, 2012. 10(7): p. 1363-70. 12.Hisada, Y., et al., Comparison of microvesicle tissue factor activity in non-cancer severely ill patients and cancer patients. Thrombosis research, 2018. 165: p. 1-5. 13.Konstantin Stark*, I.S., Urjita Joshi, Badr Kilani ,et al, Distinct Pathogenesis of Pancreatic Cancer Microvesicle–Associated Venous Thrombosis Identifies New Antithrombotic Targets In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018. 38(4): p. 772-786. 14.Vormittag, R., et al., High factor VIII levels independently predict venous thromboembolism in cancer patients: the cancer and thrombosis study. Arterioscler Thromb Vasc Biol, 2009. 29(12): p. 2176-81. 15.Tafur, A.J., et al., Prospective evaluation of protein C and factor VIII in prediction of cancer-associated thrombosis. Thromb Res, 2015. 136(6): p. 1120-5. 16.Battistelli, S., et al., Coagulation factor levels in non-metastatic colorectal cancer patients. Int J Biol Markers, 2008. 23(1): p. 36-41. 17.Nagy, M., et al., Predictive Value for Increased Factor XIa and Plasma Kallikrein Activity in Acute Venous Thromboembolism. Blood, 2021. 138(Supplement 1): p. 293-293. 18.Brian Park, Novel Factor XI Inhibitor Fast Tracked for Thrombosis Associated With Cancer. Hematology Advisor, 2022. 19.Nickel, K.F., et al., The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood, 2015. 126(11): p. 1379-89. 20.Chang, C.-H. and S. Pauklin, Extracellular vesicles in pancreatic cancer progression and therapies. Cell Death & Disease, 2021. 12(11): p. 973. 21.Frere, C., et al., Incidence of Venous Thromboembolism in Patients With Newly Diagnosed Pancreatic Cancer and Factors Associated With Outcomes. Gastroenterology, 2020. 158(5): p. 1346-1358.e4. 22.Zwicker, J.I., et al., Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res, 2009. 15(22): p. 6830-40. 23.Echrish, H.H., et al., Effect of resection of localized pancreaticobiliary adenocarcinoma on angiogenic markers and tissue factor related pro-thrombotic and pro-angiogenic activity. Thromb Res, 2014. 134(2): p. 479-87. 24.Hisada, Y., et al., Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size. J Thromb Haemost, 2017. 15(11): p. 2208-2217. 25.Hisada, Y. and N. Mackman, Update from the laboratory: mechanistic studies of pathways of cancer-associated venous thrombosis using mouse models. Hematology Am Soc Hematol Educ Program, 2019. 2019(1): p. 182-186. 26.M Z Wojtukiewicz , M.R., L R Zacharski, et al, Localization of blood coagulation factors in situ in pancreatic carcinoma. Thromb Haemost, 2001. 86(6): p. 1416-1420. 27.Young Jun Shim, V.C., et al, Polyphosphate expression by cancer cell extracellular vesicles mediates binding of factor XII and contact activation. Blood Advanced, 2021. 5: p. 4741-4751. 28.Reiner K. Mailer a, C.R., et al, An update on factor XII-driven vascular inflammation. Molecular Cell Research, 2022. 1869(1). 29.Schmaier, A.H., The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost, 2016. 14(1): p. 28-39. 30.Rex, D.A.B., et al., A modular map of Bradykinin-mediated inflammatory signaling network. J Cell Commun Signal, 2022. 16(2): p. 301-310. 31.Aksu, K., A. Donmez, and G. Keser, Inflammation-induced thrombosis: mechanisms, disease associations and management. Curr Pharm Des, 2012. 18(11): p. 1478-93. 32.Yohei Hisada, N.M., et al, The Intrinsic Pathway does not Contribute to Activation of Coagulation in Mice Bearing Human Pancreatic Tumors Expressing Tissue Factor. Thromb Haemost, 2021. 121: p. 967-970. 33.Jung, H.S., et al., Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression. PloS one, 2019. 14(4): p. e0216055-e0216055. 34.Geddings, J.E., et al., Tissue factor–positive tumor microvesicles activate platelets and enhance thrombosis in mice. Journal of Thrombosis and Haemostasis, 2016. 14(1): p. 153-166. 35.McCrae, K.R., Novel Mechanism of Cancer Thrombosis Induced by Microvesicles. Arterioscler Thromb Vasc Biol, 2018. 38(4): p. 692-694. 36.Hisada, Y. and N. Mackman, Mouse models of cancer-associated thrombosis. Thrombosis Research, 2018. 164: p. S48-S53. 37.Deer, E.L., et al., Phenotype and genotype of pancreatic cancer cell lines. Pancreas, 2010. 39(4): p. 425-435. 38.Li, H., et al., Effect of PTEN and KAI1 gene overexpression on the proliferation, metastasis and radiosensitivity of ASPC‑1 pancreatic cancer cells under hypoxic conditions. Mol Med Rep, 2014. 10(4): p. 1973-1977. 39.Abdol Razak, N., O. Elaskalani, and P. Metharom, Pancreatic Cancer-Induced Neutrophil Extracellular Traps: A Potential Contributor to Cancer-Associated Thrombosis. International journal of molecular sciences, 2017. 18(3): p. 487. 40.Wang, J.-G., et al., Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood, 2012. 119(23): p. 5543-5552. 41.Bi, L., et al., Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet, 1995. 10(1): p. 119-21. 42.D L Straight, D.W.S., A coagulation factor IX-deficient mouse model for human hemophilia B. Nature Genetics, 1997. 90(10): p. 3962-3966. 43.Yu, I.S., et al., TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood, 2004. 104(1): p. 135-42. 44.Ching-Tzu Yen, S.-W.L., et al, Current animal models of hemophilia: the state of the art. Thrombosis Journal, 2016. 14(22): p. 101-106. 45.Paul, D.S. and W. Bergmeier, Novel Mouse Model for Studying Hemostatic Function of Human Platelets. Arterioscler Thromb Vasc Biol, 2020. 40(8): p. 1891-1904. 46.Khorana, A.A., et al., Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer, 2007. 110(10): p. 2339-46. 47.Khorana, A.A., et al., Thromboembolism in hospitalized neutropenic cancer patients. J Clin Oncol, 2006. 24(3): p. 484-90. 48.Brill, A., et al., von Willebrand factor–mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood, 2011. 117(4): p. 1400-1407. 49.Thomas, G.M., et al., Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. J Thromb Haemost, 2015. 13(7): p. 1310-9. 50.Previtali, E., et al., Risk factors for venous and arterial thrombosis. Blood Transfus, 2011. 9(2): p. 120-38. 51.Unruh, D. and C. Horbinski, Beyond thrombosis: the impact of tissue factor signaling in cancer. Journal of Hematology & Oncology, 2020. 13(1): p. 93. 52.Bauer, A.T., et al., von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood, 2015. 125(20): p. 3153-3163. 53.Chen, Q., et al., Neutrophil Extracellular Traps in Tumor Metastasis: Pathological Functions and Clinical Applications. Cancers, 2021. 13(11): p. 2832. 54.Qi, Y., et al., Novel antibodies against GPIbα inhibit pulmonary metastasis by affecting vWF-GPIbα interaction. Journal of Hematology & Oncology, 2018. 11(1): p. 117. 55.Erpenbeck, L., et al., Inhibition of platelet GPIb alpha and promotion of melanoma metastasis. J Invest Dermatol, 2010. 130(2): p. 576-86. 56.Dammann, K., et al. Operative Hemostasis in Trauma and Acute Care Surgery: The Role of Biosurgical Agents. 2020. 57.Lin, C.-I., Investigating the role of microvesicles in cancer-associated venous thtombosis by using mouse models. 2020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84555 | - |
| dc.description.abstract | 癌症相關靜脈血栓是癌症病患常見的併發症,且為癌症病患的第二大死因。 現行治療藥物多以凝血路徑或血小板為標的,不僅增加癌症病患出血的風險,患者經治療後仍有靜脈栓塞復發的機率,且癌症類型不同其誘發靜脈栓塞的機制也相異,因此深入探討癌症相關靜脈血栓機制,並針對癌症類型找出其適合作用的藥物標的,來預防病患血栓的形成,是當前重要的問題。 腫瘤微粒已被許多文獻指出是導致癌症相關靜脈血栓形成的重要因子,但臨床研究對於腫瘤微粒與癌症相關靜脈血栓是否存在相關性,仍存在爭議。本論文以靜脈栓塞併發率最高的胰臟癌為討論材料,以期釐清胰臟癌腫瘤微粒誘發癌症相關靜脈血栓之機制。本論文在以胰臟癌腫瘤微粒誘導凝血相關因子缺陷的基因改造小鼠發現,在A型血友病小鼠和B型血友病小鼠難以觀察到血栓,而TXAS-/-小鼠產生的血栓也明顯小於野生型小鼠,顯示腫瘤微粒tissue factor(TF) 的表現是影響小鼠血栓形成的主因,且內在途徑及血小板亦參與TF陽性腫瘤微粒介導之靜脈血栓的生成。癌症移植小鼠模型亦呈現相似結果,移植腫瘤後的野生型NSG小鼠可以誘發靜脈血栓的生成,但在A型血友病胰臟癌腫瘤小鼠則無法觀察到血栓的產生。綜上而論,TF在腫瘤微粒誘導血栓形成上扮演重要的起始角色,而若少了後續凝血內在途徑增幅凝血反應,會大幅抑制血栓的形成。血小板的缺陷亦會影響到TF陽性腫瘤微粒所誘導形成的血栓大小,但就靜脈血栓生成的重要性而言不比內在途徑凝血因子的影響大。而注射胰臟癌TF剔除株釋放之腫瘤微粒,發現少數小鼠有血栓的形成,未來將針對血栓成分作分析,希望能更了解腫瘤微粒在TF啟動的凝血外在路徑外,其他誘發靜脈血栓形成的機轉。 | zh_TW |
| dc.description.abstract | Cancer-associated thrombosis(CAT) is a common complication in patients with malignant disease, and VTE is the second cause of death in cancer. The anticoagulant drugs and antiplatelet agents used for treating cancer-associated thrombosis remain challenging because these patients have increase risks of both bleeding and recurrent VTE. VTE incidence varies widely among different cancer types , implicating there are cancer type specific mechanisms in cancer-associated VTE. Investigating the underlying mechanisms in CAT and finding possible targets to prevent the thrombosis in cancer population is the urgent need to action. Many studies suggest that tumor-derived microvesicles are risk markers for CAT . However, the correlation of tumor-derived microvesicles and CAT remains controversial. In this study we discuss pancreatic cancer-associated venous thrombosis, the most common malignancies associated with VTE. In the study we injected exogenous ASPC-1 microvesicles into various coagulation gene defected C57BL/6 mice , discovering tissue factor expressing on microvesicles plays a leading role in cancer-associated thrombosis. And we proved that both intrinsic pathway and platelets involved in tissue factor positive tumor-derived microvesicles mediated VTE. This study also performed tumor xenograft mouse model and shows a similar results. We observed clot formation in tumor bearing WT NSG mice but not in tumor bearing hemophilia A ones. Of all, tissue factor plays a important role to initiate microvesicles mediated thrombosis, which need essential intrinsic pathway to further amplify the coagulation cascade. The defect of platelet activation also reduced tissue factor positive microvesicles induced thrombosis, but the importance for thrombus formation is less than intrinsic coagulation factors. Which can’t be ignored is that we find clot forms in few mice injected with tissue factor knockout tumor-derived microvesicles. We’ll analyzed the composition of these thrombus in the future, to study the mechanisms of microvesicles-mediated thrombosis excluded extrinsic pathway. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:15:29Z (GMT). No. of bitstreams: 1 U0001-2309202212200800.pdf: 3121208 bytes, checksum: fc2717ea5127e446ca90718becf58760 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………......Ⅰ 誌謝………………………………………………………………………………..Ⅱ 中文摘要…………………………………………………………………………..Ⅲ 英文摘要…………………………………………………………………………..IV 圖目錄……………………………………………………………………………..X 附錄…...…………………………………………………………………………...XI 中英對照表………………………………………………………………………..XⅡ 簡寫表……………………………………………………………………………..XⅢ 第一章 緒論 1.1凝血反應級聯(coagulation cascade)………………………………….........1 1.2 癌症相關靜脈血栓之臨床意義及治療現況………………………………2 1.3癌症相關靜脈血栓的機制…………………………………………………2 1.4 腫瘤細胞分泌的Tissue factor陽性腫瘤微粒活化外在凝血路徑……….3 1.5凝血內在路徑參與癌症相關靜脈栓塞的形成……………………………4 1.6胰臟癌相關靜脈栓塞機制…………………………………………………4 1.7 靜脈栓塞小鼠模型…………………………………………………………6 1.7.1 下腔靜脈狹窄手術(IVC stenosis)與下腔靜脈閉鎖手術(IVC stasis) 1.7.2 雷射誘導血管損傷模型(laser-induced injury model) 1.8 AsPC-1細胞及利用其為材料探討癌症相關血栓之研究………………..7 1.9研究動機與目的……………………………………………………………8 第二章 實驗材料與方法…………………………………………………………9 2.1 細胞培養與腫瘤微粒之製備………….…………………………………...9 2.1.1細胞培養 2.1.2 細胞大量表現系統 2.1.3 腫瘤微粒分離 2.2 腫瘤微粒的定性與定量……………………………………………………..10 2.2.1腫瘤微粒的大小分布及濃度 2.2.2 腫瘤微粒組織因子活性測定 2.2.3腫瘤微粒蛋白含量測定 2.2.4 腫瘤微粒phospholipid測定 2.2.5 西方墨點法(Western blot) 2.2.6流式細胞儀 2.3 實驗動物.......................12 2.3.1 C57BL/6背景下產製之血友病、VWFR1326H、TXAS-/-小鼠 2.3.2 NSG背景下產製之免疫功能缺陷A型血友病及VWFR1326H小鼠 2.4靜脈栓塞小鼠模型………………………………………………………....13 2.4.1下腔靜脈狹窄手術(IVC stenosis)與下腔靜脈停滯手術(IVC stasis) 2.4.2 下腔靜脈採血 2.5 胰臟癌原位注射模型………………………………………………………14 2.5.1胰臟癌原位注射手術 2.5.2 心臟採血 2.6 Thrombin-Antithrombin complex ELISA……………………………………15 第三章 實驗結果……………….………………………………....…………….....16 3.1 AsPC-1 TF陽性(TF+)和TF剔除株(TF-)釋放之腫瘤微粒的定性與定量……………………………………………………………………..16 3.1.1 腫瘤微粒之大小分布與濃度 3.1.3 確認AsPC-1細胞及腫瘤微粒上的人類TF表現 3.1.4 確認腫瘤微粒的TF活性 3.1.5 腫瘤微粒phospholipid含量測定 3.2 AsPC-1腫瘤微粒對於不同凝血相關因子缺乏小鼠所造成的影響…………17 3.2.1內在途徑凝血因子缺乏會抑制TF陽性腫瘤微粒誘導小鼠靜脈血栓的形成 3.2.2 TF陽性腫瘤微粒對於誘導VWFR1326H及TXAS-/-小鼠靜脈血栓生成的影響 3.2.3 AsPC-1 TF剔除株釋放之腫瘤微粒對於不同凝血相關因子缺乏小鼠所造成的影響 3.2.4 腫瘤微粒TF的表現在誘導癌症相關血栓形成中佔主導地位 3.3 偵測AsPC-1腫瘤微粒誘導小鼠靜脈栓塞後的血漿內血栓生成指標………19 3.4 比較AsPC-1 野生株(TF+) 及TF剔除株(TFKO,TF-)釋放之腫瘤微粒 對於年邁(≥53周)小鼠與年輕小鼠(16-22周)間的差異……………………..19 3.5以胰臟癌原位移植NSG小鼠模型探討癌症相關靜脈血栓的機制………….20 3.5.1 腫瘤生長 3.5.2癌症移植小鼠模型血漿內血栓生成指標偵測 3.5.3內在凝血因子缺乏會影響癌症移植小鼠深部靜脈栓塞的形成 第四章 討論………………………………………………………………………...22 4.1 AsPC-1 野生株(TF+)釋放之腫瘤微粒對於不同凝血相關因子缺乏的小鼠所 造成的影響…………………………………………………………………22 4.2 AsPC-1 TF剔除株(TF-)釋放之腫瘤微粒對於不同凝血相關因子缺 乏的小鼠所造成的影響………………………………………………………23 4.3 比較AsPC-1 野生株(TF+)及TF剔除株(TF-)釋放之腫瘤微粒對於 年邁小鼠與年輕小鼠間的差異………………………………………………24 4.4以胰臟癌細胞AsPC-1野生株(TF+)原位移植NSG小鼠模型探討癌症相關靜 脈血栓的機制………………………………………………………………....25 4.4.1腫瘤生長 4.4.2 癌症移植小鼠模型血漿內血栓生成指標偵測 4.4.3 以IVC stasis誘導移植AsPC-1 WT(TF+)腫瘤之野生型及A型血友病 NSG小鼠深部靜脈血栓的形成 4.5本論文與先前實驗室研究成果之綜合探討…………………………………26 第五章 結論與展望………………………………………………………………….28 參考文獻……………………………….…………………………………………….29 圖………………………...…………...……………………………………………....33 附錄……………………………………………………………………………...…...50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 外在凝血路徑 | zh_TW |
| dc.subject | 內在凝血路徑 | zh_TW |
| dc.subject | tissue factor | zh_TW |
| dc.subject | 腫瘤微粒 | zh_TW |
| dc.subject | 癌症相關靜脈血栓 | zh_TW |
| dc.subject | intrinsic coagulation pathway | en |
| dc.subject | cancer-associated thrombosis | en |
| dc.subject | tumor-derived microvesicles | en |
| dc.subject | tissue factor | en |
| dc.subject | extrinsic coagulation pathway | en |
| dc.title | 以小鼠模型探討腫瘤微粒參與胰臟癌相關靜脈血栓之機制 | zh_TW |
| dc.title | Investigating the underlying mechanisms of tumor microvesicles-induced pancreatic cancer- associated thrombosis by using mouse models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林淑容(Shu-Rung Lin),楊雅倩(Ya-Chien Tang),周聖傑(Sheng-Chieh Chou) | |
| dc.subject.keyword | 癌症相關靜脈血栓,腫瘤微粒,tissue factor,外在凝血路徑,內在凝血路徑, | zh_TW |
| dc.subject.keyword | cancer-associated thrombosis,tumor-derived microvesicles,tissue factor,extrinsic coagulation pathway,intrinsic coagulation pathway, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU202203889 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-23 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-14 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2309202212200800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
