Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84520
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世芳zh_TW
dc.contributor.advisorShih-Fang Chenen
dc.contributor.author薛孟謙zh_TW
dc.contributor.authorMeng-Chien Hsuehen
dc.date.accessioned2023-03-19T22:14:15Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation林益昇與鄧汀欽(1995)。載於葉瑩(主編),台灣農家要覽農作篇(三)(頁199-200、205)。臺北:行政院農業委員會。
洪明毅(2018)。請問植物醫生:居家植物病蟲害圖鑑與防治(初版,頁88-91、170-173、176-181、190-191、194-195、220)。臺北:麥浩斯。
陳文雄與鄭安秀(1999)。蔬菜病蟲害綜合防治專輯(頁36-37、42、436)。臺北:行政院農業委員會。
彭瑞菊、黃秀雯、陳昇寬、鄭安秀(2015)。設施香瓜健康管理技術。載於黃惠琳(主編),臺南區農業改良場技術專刊(160,頁12-20)。臺南:臺灣省臺南區農業改良場。
劉興隆、趙佳鴻、沈原民(2016)。花胡瓜健康管理技術。載於劉興隆、白桂芳(主編),行政院農業委員會臺中區農業改良技術場技術專刊(195,頁29-38)。臺南:臺灣省臺中區農業改良場。
Chen, J., Zhang, D., Suzauddola, M., Nanehkaran, Y. A., & Sun, Y. (2021). Identification of plant disease images via a squeeze‐and‐excitation MobileNet model and twice transfer learning. IET Image Processing, 15(5), 1115-1127.
Food and Agriculture Organization of the United Nations. (2020). FAOSTAT. https://www.fao.org/faostat/en/#data/QCL
Ganatra, N., & Patel, A. (2020). A multiclass plant leaf disease detection using image processing and machine learning techniques. International Journal on Emerging Technologies, 11(2), 1082-1086.
Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1440-1448). IEEE.
Grinberg, M. (2018). Flask web development: developing web applications with python. O’Reilly Media, Inc.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2961-2969). IEEE.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778). IEEE.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7132-7141). IEEE.
Hughes, D., & Salathé, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060.
Kianat, J., Khan, M. A., Sharif, M., Akram, T., Rehman, A., & Saba, T. (2021). A joint framework of feature reduction and robust feature selection for cucumber leaf diseases recognition. Optik, 240, 166566.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
Lv, J., Qi, J., Shi, Q., Shen, D., Zhang, S., Shao, G., Li, H., Sun, Z., Weng, Y., Shang, Y., Gu, X., Li, X., Zhu, X., Zhang, J., van Treuren, R., van Dooijeweert, W., Zhang, Z., & Huang, S. (2012). Genetic diversity and population structure of cucumber (Cucumis sativus L.). PloS One, 7(10), e46919. https://doi.org/10.1371/journal.pone.0046919
Liu, C., Zhu, H., Guo, W., Han, X., Chen, C., & Wu, H. (2021). EFDet: An efficient detection method for cucumber disease under natural complex environments. Computers and Electronics in Agriculture, 189, 106378.
Lou, Y., Hu, Z., Li, M., Li, H., Yang, X., Liu, X., & Liu, F. (2021). Real-Time Detection of Cucumber Leaf Diseases Based on Convolution Neural Network. In IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (pp. 1040-1046). IEEE.
Mia, M. J., Maria, S. K., Taki, S. S., & Biswas, A. A. (2021). Cucumber disease recognition using machine learning and transfer learning. Bulletin of Electrical Engineering and Informatics, 10(6), 3432-3443.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788). IEEE.
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28, 91-99.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-assisted Intervention (pp. 234-241). Springer, Cham.
Ryosuke H. (2016) Line-Bot-SDK-Python. https://github.com/line/line-bot-sdk-python
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 618-626). IEEE.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Tan, M. & Le, Q. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, 97:6105-6114. PLMR.
Tassis, L. M., de Souza, J. E. T., & Krohling, R. A. (2021). A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images. Computers and Electronics in Agriculture, 186, 106191.
Van Eysinga, J. P. N. L. Roorda & Smilde, K. W. (1969). Nutritional Disorders in Cucumbers and Gherkins Under Glass. Pudoc.
Wang, C., Du, P., Wu, H., Li, J., Zhao, C., & Zhu, H. (2021). A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net. Computers and Electronics in Agriculture, 189, 106373.
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 1492-1500). IEEE.
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84520-
dc.description.abstract胡瓜為世界上高經濟價值的作物之一。病蟲害為造成其產量損失的主因之一。在遭病蟲害感染初期,若能正確識別危害源,則能儘速採取應對措施。罹病植株葉表多會呈現病斑徵狀,其病斑依其病蟲害種類、病程有所差異及變化。初期表徵通常為較不明顯的病斑,易與健康葉片或其他類輕微病害混淆。另,亦有可能同時感染多種病害,且因而產生更為複雜的病斑表徵。病蟲害類別判讀通常由植病專家進行,然所需專業門檻高,專業人才稀缺。本研究目標為應用深度學習方法開發一套自動判別病蟲害類別、病程,及複合病害之判讀系統,並藉由串聯聊天機器人功能提供使用者相關服務。本研究的判別類別涵蓋健康葉片、七種單一病害及十種複合病害,病程方面則分為早、中、晚三期。影像資料集均為田間實地拍攝之植株病蟲害影像,共計8000餘張。深度學習方法選用更快速區域卷積神經網路(Faster region-based convolutional neural network,Faster R-CNN)為主要架構。共建構兩種模型,一為單純使用Faster R-CNN進行分類預測的一步驟辨識模型,及結合Faster R-CNN與病程分類器的二步驟模型。於影像標記方面,採取one-hot及multi-hot兩種方法,比較其於複合病害的辨識效果,及對涵蓋類別進行擴增的應用彈性。模型優化方面,使用資料重採樣(resampling)、增益(augmentation)及骨架替換(backbone substitution)等方法。於最終模型開發結果呈現上,一步驟模型搭配multi-hot標記方法,可達0.846的F1-score, 0.758的平均精確度均值(Mean average precision,mAP)及0.733的準確率(accuracy)。於病程辨識上,一步驟模型可達0.648的F1-score,而二步驟模型則可達0.701的F1-score。以Gradient-based class activation map (Grad-CAM)與主成分分析(Principal component analysis,PCA)將模型中特徵表現進行可視化分析,均顯示於病程預測上,二步驟模型的病程分類器可強化類別特徵。此胡瓜病蟲害識別模型並串接至聊天機器人應用服務端,提供便利使用識別功能及回饋意見的使用者介面。藉由此一系統的開發,將有望協助農場管理人員即時判讀植株健康狀態,降低由病蟲害所造成之產量損失。zh_TW
dc.description.abstractCucumber (Cucumis Sativus L.) is one of the most important crops in the world. Cucumber diseases are one of the causes of annual production and yield losses. If the disease can be correctly identified in the early stage, then measures can be taken to eliminate it timeously. Lesion patterns typically occur on the foliar surface of cucumber leaves, and they may vary based on the type and progress of the disease. In early stages, diseases usually cause relatively unclear foliar patterns that are easily confused with healthy leaves or other minor early diseases. Moreover, cucumbers can be infected with multiple diseases and show complicated patterns simultaneously. Diseases are traditionally identified by professionals, and the services are in high demand; however, such people are rare. Thus, this study aims to develop an automatic identification system for identifying the disease type, progress, and multi-disease cases, and connect an instant-message bot service for practical use. In this study, there were healthy leaves, seven single diseases, and ten multi-diseases. The disease progress was categorized into the early, middle, and late stages. Approximately 8,000 field images were collected by cameras and smartphones. The selected deep learning neural network was the faster region-based convolutional neural network (Faster R-CNN). Two models were constructed, a one-step model that is a single Faster R-CNN, and a two-step model composed of Faster R-CNN and a disease progress classifier. For image annotation, two labeling methods, one-hot and multi-hot labeling, were applied and compared on the prediction performance of multi-disease cases and flexibility of expansion on disease types. For model optimization, data resampling, augmentation, and backbone substitution were implemented. The final results showed that the one-step model with multi-hot labeling achieved an F1-score of 0.846, a mean average precision (mAP) of 0.758, and an accuracy of 0.733. For the prediction performance of disease progress, the one-step model obtained an F1-score of 0.648, whereas the two-step one achieved a better F1-score of 0.701. The gradient-based class activation map (Grad-CAM) and principal component analysis (PCA) were adopted to visually analyze the disease progress classifier. Both techniques showed that the disease progress classifier learned better features of disease progress. The identification system contained an identification model and an instant-message bot, and it provided the convenient functionalities including disease identification and opinion feedback. The development of this system is expected to help farm managers to timely acquire the health status of a plant and reduce the yield loss caused by diseases.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:14:15Z (GMT). No. of bitstreams: 1
U0001-2809202213305300.pdf: 5139115 bytes, checksum: 1e81edb305686baa8b150ab122e2beed (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iv
LIST OF FIGURES viii
LIST OF TABLES x
ABBREVIATIONS xii
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Objectives 2
1.3 System Development 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 Background of the Cucumber Disease 4
2.2 Machine Learning on Cucumber Disease Recognition 7
2.3 Deep Learning on Cucumber Disease Recognition 9
2.4 Multi-disease Recognition 10
CHAPTER 3 MATERIALS AND METHODS 13
3.1 Image Acquisition and Annotation 13
3.2 Disease Progress 15
3.3 Model Design 17
3.3.1 One-step Model 17
3.3.2 Two-step Model 18
3.4 Identification Scenarios 19
3.5 Evaluation Metrics 21
3.6 Instant-message Bot 22
CHAPTER 4 RESULTS AND DISCUSSION 24
4.1 Model Performance 24
4.2 Performance of the Disease Progress Classifier 29
4.3 Visualization of the Disease Progress Classifier 33
4.3.1 Grad-CAM 33
4.3.2 PCA 36
4.4 Instant-message Bot Service 37
4.5 Comparison with Related Literatures 39
CHAPTER 5 CONCLUSION AND FUTURE WORK 41
5.1 Conclusion 41
5.2 Future work 42
REFERENCES 43
Appendix A. Performance of Eight Scenarios 48
-
dc.language.isozh_TW-
dc.subject瓜類病蟲害zh_TW
dc.subject更快速區域卷積神經網路zh_TW
dc.subject聊天機器人zh_TW
dc.subject多標籤物件辨識zh_TW
dc.subjectmulti-label object detectionen
dc.subjectcucumber diseaseen
dc.subjectFaster R-CNNen
dc.subjectinstant-message boten
dc.title應用深度學習演算法於胡瓜葉表複合病害及病程辨識系統之開發zh_TW
dc.titleDevelopment of Cucumber Foliar Diseases Identification System for Multi-disease and Disease Progress Using Deep Learning Algorithmen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.advisor-orcid陳世芳(0000-0003-1516-094X)
dc.contributor.oralexamcommittee黃晉興;楊爵因;郭彥甫zh_TW
dc.contributor.oralexamcommitteeJin-Hsing Huang;Jiue-in Yang;Yan-Fu Kuoen
dc.contributor.oralexamcommittee-orcid,郭彥甫(0000-0002-5886-5643)
dc.subject.keyword瓜類病蟲害,更快速區域卷積神經網路,聊天機器人,多標籤物件辨識,zh_TW
dc.subject.keywordcucumber disease,Faster R-CNN,instant-message bot,multi-label object detection,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202204194-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-29-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2025-09-30-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-2809202213305300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved