Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84539
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王雅筠(Ya-Yun Wang)
dc.contributor.authorHeng-An Chiangen
dc.contributor.author江恆安zh_TW
dc.date.accessioned2023-03-19T22:14:54Z-
dc.date.copyright2022-10-14
dc.date.issued2022
dc.date.submitted2022-09-21
dc.identifier.citationAdlassnig, W., Koller‐Peroutka, M., Bauer, S., Koshkin, E., Lendl, T., and Lichtscheidl, I.K. (2012). Endocytotic uptake of nutrients in carnivorous plants. The Plant Journal 71, 303-313. Allison, R., Edgar, J.R., Pearson, G., Rizo, T., Newton, T., Günther, S., Berner, F., Hague, J., Connell, J.W., and Winkler, J. (2017). Defects in ER–endosome contacts impact lysosome function in hereditary spastic paraplegia. Journal of Cell Biology 216, 1337-1355. Bazile, V., Moran, J.A., Le Moguedec, G., Marshall, D.J., and Gaume, L. (2012). A carnivorous plant fed by its ant symbiont: a unique multi-faceted nutritional mutualism. PLOS One 7, e36179. Beier, M.P., Obara, M., Taniai, A., Sawa, Y., Ishizawa, J., Yoshida, H., Tomita, N., Yamanaka, T., Ishizuka, Y., and Kudo, S. (2018). Lack of ACTPK 1, an STY kinase, enhances ammonium uptake and use, and promotes growth of rice seedlings under sufficient external ammonium. The Plant Journal 93, 992-1006. Blakey, D., Leech, A., Thomas, G.H., Coutts, G., Findlay, K., and Merrick, M. (2002). Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochemical Journal 364, 527-535. Blanco, M. (1837). Nepenthes. In Flora de Filipinas: Segun el Sistema sexual de Linneo (Manila: en la Imprenta de Sto. Thomas por D. Candido Lopez), pp. 805-809. Boeckstaens, M., André, B., and Marini, A.M. (2008). Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation. Journal of Biological Chemistry 283, 21362-21370. Cai, S., Wu, Y., Guillen-Samander, A., Hancock-Cerutti, W., Liu, J., and De Camilli, P. (2022). In situ architecture of the lipid transport protein VPS13C at ER-lysosomes membrane contacts. Proceedings of the National Academy of Sciences of the United States of America 119, e2203769119. Cheek, M., and Jebb, M. (2013). Typification and redelimitation of Nepenthes alata with notes on the N. alata group, and N. negros sp. nov. from the Philippines. Nordic Journal of Botany 31, 616-622. Cimprich, P., Slavík, J., and Kotyk, A. (1995). Distribution of individual cytoplasmic pH values in a population of the yeast Saccharomyces cerevisiae. FEMS Microbiology Letters 130, 245-251. Couturier, J., Montanini, B., Martin, F., Brun, A., Blaudez, D., and Chalot, M. (2007). The expanded family of ammonium transporters in the perennial poplar plant. New Phytologist 174, 137-150. Cueto-Rojas, H.F., Milne, N., van Helmond, W., Pieterse, M.M., van Maris, A.J., Daran, J.-M., and Wahl, S.A. (2017). Membrane potential independent transport of NH3 in the absence of ammonium permeases in Saccharomyces cerevisiae. BMC Systems Biology 11, 1-13. Das, I., and Haas, A. (2010). New species of Microhyla from Sarawak: Old World’s smallest frogs crawl out of miniature pitcher plants on Borneo (Amphibia: Anura: Microhylidae). Zootaxa 2571, 37-52. Hachiya, T., Inaba, J., Wakazaki, M., Sato, M., Toyooka, K., Miyagi, A., Kawai-Yamada, M., Sugiura, D., Nakagawa, T., and Kiba, T. (2021). Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nature Communications 12, 1-10. Hao, D.-L., Zhou, J.-Y., Yang, S.-Y., Qi, W., Yang, K.-J., and Su, Y.-H. (2020). Function and regulation of ammonium transporters in plants. International Journal of Molecular Sciences 21, 3557. Holzschuh, M.J., Bohnen, H., Anghinoni, I., Meurer, E.J., Carmona, F.d.C., and Costa, S.E.V.G.d.A. (2009). Rice growth as affected by combined ammonium and nitrate supply. Revista Brasileira de Ciência do Solo 33, 1323-1331. Howitt, S.M., and Udvardi, M.K. (2000). Structure, function and regulation of ammonium transporters in plants. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465, 152-170. Jeger, J.L. (2020). Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development. Molecular Biology Reports 47, 9801-9810. Knepper, M. (1991). NH4+ transport in the kidney. Kidney International Supplements 33, S95-102. Lam, W.N., Chong, K.Y., Anand, G.S., and Tan, H.T.W. (2017). Dipteran larvae and microbes facilitate nutrient sequestration in the Nepenthes gracilis pitcher plant host. Biology Letters 13, 20160928. Lam, W.N., Chou, Y.Y., Leong, F.W.S., and Tan, H.T.W. (2019). Inquiline predator increases nutrient-cycling efficiency of Nepenthes rafflesiana pitchers. Biology Letters 15, 20190691. Lim, C.-Y., Davis, O.B., Shin, H.R., Zhang, J., Berdan, C.A., Jiang, X., Counihan, J.L., Ory, D.S., Nomura, D.K., and Zoncu, R. (2019). ER–lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C. Nature Cell Biology 21, 1206-1218. Loqué, D., Lalonde, S., Looger, L., Von Wirén, N., and Frommer, W. (2007). A cytosolic trans-activation domain essential for ammonium uptake. Nature 446, 195-198. Loqué, D., and von Wirén, N. (2004). Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany 55, 1293-1305. Loqué, D., Yuan, L., Kojima, S., Gojon, A., Wirth, J., Gazzarrini, S., Ishiyama, K., Takahashi, H., and Von Wirén, N. (2006). Additive contribution of AMT1; 1 and AMT1; 3 to high‐affinity ammonium uptake across the plasma membrane of nitrogen‐deficient Arabidopsis roots. The Plant Journal 48, 522-534. Mayer, M., and Ludewig, U. (2006). Role of AMT1; 1 in NH4+ acquisition in Arabidopsis thaliana. Plant Biology 8, 522-528. McDonald, T.R., Dietrich, F.S., and Lutzoni, F. (2012). Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Molecular Biology and Evolution 29, 51-60. McDonald, T.R., and Ward, J.M. (2016). Evolution of electrogenic ammonium transporters (AMTs). Frontiers in Plant Science 7, 352. Moran, J.A., Hawkins, B.J., Gowen, B.E., and Robbins, S.L. (2010). Ion fluxes across the pitcher walls of three Bornean Nepenthes pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies. Journal of Experimental Botany 61, 1365-1374. Neuhauser, B., Dynowski, M., Mayer, M., and Ludewig, U. (2007). Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails. Plant Physiology 143, 1651-1659. Neuhäuser, B., Dynowski, M., and Ludewig, U. (2009). Channel-like NH3 flux by ammonium transporter AtAMT2. FEBS Letters 583, 2833-2838. Ngai, L., Yeo, H., Lim, R., Hong Wong, S., Gek Lam-Phua, S., Fashing, N.J., Neo, L., Wang, W.Y., Fah Cheong, L., and Ng, P. (2020). A comparative exploration of the inquiline and prey species of Nepenthes rafflesiana pitchers in contiguous and fragmented habitat patches in Singapore. Raffles Bulletin of Zoology 68, 838-858. Oxender, D. (1972). Membrane transport. Annual Review of Biochemistry 41, 777-814. Özkan, N., Koppers, M., van Soest, I., van Harten, A., Jurriens, D., Liv, N., Klumperman, J., Kapitein, L.C., Hoogenraad, C.C., and Farías, G.G. (2021). ER–lysosome contacts at a pre-axonal region regulate axonal lysosome availability. Nature Communications 12, 1-18. Raiborg, C., Wenzel, E.M., and Stenmark, H. (2015). ER–endosome contact sites: molecular compositions and functions. The EMBO Journal 34, 1848-1858. Saganová, M., Bokor, B., Stolárik, T., and Pavlovič, A. (2018). Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes. Planta 248, 451-464. Schneider, M., Marison, I.W., and Von Stockar, U. (1996). The importance of ammonia in mammalian cell culture. Journal of Biotechnology 46, 161-185. Schulze, W., Frommer, W.B., and Ward, J.M. (1999). Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. The Plant Journal 17, 637-646. Schulze, W., Schulze, E., Pate, J., and Gillison, A. (1997). The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. Oecologia 112, 464-471. Shen, J., Zeng, Y., Zhuang, X., Sun, L., Yao, X., Pimpl, P., and Jiang, L. (2013). Organelle pH in the Arabidopsis endomembrane system. Molecular Plant 6, 1419-1437. Simon-Rosin, U., Wood, C., and Udvardi, M.K. (2003). Molecular and cellular characterisation of LjAMT2; 1, an ammonium transporter from the model legume Lotus japonicus. Plant Molecular Biology 51, 99-108. Smil, V. (1999). Detonator of the population explosion. Nature 400, 415-415. Sohlenkamp, C., Wood, C.C., Roeb, G.W., and Udvardi, M.K. (2002). Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiology 130, 1788-1796. Stefano, G., Renna, L., Lai, Y., Slabaugh, E., Mannino, N., Buono, R.A., Otegui, M.S., and Brandizzi, F. (2015). ER network homeostasis is critical for plant endosome streaming and endocytosis. Cell Discovery 1, 1-16. Straub, T., Ludewig, U., and Neuhäuser, B. (2017). The kinase CIPK23 inhibits ammonium transport in Arabidopsis thaliana. The Plant Cell 29, 409-422. Thomas, G.H., Mullins, J.G., and Merrick, M. (2000). Membrane topology of the Mep/Amt family of ammonium transporters. Molecular Microbiology 37, 331-344. Wang, P., and Hussey, P.J. (2019). Plant ER-PM contact sites in endocytosis and autophagy: Does the local composition of membrane phospholipid play a role? Frontiers in Plant Science 10, 23. Weigel, D., and Glazebrook, J. (2006). Transformation of agrobacterium using the freeze-thaw method. Cold Spring Harbor Protocols 2006, pdb.prot4666. Williamson, G., Tamburrino, G., Bizior, A., Boeckstaens, M., Mirandela, G.D., Bage, M.G., Pisliakov, A., Ives, C.M., Terras, E., and Hoskisson, P.A. (2020). A two-lane mechanism for selective biological ammonium transport. Elife 9, e57183. Wirén, N.v., and Merrick, M. (2004). Regulation and function of ammonium carriers in bacteria, fungi, and plants. In Molecular Mechanisms Controlling Transmembrane Transport (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 95-120. Wood, C.C., Porée, F., Dreyer, I., Koehler, G.J., and Udvardi, M.K. (2006). Mechanisms of ammonium transport, accumulation, and retention in ooyctes and yeast cells expressing Arabidopsis AtAMT1; 1. FEBS Letters 580, 3931-3936. Wu, X., Liu, T., Zhang, Y., Duan, F., Neuhäuser, B., Ludewig, U., Schulze, W.X., and Yuan, L. (2019). Ammonium and nitrate regulate NH4+ uptake activity of Arabidopsis ammonium transporter AtAMT1; 3 via phosphorylation at multiple C-terminal sites. Journal of Experimental Botany 70, 4919-4930. Xu, G., Fan, X., and Miller, A.J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63, 153-182. Yuan, L., Graff, L., Loqué, D., Kojima, S., Tsuchiya, Y.N., Takahashi, H., and Von Wirén, N. (2009). AtAMT1; 4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant and Cell Physiology 50, 13-25. Yuan, L., Gu, R., Xuan, Y., Smith-Valle, E., Loqué, D., Frommer, W.B., and von Wirén, N. (2013). Allosteric regulation of transport activity by heterotrimerization of Arabidopsis ammonium transporter complexes in vivo. The Plant Cell 25, 974-984. Yuan, L., Loque, D., Kojima, S., Rauch, S., Ishiyama, K., Inoue, E., Takahashi, H., and von Wirén, N. (2007). The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell 19, 2636-2652. Zheng, L., Kostrewa, D., Bernèche, S., Winkler, F.K., and Li, X.-D. (2004). The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 101, 17090-17095.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84539-
dc.description.abstract氮是植物生長所不可或缺的元素,植物透過硝酸鹽或銨鹽做為主要無機氮源,而銨轉運蛋白是植物吸收銨鹽重要的途徑。豬籠草是一類分布於缺氮環境的食肉植物,透過將獵物身上的蛋白質分解為銨鹽等小分子以吸收動物體內的養分,透過研究其銨轉運蛋白能了解於缺氮環境下植物所演化出的適應機制與非食肉植物有何差異,以期對提升植物氮利用效率有所幫助。過去研究中發現假定為翼狀豬籠草銨轉運蛋白NaAMT1的mRNA專一性表現於捕蟲瓶內腺體細胞,並會受到獵物落入的誘導增加,本研究透過RACE PCR自小花豬籠草(Nepenthes graciliflora, 原翼狀豬籠草Nepenthes alata同物異名) 捕蟲瓶RNA中取得NgAMT1 CDS全長。在酵母菌表現系統中,NgAMT1於pH 4.0下未表現出銨離子轉運功能;在蛙卵母細胞表現系統中,於pH 5.5環境中亦無觀察到吸收銨離子功能。在酵母及菸草表現系統中,NgAMT1於細胞中之表現位置均在內質網。另觀察到表現NgAMT1之酵母於pH 6.6環境下,生長較空載體控制組顯著遲緩。推測該轉運蛋白可能參與內膜系統之銨離子運輸,其詳細功能尚待更多研究。zh_TW
dc.description.abstractNitrogen is an essential element for plant growth. Plants absorb inorganic nitrogen as ammonium or nitrate. Ammonium transporters (AMTs) contribute most of the ammonium influx from the soil. Nepenthes is a genus of carnivorous plants distributed in nitrogen-poor environments. By digesting the protein of the prey into small molecules like ammonium, Nepenthes utilize the nutrients from the animals. Studying how they uptake ammonium may understand how plants adapted to nitrogen-poor environments and thus sheds light on improving nitrogen use efficiency (NUE). In previous research, a putative NaAMT1 mRNA is detected explicitly in Nepenthes alata pitcher gland cells. The expression of NaAMT1 is upregulated by the prey. In this study, the full-length CDS of NgAMT1 was cloned from the total RNA of the pitcher of Nepenthes graciliflora (synonym of Nepenthes alata until 2013) by RACE (Rapid amplification of cDNA ends) PCR. NgAMT1 exhibits no ammonium uptake activity in the yeast-expressing system at pH 4.0. In the oocytes-expressing system, NgAMT1 shows no ammonium uptake ability at pH 5.5. In the subcellular localization, the NgAMT1 was observed in the endoplasmic reticulum (ER) in yeast cells and tobacco leaf epidermis cells. Surprisingly, the NgAMT1-expressing yeasts showed growth retardation at pH 6.6 compared to empty vector control, suggesting that NgAMT1 probably participates in ammonium transportation in endomembrane systems. Further research is required to examine the function of NgAMT1 in pitcher plants.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:14:54Z (GMT). No. of bitstreams: 1
U0001-2109202215475900.pdf: 3237497 bytes, checksum: 3b21d13a135604e9bd4f17ec8c362170 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 摘要 iii ABSTRACT iv Chapter 1. INTRODUCTION 1 1.1 The pivotal role of ammonium in agriculture 1 1.2 The existence of AMTs in all domains of life 1 1.3 Chemical properties of ammonium 2 1.4 The mechanism of AMT selectivity 3 1.5 The driving force of AMTs 3 1.6 The transcriptional and post-translational regulations of AMTs 4 1.7 The AMT may have a sensor function to detect ammonium 5 1.8 Ammonium transporter in Nepenthes graciliflora 5 Chapter 2. MATERIALS AND METHODS 8 2.1 Plant material and total RNA extraction 8 2.2 RNA Ligase-Mediated (RLM)-Rapid Amplification of cDNA Ends (RACE) PCR 8 2.3 Plasmid construction 8 2.4 In vitro transcription 10 2.5 Oocyte cRNA microinjection and 15NH4+ uptake 10 2.6 Western blotting 12 2.7 Yeast transformation 13 2.8 Yeast ammonium uptake complementation and confocal microscope observation 14 2.9 Tobacco transient expression and subcellular localization 14 Chapter 3. RESULTS 16 3.1 NgAMT1 is closely related to the ammonium transporter in Venus flytrap, DmAMT1. 16 3.2 NgAMT1 lacks the first transmembrane helix compared to most of AMTs. 17 3.3 NgAMT1 shows no ammonium uptake ability in yeast mep triple mutant at pH 4.0. 17 3.4 NgAMT1 shows no ammonium uptake ability in Xenopus oocytes at pH 5.5. 18 3.5 NgAMT1 is localized to the endoplasmic reticulum (ER). 19 3.6 NgAMT1 causes growth retardation in yeast mep triple mutant at pH 6.6. 20 Chapter 4. DISCUSSION 21 4.1 Where does ammonium come from? 22 4.2 How do Nepenthes uptake ammonium? 23 4.3 Why is NgAMT1 located in the endoplasmic reticulum? 25 4.4 What is the possible role of NgAMT1 in Nepenthes graciliflora? 26 Chapter 5. CONCLUSION 28 TABLE 29 FIGURES 30 REFERENCES 53 APPENDICES 59
dc.language.isoen
dc.subjectAMTzh_TW
dc.subjectNaAMT1zh_TW
dc.subject銨轉運蛋白zh_TW
dc.subject豬籠草zh_TW
dc.subject食肉植物zh_TW
dc.subjectNgAMT1zh_TW
dc.subjectcarnivorous plantsen
dc.subjectNgAMT1en
dc.subjectNaAMT1en
dc.subjectAMTen
dc.subjectNepenthesen
dc.title小花豬籠草銨轉運蛋白功能分析zh_TW
dc.titleFunctional Characterization of Nepenthes graciliflora Ammonium Transporter, NgAMT1en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周銘翊(Ming-Yi Chou),鄭貽生(Yi-Sheng Cheng),李勇毅(Yung-I Lee)
dc.subject.keyword食肉植物,豬籠草,銨轉運蛋白,AMT,NaAMT1,NgAMT1,zh_TW
dc.subject.keywordcarnivorous plants,Nepenthes,AMT,NaAMT1,NgAMT1,en
dc.relation.page80
dc.identifier.doi10.6342/NTU202203736
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
dc.date.embargo-lift2024-12-31-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
U0001-2109202215475900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved