Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84507
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡育彰(Yu-Chang Tsai)
dc.contributor.authorXun-Hong YOUen
dc.contributor.author游勛閎zh_TW
dc.date.accessioned2023-03-19T22:13:49Z-
dc.date.copyright2022-10-14
dc.date.issued2022
dc.date.submitted2022-09-23
dc.identifier.citation林德哲.(2016) 水稻細胞分裂素訊息反應調節蛋白 OsRR9 和 OsRR10之生理功能探討. 國立臺灣大學生物資源暨農學院農藝學系碩士論文 李佳芸.(2016) 水稻細胞分裂素訊息擬磷酸轉運蛋白 OsPHP3 之生理功能探討. 國立臺灣大學生物資源暨農學院農藝學系碩士論文 曹景怡.(2021) 水稻細胞分裂素訊息反應調節蛋白 OsRR3、OsRR5及OsRR7 之生理功能探討. 國立臺灣大學生物資源暨農學院農藝學系碩士論文 Akhtar, S. S., Mekureyaw, M. F., Pandey, C., & Roitsch, T. (2020). Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Frontiers in Plant Science, 10, 1777. Alarcón, M. V., Salguero, J., & Lloret, P. G. (2019). Auxin modulated initiation of lateral roots is linked to pericycle cell length in maize. Frontiers in Plant Science, 10, 11. Aloni, R., Aloni, E., Langhans, M., & Ullrich, C. (2006). Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany, 97(5), 883-893. Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell, 23(1), 69-80. Besnard, F., Rozier, F., & Vernoux, T. (2014). The AHP6 cytokinin signaling inhibitor mediates an auxin-cytokinin crosstalk that regulates the timing of organ initiation at the shoot apical meristem. Plant Signaling & Behavior, 9(6), e28788. Bian, H., Xie, Y., Guo, F., Han, N., Ma, S., Zeng, Z., Zhu, M. (2012). Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytologist, 196(1), 149-161. Bishopp, A., Help, H., El-Showk, S., Weijers, D., Scheres, B., Friml, J., Helariutta, Y. (2011). A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Current Biology, 21(11), 917-926. Brandstatter, I., & Kieber, J. J. (1998). Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. The Plant Cell, 10(6), 1009-1019. Chadwick, A. V., & Burg, S. P. (1967). An explanation of the inhibition of root growth caused by indole-3-acetic acid. Plant Physiology, 42(3), 415-420. Chen, C.-M., Ertl, J. R., Leisner, S. M., & Chang, C.-C. (1985). Localization of cytokinin biosynthetic sites in pea plants and carrot roots. Plant Physiology, 78(3), 510-513. Chen, L., Zhao, J., Song, J., & Jameson, P. E. (2021). Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. Plant biotechnology journal, 19(5), 878-896. Cheng, X., Jiang, H., Zhang, J., Qian, Y., Zhu, S., & Cheng, B. (2010). Overexpression of type-A rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins. Genetics and Molecular Research, 9(1), 348-359. Cholodny, N. (1928). Beiträge zur hormonalen Theorie von Tropismen. Zeitschrift fur wissenschaftliche Biologie. Abteilung E: Planta, 118-134. Cock, J., Yoshida, S., & Forno, D. A. (1976). Laboratory manual for physiological studies of rice. International Rice Research Institute Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1), 1-14. D'Agostino, I. B., Deruere, J., & Kieber, J. J. (2000). Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiology, 124(4), 1706-1717. Davies, P. J. (2010). The plant hormones: their nature, occurrence, and functions. In Plant hormones (pp. 1-15): Springer. Debi, B. R., Taketa, S., & Ichii, M. (2005). Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). Journal of Plant Physiology, 162(5), 507-515. De Vries, D., & Dubois, L. A. (1988). The effect of BAP and IBA on sprouting and adventitious root formation of ‘Amanda’rose single-node softwood cuttings. Scientia Horticulturae, 34(1-2), 115-121. Dortay, H., Mehnert, N., Bürkle, L., Schmülling, T., & Heyl, A. (2006). Analysis of protein interactions within the cytokinin‐signaling pathway of Arabidopsis thaliana. The FEBS Journal, 273(20), 4631-4644. Du, L., Jiao, F., Chu, J., Jin, G., Chen, M., & Wu, P. (2007). The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction. Genomics, 89(6), 697-707. Durbak, A., Yao, H., & McSteen, P. (2012). Hormone signaling in plant development. Current Opinion in Plant Biology, 15(1), 92-96. Evans, M. L., Ishikawa, H., & Estelle, M. A. (1994). Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants. Planta, 194(2), 215-222. Frebort, I., Kowalska, M., Hluska, T., Frébortová, J., & Galuszka, P. (2011). Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 62(8), 2431-2452. Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., & Palme, K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415(6873), 806-809. Gajdošová, S., Spíchal, L., Kamínek, M., Hoyerová, K., Novák, O., Dobrev, P. I., Žižková, E. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany, 62(8), 2827-2840. Gao, R., & Stock, A. M. (2009). Biological insights from structures of two-component proteins. Annual Review of Microbiology, 63, 133. Gao, S., Fang, J., Xu, F., Wang, W., Sun, X., Chu, J., Chu, C. (2014). CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiology, 165(3), 1035-1046. Gaspar, T., Kevers, C., Faivre-Rampant, O., Crèvecoeur, M., Penel, C., Greppin, H., & Dommes, J. (2003). Changing concepts in plant hormone action. In vitro Cellular & Developmental Biology-Plant, 39(2), 85-106. Gupta, S., & Rashotte, A. M. (2012). Down-stream components of cytokinin signaling and the role of cytokinin throughout the plant. Plant Cell Reports, 31(5), 801-812. Hirose, N., Makita, N., Kojima, M., Kamada-Nobusada, T., & Sakakibara, H. (2007). Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant and Cell Physiology, 48(3), 523-539. Hosoda, K., Imamura, A., Katoh, E., Hatta, T., Tachiki, M., Yamada, H., Yamazaki, T. (2002). Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. The Plant Cell, 14(9), 2015-2029. Humphries, E. (1960). Inhibition of root development on petioles and hypocotyls of dwarf bean (Phaseolus vulgaris) by kinetin. Physiologia Plantarum, 13, 659-663. Hwang, I., & Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 413(6854), 383-389. Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M., Shibata, Y., Gomi, K., Umemura, I., Matsuoka, M. (2005). Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. The Plant Cell, 17(5), 1387-1396. Jain, M., Tyagi, A. K., & Khurana, J. P. (2006). Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biology, 6(1), 1-11. Jun, N., Gaohang, W., Zhenxing, Z., Huanhuan, Z., Yunrong, W., & Ping, W. (2011). OsIAA23‐mediated auxin signaling defines postembryonic maintenance of QC in rice. The Plant Journal, 68(3), 433-442. Kitomi, Y., Ito, H., Hobo, T., Aya, K., Kitano, H., & Inukai, Y. (2011). The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type‐A response regulator of cytokinin signaling. The Plant Journal, 67(3), 472-484. Kleine-Vehn, J., Ding, Z., Jones, A. R., Tasaka, M., Morita, M. T., & Friml, J. (2010). Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proceedings of the National Academy of Sciences, 107(51), 22344-22349. Kudo, T., Makita, N., Kojima, M., Tokunaga, H., & Sakakibara, H. (2012). Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiology, 160(1), 319-331. Lavy, M., & Estelle, M. (2016). Mechanisms of auxin signaling. Development, 143(18), 3226-3229. Liu, H., Wang, S., Yu, X., Yu, J., He, X., Zhang, S., Wu, P. (2005). ARL1, a LOB‐domain protein required for adventitious root formation in rice. The Plant Journal, 43(1), 47-56. Mao, C., He, J., Liu, L., Deng, Q., Yao, X., Liu, C., Ming, F. (2020). OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnology Journal, 18(2), 429-442. Marhavý, P., Duclercq, J., Weller, B., Feraru, E., Bielach, A., Offringa, R., Benková, E. (2014). Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Current Biology, 24(9), 1031-1037. Mähönen, A. P., Bishopp, A., Higuchi, M., Nieminen, K. M., Kinoshita, K., Törmäkangas, K.,Helariutta, Y. (2006). Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science, 311(5757), 94-98. Meng, F., Xiang, D., Zhu, J., Li, Y., & Mao, C. (2019). Molecular mechanisms of root development in rice. Rice, 12(1), 1-10. Moreira, S., Bishopp, A., Carvalho, H., & Campilho, A. (2013). AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation. PLoS One, 8(2), e56370. Moubayidin, L., Di Mambro, R., & Sabatini, S. (2009). Cytokinin–auxin crosstalk. Trends in Plant Science, 14(10), 557-562. Muday, G. K., & DeLong, A. (2001). Polar auxin transport: controlling where and how much. Trends in Plant Science, 6(11), 535-542. Ogura, T., Goeschl, C., Filiault, D., Mirea, M., Slovak, R., Wolhrab, B., Busch, W. (2019). Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell, 178(2), 400-412. e416. Pacifici, E., Polverari, L., & Sabatini, S. (2015). Plant hormone cross-talk: the pivot of root growth. Journal of Experimental Botany, 66(4), 1113-1121. Péret, B., Swarup, K., Ferguson, A., Seth, M., Yang, Y., Dhondt, S., Syed, A. (2012). AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. The Plant Cell, 24(7), 2874-2885. Petrásek, J., Mravec, J., Bouchard, R., Blakeslee, J. J., Abas, M., Seifertová, D., Covanová, M. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 312(5775), 914-918. Pils, B., & Heyl, A. (2009). Unraveling the evolution of cytokinin signaling. Plant Physiology, 151(2), 782-791. Pound, M. P., French, A. P., Atkinson, J. A., Wells, D. M., Bennett, M. J., & Pridmore, T. (2013). RootNav: navigating images of complex root architectures. Plant Physiology, 162(4), 1802-1814. Qin, H., He, L., & Huang, R. (2019). The coordination of ethylene and other hormones in primary root development. Frontiers in Plant Science, 10, 874. Ramireddy, E., Hosseini, S. A., Eggert, K., Gillandt, S., Gnad, H., von Wirén, N., & Schmülling, T. (2018). Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiology, 177(3), 1078-1095. Reed, J. W. (2001). Roles and activities of Aux/IAA proteins in Arabidopsis. Trends in Plant Science, 6(9), 420-425. Sauer, M., Robert, S., & Kleine-Vehn, J. (2013). Auxin: simply complicated. Journal of Experimental Botany, 64(9), 2565-2577. Schäfer, M., Brütting, C., Meza-Canales, I. D., Großkinsky, D. K., Vankova, R., Baldwin, I. T., & Meldau, S. (2015). The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. Journal of Experimental Botany, 66(16), 4873-4884. Schaller, G. E., Doi, K., Hwang, I., Kieber, J. J., Khurana, J. P., Kurata, N., Wu, P. (2007). Nomenclature for two-component signaling elements of rice. Plant Physiology, 143(2), 555-557. Schaller, G. E., Kieber, J. J., & Shiu, S.-H. (2008). Two-component signaling elements and histidyl-aspartyl phosphorelays. The Arabidopsis Book/American Society of Plant Biologists, 6. Sharan, A., Soni, P., Nongpiur, R. C., Singla-Pareek, S. L., & Pareek, A. (2017). Mapping the ‘Two-component system’network in rice. Scientific Reports, 7(1), 1-13. Sharma, M., Singh, D., Saksena, H. B., Sharma, M., Tiwari, A., Awasthi, P., Laxmi, A. (2021). Understanding the intricate web of phytohormone signalling in modulating root system architecture. International Journal of Molecular Sciences, 22(11), 5508. Smith, D. R., & Thorpe, T. A. (1975). Root initiation in cuttings of Pinus radiata seedlings: II. Growth regulator interactions. Journal of Experimental Botany, 26(2), 193-202. Sun, L., Zhang, Q., Wu, J., Zhang, L., Jiao, X., Zhang, S., Sun, Y. (2014). Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice. Plant Physiology, 165(1), 335-345. Suzuki, T., Imamura, A., Ueguchi, C., & Mizuno, T. (1998). Histidine-containing phosphotransfer (HPt) signal transducers implicated in His-to-Asp phosphorelay in Arabidopsis. Plant and Cell Physiology, 39(12), 1258-1268. Suzuki, T., SAKuRAi, K., IMAMuRA, A., Nakamura, A., UEGUCHI, C., & MIZUNO, T. (2000). Compilation and characterization of histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in plants: AHP signal transducers of Arabidopsis thaliana. Bioscience, biotechnology, and biochemistry, 64(11), 2486-2489. Takehisa, H., Sato, Y., Igarashi, M., Abiko, T., Antonio, B. A., Kamatsuki, K., Nakazono, M. (2012). Genome‐wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. The Plant Journal, 69(1), 126-140. Tanabata, T., Shibaya, T., Hori, K., Ebana, K., & Yano, M. (2012). SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology, 160(4), 1871-1880. Taguchi-Shiobara, F., Kojima, Y., Ebitani, T., Yano, M., & Ebana, K. (2011). Variation in domesticated rice inflorescence architecture revealed by principal component analysis and quantitative trait locus analysis. Breeding Science, 61(1), 52-60. To, J. P., Haberer, G., Ferreira, F. J., Deruere, J., Mason, M. G., Schaller, G. E., Kieber, J. J. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. The Plant Cell, 16(3), 658-671. Tomita, A., Sato, T., Uga, Y., Obara, M., & Fukuta, Y. (2017). Genetic variation of root angle distribution in rice (Oryza sativa L.) seedlings. Breeding science, 16185. Trewavas, A. (1992). What remains of the Cholodny-Went theory? Introduction. Plant, Cell & Environment, 15(7), 761. Tsai, Y.-C., Weir, N. R., Hill, K., Zhang, W., Kim, H. J., Shiu, S.-H., Kieber, J. J. (2012). Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiology, 158(4), 1666-1684. Vaughan‐Hirsch, J., Tallerday, E. J., Burr, C. A., Hodgens, C., Boeshore, S. L., Beaver, K., Šimura, J. (2021). Function of the pseudo phosphotransfer proteins has diverged between rice and Arabidopsis. The Plant Journal, 106(1), 159-173. Waidmann, S., Ruiz Rosquete, M., Schöller, M., Sarkel, E., Lindner, H., LaRue, T., Sasidharan, R. (2019). Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nature Communications, 10(1), 1-14. Wang, L., Guo, M., Li, Y., Ruan, W., Mo, X., Wu, Z., Peng, J. (2018). LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. Journal of Experimental Botany, 69(3), 385-397. Wang, W.C., Lin, T.C., Kieber, J. & Tsai, Y.C. (2019). Response regulators 9 and 10 negatively regulate salinity tolerance in rice. Plant and Cell Physiology, 60(11), 2549-2563. Wang, Q., Zhu, Y., Zou, X., Li, F., Zhang, J., Kang, Z., Lin, Y. (2020). Nitrogen deficiency-induced decrease in cytokinins content promotes rice seminal root growth by promoting root meristem cell proliferation and cell elongation. Cells, 9(4), 916. Worthen, J. M., Yamburenko, M. V., Lim, J., Nimchuk, Z. L., Kieber, J. J., & Schaller, G. E. (2019). Type-B response regulators of rice play key roles in growth, development and cytokinin signaling. Development, 146(13), dev174870. Xing, M., Wang, W., Fang, X., & Xue, H. (2022). Rice OsIAA6 interacts with OsARF1 and regulates leaf inclination. The Crop Journal. Yu, C., Sun, C., Shen, C., Wang, S., Liu, F., Liu, Y., Aryal, B. (2015). The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). The Plant Journal, 83(5), 818-830. Zaiontz, C. (2019). Real statistics resource pack. Real Statistics Using Excel. URL van der Zee T, Reich J (2018) Open Education Science. AERA Open, 4(3), 233285841878. Zazimalova, E., Murphy, A., Yang, H., Hoyerova, K., & Hosek, P. (2010). Auxin transporters—why so many? Cold Spring Harb Perspect Biol 2: a001552. In. Zhao, H., Ma, T., Wang, X., Deng, Y., Ma, H., Zhang, R., & Zhao, J. (2015). OsAUX 1 controls lateral root initiation in rice (Oryza sativa L.). Plant, Cell & Environment, 38(11), 2208-2222. Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61, 49. Zhao, Y., Cheng, S., Song, Y., Huang, Y., Zhou, S., Liu, X., & Zhou, D.-X. (2015). The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. The Plant Cell, 27(9), 2469-2483. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., & Gruissem, W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology, 136(1), 2621-2632.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84507-
dc.description.abstract根系的結構與形成在水稻發育中佔有重要地位。根生長分化主要受到植物荷爾蒙所調控,其中細胞分裂素及生長素都是其主要生長調節劑之一。細胞分裂素可經雙分子訊號傳遞系統 (Two-component signal transduction systems, TCSs) 調控訊號,在 TCSs 中磷酸轉運蛋白 (His-phosphotransfer proteins, HPs) 能接受並轉運磷酸訊號至細胞核內,啟動下游細胞分裂素初期反應。水稻具三個擬磷酸轉運蛋白(Pseudo Phosphotransfer Proteins, OsPHPs),由於缺乏負責傳遞磷酸的組胺酸片段,因此推測這類蛋白在水稻 TCSs 中扮演負向調控角色。OsPHPs 在水稻地下部具有高轉錄表現且會受到外施細胞分裂素及生長素誘導,以 CRISPER/Cas9 基因編輯技術產生 Osphp1/2/3 三重突變株,Osphp1/2/3 相較於野生型株高變矮、主根長縮短、側根數目變少及細胞分裂素降低含量。突變株的 A 型反應調節蛋白 (Type-Aresponse regulator, Type-A RRs)、細胞分裂素氧化蛋白 (CKX) 基因表現與野生型相比表現更多。轉錄體表現分析發現 OsPHPs 除了與細胞分裂素初級反應因子、細胞分裂素之活性調控有關外,也有部分差異表現基因與生長素反應因子相關。在外施生長素處理下,可以觀察到野生型的不定根增加,但在突變株中不定根數目卻受到生長素抑制。此外在外施生長素處理下,Osphp1/2/3 突變株 OsRR2、OsRR4 及轉錄因子OsCRL5 具有較野生型低的基因表現量,推論 OsPHPs 參與生長素調控轉錄因子 OsCRL5 表現,以及影響 OsRR2、OsRR4 表現量增加以抑制細胞分裂素訊號促進不定根發育。由以上結果可知,OsPHPs 藉由負向調控細胞分裂素傳遞影響地下部細胞分裂素含量,並且生長素與細胞分裂素之間的交互作用會共同參與水稻根系發育。zh_TW
dc.description.abstractRoot system architecture plays an important role in rice development. Root growth and development are mainly regulated by plant hormones, among which cytokinin and auxin are the primary plant growth regulators. Cytokinin can regulate plants through twocomponent signal transduction systems (TCSs). In TCSs, His-phosphotransfer proteins (HPs) can receive and transfer phosphate signals to the nucleus to activate downstream gene response. Three Pseudo Phosphotransfer Proteins (OsPHP1, OsPHP2, and OsPHP3) which lack the conserved His residue are identified in rice. OsPHPs have a high transcriptional expression in rice roots and can be induced by exogenous cytokinin and auxin. Osphp1/2/3 triple mutants were generated using CRISPR/Cas9 genome editing. The mutant had shorter plant height, shorter root length, fewer lateral root numbers, and less cytokinin content than the wild type. The transcription of Type-A response regulators (Type-A RRs) and cytokinin oxidases/dehydrogenases (CKX) were higher in mutants than in wild type. RNA-seq analysis showed that OsPHPs were involved in cytokinin primary response, cytokinin signal regulation, and genes related to auxin response factor. When the exogenous application of auxin treatment, an increase in adventitious roots was observed in the wild type, but there was no increase in the Osphp1/2/3. In addition, the transcript levels of type-A OsRR2, OsRR4, and transcription factor OsCRL5 in Osphp1/2/3 were higher than the wild type in response to exogenous auxin treatment. The results suggested OsPHPs may involve auxin-regulated OsCRL5 signaling and induction of type-A OsRRs to promote adventitious root development. In conclusion, OsPHPs negatively regulate cytokinin signaling and play a role in modulating root development in the crosstalk of cytokinin and auxin.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:13:49Z (GMT). No. of bitstreams: 1
U0001-2109202214132400.pdf: 4747456 bytes, checksum: 95be44a03f57d444a1fe5578849fc158 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄及附錄 VI 縮寫字對照表 VII 第一章 前人研究 1 第二章 材料方法 9 2.1 Osphp1/2/3水稻突變株之建立 9 2.2 試驗之水稻生長條件 9 2.3 地下部生長分析 10 2.3.1 根長、不定根數量分析 10 2.3.2 側根數量、密度及成熟區長度分析 10 2.3.3 不定根生長角度分析 10 2.3.4 根尖重力反應分析 10 2.4 穀粒大小及水分含量分析 10 2.5 外施植物荷爾蒙處理條件 10 2.6 水稻細胞分裂素含量測定 11 2.7 DNA萃取 11 2.8 DNA聚合酶連鎖反應(polymerase chain reaction, PCR) 12 2.9 T7核酸內切酶I (T7 endonuclease I)基因型鑑定 12 2.10 RNA萃取 13 2.11 RT-PCR (Reverse transcription polymerase chain reaction) 13 2.12 Real-time qPCR 14 2.13 轉錄體定序資料分析 15 2.14 統計分析方法 15 第三章 結果 16 3.1 Osphp1/2/3突變株建立與胺基酸序列功能分析 16 3.2 Osphp1/2/3突變株具有較矮株高、較短根長以及較重穀粒重量 16 3.3 Osphp1/2/3突變株根系結構分析 23 3.4 Osphp1/2/3突變株轉錄體定序分析差異表現基因 24 3.5 Osphp1/2/3突變株細胞分裂素含量分析 29 3.6 外施細胞分裂素對Osphp1/2/3突變株根系影響 30 3.7 外施生長素對Osphp1/2/3突變株根系影響 34 3.8 Osphp1/2/3突變株根系角度對生長素反應較敏感 35 3.9 Osphp1/2/3突變株具有更敏感的向地性反應 42 第四章 討論 43 4.1水稻與阿拉伯芥擬磷酸轉運蛋白之生理功能比較 43 4.2細胞分裂素擬磷酸轉運蛋白OsPHPs與磷酸轉運蛋白OsAHPs生理功能比較 44 4.3 OsPHPs調控細胞分裂素訊號傳遞影響Type-A RR及OsCKX負回饋機制 45 4.4 OsPHPs 並未影響水稻根系外表型對外源性細胞分裂素的反應 45 4.5 OsPHPs 影響水稻根系對生長素反應 46 4.6 OsPHPs影響水稻向地性反應 47 4.7生長素藉由誘導OsPHPs表現調控不定根發育 48 第五章 結論 49 參考文獻 51
dc.language.isozh-TW
dc.subject擬磷酸轉運蛋白zh_TW
dc.subject細胞分裂素zh_TW
dc.subject生長素zh_TW
dc.subject根系zh_TW
dc.subject水稻zh_TW
dc.subjectAuxinen
dc.subjectCytokininen
dc.subjectRiceen
dc.subjectPseudo Phosphotransfer Proteinsen
dc.subjectRooten
dc.title水稻細胞分裂素訊息擬磷酸轉運蛋白在根系發育之功能探討zh_TW
dc.titleFunctional Analysis of Rice Pseudo Phosphotransfer Proteins (OsPHPs) in Root Developmenten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張孟基(Men-Chi Chang),鄭萬興(Wan-Hsing Cheng),洪傳揚(Chwan-Yang Hong)
dc.subject.keyword細胞分裂素,水稻,擬磷酸轉運蛋白,根系,生長素,zh_TW
dc.subject.keywordCytokinin,Rice,Pseudo Phosphotransfer Proteins,Root,Auxin,en
dc.relation.page73
dc.identifier.doi10.6342/NTU202203720
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
dc.date.embargo-lift2027-09-26-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-2109202214132400.pdf
  未授權公開取用
4.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved