Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳延平(Yan-Ping Chen)
dc.contributor.authorTing-Jung Sungen
dc.contributor.author宋庭榕zh_TW
dc.date.accessioned2023-03-19T22:13:51Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-23
dc.identifier.citation1. Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8. 2. Cassie, A.; Baxter, S., Wettability of porous surfaces. Transactions of the Faraday society 1944, 40, 546-551. 3. Goswami, A.; Pillai, S. C.; McGranaghan, G., Surface modifications to enhance dropwise condensation. Surfaces and Interfaces 2021, 25, 101143-101183. 4. Young, T., Iii. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London 1805, 95, 65-87. 5. Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 1936, 28 (8), 988-994. 6. Beér, J. M., High efficiency electric power generation: The environmental role. Progress in Energy and combustion science 2007, 33 (2), 107-134. 7. Zhang, F.; Yang, X.; Wang, C., Liquid water removal from a polymer electrolyte fuel cell. Journal of the Electrochemical Society 2005, 153 (2), A225. 8. Beer, J., Combustion technology developments in power generation in response to environmental challenges. Progress in Energy and combustion science 2000, 26 (4-6), 301-327. 9. Chua, K. J.; Chou, S. K.; Yang, W.; Yan, J., Achieving better energy-efficient air conditioning–a review of technologies and strategies. Applied Energy 2013, 104, 87-104. 10. Oh, J.; Zhang, R.; Shetty, P. P.; Krogstad, J. A.; Braun, P. V.; Miljkovic, N., Thin film condensation on nanostructured surfaces. Advanced Functional Materials 2018, 28 (16), 1707000-1707010. 11. Tanasawa, I., Advances in condensation heat transfer. In Advances in heat transfer volume 21, 1991; pp 55-139. 12. Khandekar, S.; Muralidhar, K., Dropwise condensation on inclined textured surfaces. Springer: 2014. 13. Sikarwar, B. S.; Khandekar, S.; Agrawal, S.; Kumar, S.; Muralidhar, K., Dropwise condensation studies on multiple scales. Heat Transfer Engineering 2012, 33 (4-5), 301-341. 14. Rose, J. W., Dropwise condensation theory and experiment: A review. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2002, 216 (2), 115-128. 15. Snustad, I.; Røe, I. T.; Brunsvold, A.; Ervik, Å.; He, J.; Zhang, Z., A review on wetting and water condensation-perspectives for co2 condensation. Advances in Colloid and Interface Science 2018, 256, 291-304. 16. Wang, K.; Li, R.; Liang, Q.; Jiang, R.; Zheng, Y.; Lan, Z.; Ma, X., Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces. Applied Physics Letters 2017, 111 (6), 061603. 17. Boreyko, J. B.; Chen, C. H., Self-propelled dropwise condensate on superhydrophobic surfaces. Phys Rev Lett 2009, 103 (18), 184501. 18. Chu, F.; Li, S.; Ni, Z.; Wen, D., Departure velocity of rolling droplet jumping. Langmuir 2020, 36 (14), 3713-3719. 19. Miljkovic, N.; Enright, R.; Nam, Y.; Lopez, K.; Dou, N.; Sack, J.; Wang, E. N., Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano letters 2013, 13 (1), 179-187. 20. Zhu, J.; Luo, Y.; Tian, J.; Li, J.; Gao, X., Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance. ACS applied materials & interfaces 2015, 7 (20), 10660-10665. 21. Boreyko, J. B.; Chen, C.-H., Self-propelled dropwise condensate on superhydrophobic surfaces. Physical review letters 2009, 103 (18), 184501. 22. Boreyko, J. B.; Collier, C. P., Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS nano 2013, 7 (2), 1618-1627. 23. Kim, S.; Kim, K. J., Dropwise condensation modeling suitable for superhydrophobic surfaces. 2011, 133 (8), 081502. 24. Miljkovic, N.; Wang, E. N., Condensation heat transfer on superhydrophobic surfaces. MRS bulletin 2013, 38 (5), 397-406. 25. Enright, R.; Miljkovic, N.; Al-Obeidi, A.; Thompson, C. V.; Wang, E. N., Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale. Langmuir 2012, 28 (40), 14424-14432. 26. Rykaczewski, K., Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 2012, 28 (20), 7720-7729. 27. Rykaczewski, K.; Osborn, W. A.; Chinn, J.; Walker, M. L.; Scott, J. H. J.; Jones, W.; Hao, C.; Yao, S.; Wang, Z., How nanorough is rough enough to make a surface superhydrophobic during water condensation? Soft Matter 2012, 8 (33), 8786-8794. 28. Starostin, A.; Valtsifer, V.; Barkay, Z.; Legchenkova, I.; Danchuk, V.; Bormashenko, E., Drop-wise and film-wise water condensation processes occurring on metallic micro-scaled surfaces. Applied Surface Science 2018, 444, 604-609. 29. Parin, R.; Del Col, D.; Bortolin, S.; Martucci, A. In Dropwise condensation over superhydrophobic aluminium surfaces, Journal of Physics: Conference Series, IOP Publishing: 2016; p 032134. 30. Sharma, C. S.; Stamatopoulos, C.; Suter, R.; von Rohr, P. R.; Poulikakos, D., Rationally 3d-textured copper surfaces for laplace pressure imbalance-induced enhancement in dropwise condensation. ACS Appl Mater Interfaces 2018, 10 (34), 29127-29135. 31. Zhu, J.; Luo, Y.; Tian, J.; Li, J.; Gao, X., Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance. ACS Appl Mater Interfaces 2015, 7 (20), 10660-10665. 32. Nakajima, A., Design of hydrophobic surfaces for liquid droplet control. NPG Asia Materials 2011, 3 (5), 49-56. 33. Beysens, D., The physics of dew, breath figures and dropwise condensation. Springer: 2022; Vol. 994. 34. Narhe, R. D.; Beysens, D. A., Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 2007, 23 (12), 6486-6489. 35. Wier, K. A.; McCarthy, T. J., Condensation on ultrahydrophobic surfaces and its effect on droplet mobility:  Ultrahydrophobic surfaces are not always water repellant. Langmuir 2006, 22 (6), 2433-2436. 36. Dorrer, C.; Rühe, J., Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 2007, 23 (7), 3820-3824. 37. Chen, C.-H.; Cai, Q.; Tsai, C.; Chen, C.-L.; Xiong, G.; Yu, Y.; Ren, Z., Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Applied Physics Letters 2007, 90 (17), 173108. 38. Lv, C.; Hao, P.; Zhang, X.; He, F., Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces. ACS nano 2015, 9 (12), 12311-12319. 39. Yeh, K. Y.; Chen, L. J.; Chang, J. Y., Contact angle hysteresis on regular pillar-like hydrophobic surfaces. Langmuir 2008, 24 (1), 245-251. 40. Yeh, M. C.; Chen, L. J., A modified calibration technique for pendant drop/bubble tensiometry. Journal of the Chinese Institute of Chemical Engineers 2001, 32 (2), 109-116. 41. del Campo, A.; Greiner, C., Su-8: A photoresist for high-aspect-ratio and 3d submicron lithography. Journal of micromechanics and microengineering 2007, 17 (6), R81. 42. Xia, Y.; Whitesides, G. M., Soft lithography. Angewandte Chemie International Edition 1998, 37 (5), 550-575. 43. Rao, K. S.; El-Hami, K.; Kodaki, T.; Matsushige, K.; Makino, K., A novel method for synthesis of silica nanoparticles. Journal of Colloid and Interface Science 2005, 289 (1), 125-131. 44. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science 1968, 26 (1), 62-69. 45. Yeh, K.-Y.; Chen, L.-J.; Chang, J.-Y., Contact angle hysteresis on regular pillar-like hydrophobic surfaces. Langmuir 2008, 24 (1), 245-251. 46. Lin, H.-P.; Chen, L.-J., Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect. Journal of colloid and interface science 2021, 603, 539-549. 47. Yang, C.; Hao, P.; He, F., Effect of upper contact line on sliding behavior of water droplet on superhydrophobic surface. Chinese Science Bulletin 2009, 54 (5), 727-731. 48. Sarkar, D. K.; Farzaneh, M.; Paynter, R. W., Superhydrophobic properties of ultrathin rf-sputtered teflon films coated etched aluminum surfaces. Materials letters 2008, 62 (8-9), 1226-1229. 49. Kamegawa, T.; Irikawa, K.; Yamashita, H., Multifunctional surface designed by nanocomposite coating of polytetrafluoroethylene and tio2 photocatalyst: Self-cleaning and superhydrophobicity. Scientific reports 2017, 7 (1), 1-8. 50. He, B.; Patankar, N. A.; Lee, J., Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 2003, 19 (12), 4999-5003. 51. Erbil, H. Y.; Cansoy, C. E., Range of applicability of the wenzel and cassie− baxter equations for superhydrophobic surfaces. Langmuir 2009, 25 (24), 14135-14145. 52. Cansoy, C. E.; Erbil, H. Y.; Akar, O.; Akin, T., Effect of pattern size and geometry on the use of cassie–baxter equation for superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 386 (1-3), 116-124.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84508-
dc.description.abstract凝結為一種複雜且動態的非均相相變化過程,液滴式凝結主要發生在較疏水的表面上,而表面親疏水性主要以液滴在表面上的接觸角數值為主要依據,故本研究旨在利用接觸角量測與凝結兩種不同面向來探討液滴於表面上的濕潤狀態差異。本研究利用溶膠凝膠法製得一系列固體佔有率為0.28  0.04 的單層微米方柱結構表面,藉由調整方柱維度改變表面粗糙度,並會塗佈不同尺寸(78  9 nm與317  27 nm)的二氧化矽奈米粒子,製得雙層微/奈米結構表面,並進行系統性探討。研究結果顯示,單層微米結構表面表現較大的接觸角遲滯,以粗糙度1.42為分界,液滴濕潤狀態可從Wenzel狀態轉換為Cassie狀態,在凝結過程中卻僅能呈現Wenzel狀態與部分濕潤的混合型狀態(partial Cassie狀態),且臨界粗糙度提升至1.61。雙層微/奈米結構表面則有效提升表面超疏水性,大為降低接觸角遲滯至約14度,液滴濕潤狀態主要為Cassie狀態,而凝結液滴不僅能呈現Wenzel狀態與partial Cassie狀態,更在臨界粗糙度1.39後,成功觀察到Cassie液滴,取決於凝結過程初期的動態機制,故研究中統計量化不同時間的液滴個數與尺寸,並利用反轉式顯微鏡系統更準確對濕潤狀態與凝結機制進行判定,於微結構底部或側邊成核並成長的Wenzel液滴,能透過與他液滴碰撞而釋放的表面自由能及自身的拉普拉斯壓力差來實現去濕潤轉換,克服Wenzel液滴固液表面間的附著力從而轉變為Cassie液滴,但隨著微米結構高度提升,連帶提升了Wenzel液滴底部的體積與固液接觸面積,降低去濕潤現象發生的機率,對Cassie液滴的形成產生抑制作用。zh_TW
dc.description.abstractCondensation is a complex and dynamic heterogeneous phase change process. Droplet condensation mainly occurs on hydrophobic surfaces, and hydrophilicity and hydrophobicity of the surface are mainly based on the measurement of contact angle on the surface. Therefore, the purpose of this research is to observe the difference in the wetting state of droplets on the surface with using two different aspects: contact angle measurement and condensation mechanism. In this study, a series of single-layer micro-square pillar structures with a solid fraction of 0.280.04 were prepared by sol-gel method. The surface roughness was changed by adjusting the dimensions of the square pillars, and coating different size of silica dioxide nanoparticles to prepare with dual-scale micro/nanostructured with the size of 7829 nm and 31727 nm, which will be systematically discussed. The results show that the single-layer microstructure exhibits a large contact angle hysteresis. With a roughness of 1.42 as the boundary, the wetting state of the droplet can be converted from the Wenzel state to the Cassie state, but only the Wenzel state and the partial wetting state can be observed on the surface wetting during the condensation process, and the critical roughness increased to 1.61. The dual-scale micro/nano-structured surface effectively improves the hydrophobicity of the surface and greatly reduces the contact angle hysteresis to about 14 degrees. The wetting state of the droplet is mainly Cassie state, and the condensed droplet can not only show Wenzel state and partial Cassie state, but also the Cassie droplets can be successfully observed with the larger critical roughness which is larger than 1.39. We find this phenomenon depended on the dynamic mechanism of the condensation process in the early stage. Therefore, the number and size of droplets at different times were statistically quantified in the study, and the inverted microscope system was used to more precisely measure the wetting behavior. The Wenzel droplet nucleated and grown at the bottom or side of the microstructure can achieve dewetting conversion through the surface free energy released by the collision with other droplets and its own Laplace pressure difference. The adhesion between the solid-liquid surfaces of Wenzel droplets can be overcame and convert them into Cassie droplets. However, as the height of the microstructure increases, the volume at the bottom of the Wenzel droplet and the solid-liquid contact area are also increased, which reduces the probability of dewetting and inhibits the formation of Cassie droplets.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:13:51Z (GMT). No. of bitstreams: 1
U0001-1409202215011500.pdf: 7401451 bytes, checksum: 46f54b8a886dcec52bdafdfd6abed1d1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 摘要 iii ABSTRACT iv 目 錄 vi 表目錄 viii 圖目錄 ix 緒論 1 文獻回顧 4 2.1 濕潤現象 4 2.1.1 理想表面濕潤行為 4 2.1.2 非理想表面濕潤行為 5 2.2 前進角、後退角與遲滯角 7 2.3 凝結 8 2.3.1 液滴凝結機制 10 2.3.2 柱狀結構之液滴凝結機制 13 2.3.3 雙層粗糙度結構凝結機制 17 實驗方法 21 3.1 實驗藥品 21 3.2 實驗裝置 22 3.3 實驗流程 23 3.3.1 半導體微影蝕刻製造具微米結構SU8母片技術 23 3.3.2 PDMS印章製作 24 3.3.3 二氧化矽奈米粒子之製備 25 3.3.4 軟壓印技術製備規則柱狀結構 28 3.3.5 微/奈米雙層柱狀結構表面之製備 28 3.3.6 微/奈米雙層柱狀結構表面上之自聚集單分子膜反應 31 3.3.7 前進/後退接觸角測量 31 3.3.8 平面式凝結系統與液滴形成動態觀察 32 結果與討論 35 4.1 二氧化矽奈米粒子 40 4.2 單層微米與雙層微/奈米柱狀結構之濕潤行為探討 41 4.2.1 單層微米奈米結構表面上的液滴濕潤狀態 43 4.2.2 雙層微/奈米結構表面上的液滴濕潤狀態 45 4.3 凝結機制 55 4.3.1 單層微米柱狀結構表面 58 4.3.2 雙層微/奈米柱狀結構表面 63 4.4 液滴接觸角量測與凝結過程之濕潤狀態比較 80 結論 85 參考文獻 87   表目錄 表 4 1 原規則柱狀矽晶母片設計尺寸 37 表4 2 單雙層微奈米結構表面的規格(邊長(a)、間距(d)、高度(h)與固體覆蓋率)整理 38 表4 3 埋針法中注射速率與前進/後退接觸角數值 39 表4 4 埋針法中注射速率與前進/後退接觸角數值與濕潤狀態 54   圖目錄 圖 2 1 液滴在理想固體表面上三相平衡之關係3 5 圖2 2 液滴在表面上不同的型態(A)代表較高的接觸角及低濕潤性(B)代表較低的接觸角及高濕潤性3 5 圖2 3 液體不同之濕潤狀態(a)Wenzel狀態(b)Cassie狀態3 7 圖2 4 (A)傾斜板法 (B)前進接觸角 (C)後退接觸角 3 8 圖2 5 熱交換器示意圖3 9 圖2 6 (a)薄膜狀冷凝 (b)滴狀冷凝和 (c)厚度為 t 的反蛋白石結構上的薄膜冷凝的側視圖橫截面示意圖 (d)超親水多孔結構內部承壓水膜的詳細視圖超親水多孔結構。10 10 圖2 7 液滴式凝結的過程3 11 圖2 8 液滴式凝結的四個步驟過程13 11 圖2 9 不同大小尺寸的液滴碰撞合併型態變化過程16 12 圖2 10 (a)液滴碰撞後跳躍之示意圖(b)模擬和實驗結果液滴型態變化的比較18 13 圖2 11 超疏水表面之自我清潔性質3 14 圖2 12 液滴在方柱結構凝結成長過程,(a)濃縮不同生長階段的時間 (b)液滴在方柱(a=32 m, b=32 m, c=62 m)成長的草圖,取決於最終平衡階段是Wenzel狀態 (b) 還是 Cassie狀態 (c)兩個最終平衡階段33 15 圖2 13 液滴在四個柱子結構內部的演變,下方為側視示意圖(a)階段1:液滴在柱子側邊成核 (b)階段2:水滴逐漸成長連接兩個柱子之間的區域 (c)階段3:水滴進一步增長與四個柱子的邊緣36 17 圖2 14 液滴之濕潤撞態轉換 (a)Wenzel液滴向上生長,逐漸接近位於上方的Cassie液滴 (b)下方Wenzel液滴與上方Cassie液滴接觸 (c)Wenzel液滴形成Cassie液滴36 17 圖2 15 單和雙層結構粗糙度結構冷凝之濕潤狀態 (a)-(b) 微米單層粗糙度結構(c)-(d) 奈米單層粗糙度結構 (e)-(f)雙層粗糙度結構37 18 圖2 16 (a)(b)(c)在矽中蝕刻雙層粗糙度結構之SEM示意圖(d)CNT奈米柱37 19 圖2 17 雙層階層式微/奈米結構之SEM示意圖38 19 圖2 18 雙層階層式微/奈米結構自發性去濕潤現象示意圖38 20 圖2 19 雙層階層式微/奈米結構透過碰撞自發性去濕潤現象示意圖38 20 圖 3 1 SU-8的半導體微影蝕刻41 24 圖3 2 PDMS印章製作42 25 圖3 5 二氧化矽奈米粒子製備流程圖43 26 圖3 6 二氧化矽奈米粒子詳細流程圖 27 圖3 3 軟壓印熔膠凝膠溶液二氧化矽具規則柱狀結構P∅sa-d(h)示意圖 29 圖3 4 塗佈雙層微/奈米二氧化矽具規則柱狀結構〖P^'〗_(∅_s^')^(a^'-d^' ) (h^' ),〖P^''〗_(∅_s^')^(a^''-d^'' ) (h'')示意圖 30 圖3 7 埋針法接觸角測量裝置的示意圖設置:(A)光源,(B)針孔,(C)平面凸透鏡,(D)可調式載台,(E)樣品、待測液滴,(F)注射器,(G)注射泵, (H) 物鏡,(I) CCD 攝影機,(J) 底部相機,(K) 顯示器和個人電腦,(L) 光學防震桌。 33 圖3 8 埋針法影像處理示意圖 33 圖3 9 (a)平行冷凝裝置的示意圖設置:(A) 熱電冷卻器控制器,(B)溫濕度控制器,(C)架設平台,(D)冷卻板,(E) 待測樣品,(F) 顯微鏡鏡頭和相機,(G) 液態氮氣桶,(H) 顯示器和個人電腦,(I)光學防震桌;(b)冷卻板俯視圖 34 圖4 1 柱狀結構尺寸示意圖 36 圖4 2 雷射共軛焦顯微鏡下柱狀高度示意圖 36 圖4 3 埋針法中注射速率與(a)前進接觸角與(b)後退接觸角之關係圖 39 圖4 4 直徑為78  9 nm之二氧化矽奈米粒子SEM圖 40 圖4 5 直徑為317 27 nm之二氧化矽奈米粒子SEM圖 40 圖4 6 規格為P_(0.25)^(5.8-6.1) (5.6±0.2)之SEM示意圖(a)(b)為俯視圖(c)(d)為俯角45度圖 42 圖4 7 規格為P_(0.25)^(7.4-7.5) (11.1±0.2)之SEM示意圖(a)(b)為俯視圖(c)(d)為俯角60度圖 42 圖4 8 無結構單層微米結構粗糙度與其前進/後退接觸角關係圖:黑色實心方塊原點和紅色實心菱形原點為無結構表面之前進及後退角,紅色菱形與綠色正方形分別表示前進接觸角與後退接觸角;實心與空心符號則分別表示液滴濕潤狀態為Wenzel狀態與Cassie狀態,圖中垂直虛線表示由液滴濕潤狀態由Wenzel狀態轉換成Cassie狀態的臨界粗糙度為1.42。 44 圖4 9 單層微米與雙層微/奈米結構粗糙表面遲滯角關係圖:藍色三角形表示單層微米結構表面、綠色圓形表示雙層微米且塗佈大尺寸奈米粒子(粒徑為317 ± 27 nm)結構表面且紅色菱形藍色三角形表示雙層微米且塗佈小尺寸奈米粒子(粒徑為78 ± 9 nm)結構表面。 44 圖4 10 (a)(b)為在無結構的表面上塗佈78  9 nm的二氧化矽奈米粒子,而(c)(d)為在無結構的平面上塗佈317  27 nm的二氧化矽奈米粒子 47 圖4 11雙層微/奈米結構粗糙度與其前進/後退接觸角關係圖,奈米結構為尺寸較大(粒徑為317 ± 27 nm)的球狀顆粒(藍色空心三角形原點和紅色橘色空心五邊形原點為無結構表面塗佈奈米粒子後之前進及後退角,圖中液滴濕潤現象皆為Cassie狀態:藍色三角形與橘色五邊形分別表示前進接觸角與後退接觸角) 48 圖4 12 規格為〖P^''〗_(0.26-317)^(8.3-6.6) (-)之雙層微/奈米結構柱狀結構SEM圖(a)(b)為為俯角45度圖,(c)(d)柱子頂部俯視圖 49 圖4 13 規格為〖P^''〗_(0.26-317)^(8.3-6.6) (-)之雙層微/奈米結構柱狀結構SEM圖(a)(b)為為俯角45度圖,(c)(d)柱子頂部俯視圖為俯角45度圖 49 圖4 14 規格為 〖P^''〗_(0.23-317)^(7.2-7.9) (-)之雙層微/奈米結構柱狀結構SEM圖(a)(b)為柱子頂部俯視圖 (c)(d)為俯角45度圖 (e) 為俯角60度圖 50 圖4 15 雙層微/奈米結構粗糙度與其前進/後退接觸角關係圖,奈米結構為尺寸較小(粒徑為78 ± 9 nm)的球狀顆粒,粉紅色圓形原點和棕色倒三角形原點為無結構表面塗佈奈米粒子後之前進及後退角,圖中液滴濕潤現象皆為Cassie狀態:粉紅色圓形與棕色倒三角形分別表示前進接觸角與後退接觸角 51 圖4 16 規格為〖P^'〗_(0.33-78)^(8.7-6.3) (3.8±0.2)之雙層微/奈米結構柱狀結構SEM圖(a)(b) 為俯角45度圖,(c)(d)(e)為柱子頂部俯視圖 52 圖4 17 (a)為〖P^'〗_(0.33-78)^(8.7-6.3) (3.8±0.2)之雙層微/奈米結構柱狀結構SEM圖,(b)(c)(d)為柱子頂部放大圖:(c)柱頂中間(b)(d)柱頂邊緣 52 圖4 18 規格為〖P^'〗_(0.28-78)^(8.0-7.0) (11.5±0.5)之雙層微/奈米結構柱狀結構SEM圖(a)(b)為俯角60度圖,(c)(d)(e)為俯角45度圖,其中(d)(e)為(c)頂部與邊角放大圖 53 圖4 19 濕潤狀態對應底部影像之示意圖(a)Wenzel狀態(b)Cassie狀態(c)partial Cassie狀態 56 圖4 20 濕潤狀態對應底部影像(a)Wenzel狀態(b)Cassie狀態(c)partial Cassie 狀態 56 圖4 21單層微米結構及雙層微/奈米柱狀結構底部影像圖(r為粗糙度) 57 圖4 22 單層微米柱狀結構在不同粗糙度表面最終凝結液滴濕潤狀態(實心圓形:Wenzel狀態,半空心圓形: partial Cassie狀態) 58 圖4 23 單層微米柱狀結構在不同粗糙度表面凝結液滴濕潤狀態,左邊代表上拍影像圖,右邊為底部影像度(a)r=1.25 (b)r=1.58 (c)r=1.63 (d)r=2.46 61 圖4 24 (a)(b)(c)(d)規格 P_(0.25)^(5.8-6.1) (3.8±0.2)之單層微米柱狀結構液滴碰撞前後之水滲進去形成Wenzel之過程 62 圖4 25 塗佈粒徑為78 ± 9 nm之雙層微/奈米柱狀結構凝結液滴濕潤狀態(實心三角形:Wenzel狀態,半空心三角形: partial Cassie狀態,空心三角形 Cassie狀態) 69 圖4 26 塗佈粒徑為317 ± 27 nm之雙層微/奈米柱狀結構凝結液滴濕潤狀(實心正方形:Wenzel狀態,半空心正方形: partial Cassie狀態,空心正方形 Cassie狀態) 69 圖4 27 在〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63之試片上觀察一顆Cassie液滴首次與Wenzel(2P)或Wenzel(4P)發生碰撞形成Cassie液滴機制圖 (a)Cassie液滴從柱子頂部拉起Wenzel(2P)到柱子頂部 (b) Cassie液滴從柱子頂部拉起Wenzel(4P) 到柱子頂部 70 圖4 28 一顆Cassie液滴首次與Wenzel(2P)或Wenzel(4P)發生碰撞機制圖 形成Wenzel液滴 (a) Cassie液滴被Wenzel(4P)拉往底部 (b) Cassie液滴被Wenzel(2P)拉往底部 71 圖4 29 Cassie液滴首次與Wenzel(2P)或Wenzel(4P)的碰撞關係(紅色: Cassie液滴首次與Wenzel(2P)或Wenzel(4P)碰撞形成Cassie狀態,綠色: Cassie液滴首次與Wenzel(2P) 形成Cassie狀態,藍色:Cassie液滴首次與Wenzel(4P)形成Cassie狀態) 72 圖4 30 〖P^'〗_(0.27-78)^(7.9-7.2) (-)及r=1.50之(a)Cassie液滴於各時間點數量與尺寸的量化統計 (b)Wenzel液滴於各時間點數量平均數量統計 (c) Wenzel液滴於各時間點數量平均尺寸統計 73 圖4 31 〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63之(a)Cassie液滴於各時間點數量與尺寸的量化統計 (b)Wenzel液滴於各時間點數量平均數量統計 (c) Wenzel液滴於各時間點數量平均尺寸統計 73 圖4 32 〖P^'〗_(0.22-78)^(7.0-8.1) (-)及r=1.64之(a)Cassie液滴於各時間點數量與尺寸的量化統計 (b)Wenzel液滴於各時間點數量平均數量統計 (c) Wenzel液滴於各時間點數量平均尺寸統計 74 圖4 33 〖P^'〗_(0.28-78)^(7.9-6.9) (-)及r=1.81之(a)Cassie液滴於各時間點數量與尺寸的量化統計 (b)Wenzel液滴於各時間點數量平均數量統計 (c) Wenzel液滴於各時間點數量平均尺寸統計 74 圖4 34 四種不同粗糙度以及規格表面之Wenzel液滴於各時間點平均尺寸總圖(紫色空心圓型 〖P^'〗_(0.27-78)^(7.9-7.2) (-)及r=1.50,紅色空心向右三角形 〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63,粉色空心倒三角形 〖P^'〗_(0.22-78)^(7.0-8.1) (-)及r=1.64,褐色空心星型 〖P^'〗_(0.28-78)^(7.9-6.9) (-)及r=1.81) 75 圖4 35 四種不同粗糙度以及規格表面之Wenzel液滴於各時間點數量總圖(紫色實心圓型 〖P^'〗_(0.27-78)^(7.9-7.2) (-)及r=1.50,紅色實心向右三角形 〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63,粉色實心倒三角形 〖P^'〗_(0.22-78)^(7.0-8.1) (-)及r=1.64,褐色實心星型 〖P^'〗_(0.28-78)^(7.9-6.9) (-)及r=1.81) 75 圖4 36 Cassie液滴於各時間點數量與平均尺寸的量化統計,圖右上角為其結構之不同時間之平均直徑圖(a) 〖P^'〗_(0.27-78)^(7.9-7.2) (-)及r=1.50 (b) 〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63 (c) 〖P^'〗_(0.22-78)^(7.0-8.1) (-)及r=1.64 (d) 〖P^'〗_(0.28-78)^(7.9-6.9) (-)及r=1.81 76 圖4 37 四種不同粗糙度以及規格表面之Cassie液滴於各時間點平均直徑(藍色空心三角形: 〖P^'〗_(0.27-78)^(7.9-7.2) (-)及r=1.50綠色菱形:〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63橘色空心五邊形: 〖P^'〗_(0.22-78)^(7.0-8.1) (-)及r=1.64黑色空心向左三角型: 〖P^'〗_(0.28-78)^(7.9-6.9) (-)及r=1.81 77 圖4 38 在〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63之試片上Wenzel(2P)透過自身去濕潤現象形成Cassie液滴機制圖 (a)(b)(c)(d)分別表示在不同時刻液滴變化情形 77 圖4 39 在〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63之試片上Wenzel(4P)透過自身去濕潤現象形成Cassie液滴機制圖 (a)(b)(c)(d)(e)(f) 分別表示在不同時刻液滴變化情形 78 圖4 40 在〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63之試片上顆Cassie液滴首次與Wenzel(2P)發生碰撞形成Wenzel液滴透過利用本身的拉普拉斯壓力差形成Cassie液滴機制圖 (a)(b)(c)(d) 分別表示在不同時刻液滴變化情形 79 圖4 41 在〖P^'〗_(0.25-78)^(6.3-5.5) (-)及r=1.63之試片上顆Cassie液滴首次與Wenzel(4P)發生碰撞形成Wenzel液滴透過利用本身的拉普拉斯壓力差形成Cassie液滴機制圖 (a)(b)(c)(d) 分別表示在不同時刻液滴變化情形 79 圖4 42 上圖為無結構單層微米結構粗糙度與其前進/後退接觸角關係圖:黑色實心方塊原點和紅色實心菱形原點為無結構表面之前進及後退角,紅色菱形與綠色正方形分別表示前進接觸角與後退接觸角;實心與空心符號則分別表示液滴濕潤狀態為Wenzel狀態與Cassie狀態,圖中垂直虛線表示由液滴濕潤狀態由Wenzel狀態轉換成Cassie狀態的臨界粗糙度為1.42,下圖單層微米柱狀結構在不同粗糙度表面最終凝結液滴濕潤狀態(實心圓形:Wenzel狀態,半空心圓形: partial Cassie狀態) 82 圖4 43 上圖為雙層微/奈米結構粗糙度與其前進/後退接觸角關係圖,奈米結構為尺寸較大(粒徑為317 ± 27 nm)的球狀顆粒(藍色空心三角形原點和紅色橘色空心五邊形原點為無結構表面塗佈奈米粒子後之前進及後退角,圖中液滴濕潤現象皆為Cassie狀態:藍色三角形與橘色五邊形分別表示前進接觸角與後退接觸角) ,下圖為塗佈粒徑為317 ± 27 nm之雙層微/奈米柱狀結構凝結液滴濕潤狀(實心正方形:Wenzel狀態,半空心正方形: partial Cassie狀態,空心正方形 Cassie狀態) 83 圖4 44 上圖為雙層微/奈米結構粗糙度與其前進/後退接觸角關係圖,奈米結構為尺寸較小(粒徑為78 ± 9 nm)的球狀顆粒,粉紅色圓形原點和棕色倒三角形原點為無結構表面塗佈奈米粒子後之前進及後退角,圖中液滴濕潤現象皆為Cassie狀態:粉紅色圓形與棕色倒三角形分別表示前進接觸角與後退接觸角,下圖為塗佈粒徑為78 ± 9 nm之雙層微/奈米柱狀結構凝結液滴濕潤狀態(實心三角形:Wenzel狀態,半空心三角形: partial Cassie狀態,空心三角形 Cassie狀態) 84
dc.language.isozh-TW
dc.title具階層式結構疏水表面之液滴濕潤現象與凝結機制探討zh_TW
dc.titleStudy of droplet wetting behavior and condensation mechanisms on hydrophobic surfaces with hierarchical structuresen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳立仁(Li-Jen Chen),蔡榮進(Jung-Chin Tasim),蘇至善(Chie-Shaan Su)
dc.subject.keyword液滴式凝結,單層微米結構表面,雙層微/奈米結構表面,接觸角遲滯,Wenzel狀態,Cassie狀態,去濕潤轉換,partial Cassie狀態,zh_TW
dc.subject.keyworddropwise condensation,single-micro-scale surfaces,dual-micro/nano-scale surfaces,superhydrophobicity,contact angle hysteresis,Wenzel state,Cassie state,partial Cassie state,dewetting transition,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202203394
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1409202215011500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved