請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84493完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖淑貞(Shwu-Jen Liaw) | |
| dc.contributor.author | Yu-Hsuan Chen | en |
| dc.contributor.author | 陳昱璇 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:13:21Z | - |
| dc.date.copyright | 2022-10-14 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-26 | |
| dc.identifier.citation | 1. Rózalski, A., Z. Sidorczyk, and K. Kotełko, Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev, 1997. 61(1): p. 65-89. 2. Jamil, R.T., L.A. Foris, and J. Snowden, Proteus Mirabilis Infections, in StatPearls. 2022, StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.: Treasure Island (FL). 3. Schaffer, J.N. and M.M. Pearson, Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr, 2015. 3(5). 4. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54. 5. Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38. 6. Partridge, J.D., et al., Escherichia coli Remodels the Chemotaxis Pathway for Swarming. mBio, 2019. 10(2). 7. Lee, Y.Y., et al., Refining the binding of the Escherichia coli flagellar master regulator, FlhD4C2, on a base-specific level. J Bacteriol, 2011. 193(16): p. 4057-68. 8. Echazarreta, M.A., et al., A Critical Region in the FlaA Flagellin Facilitates Filament Formation of the Vibrio cholerae Flagellum. J Bacteriol, 2018. 200(15). 9. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5. 10. Tsai, Y.-L., et al., cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis. Scientific Reports, 2017. 7(1): p. 7282. 11. Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 12. Jacobsen, S.M. and M.E. Shirtliff, Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2(5): p. 460-5. 13. Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505. 14. Senior, B.W., L.M. Loomes, and M.A. Kerr, The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J Med Microbiol, 1991. 35(4): p. 203-7. 15. Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33. 16. Alamuri, P. and H.L. Mobley, A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol Microbiol, 2008. 68(4): p. 997-1017. 17. Stock, A.M., V.L. Robinson, and P.N. Goudreau, Two-component signal transduction. Annu Rev Biochem, 2000. 69: p. 183-215. 18. Reitzer, L., Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol, 2003. 57: p. 155-76. 19. van Heeswijk, W.C., H.V. Westerhoff, and F.C. Boogerd, Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev, 2013. 77(4): p. 628-95. 20. Merrick, M.J. and R.A. Edwards, Nitrogen control in bacteria. Microbiol Rev, 1995. 59(4): p. 604-22. 21. Luque-Almagro, V.M., et al., Bacterial nitrate assimilation: gene distribution and regulation. Biochem Soc Trans, 2011. 39(6): p. 1838-43. 22. Bhagirath, A.Y., et al., Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci, 2019. 20(7). 23. Bueno Batista, M. and R. Dixon, Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochem Soc Trans, 2019. 47(2): p. 603-614. 24. Liu, Y., et al., NtrC-dependent control of exopolysaccharide synthesis and motility in Burkholderia cenocepacia H111. PLoS One, 2017. 12(6): p. e0180362. 25. Alford, M.A., et al., NtrBC Regulates Invasiveness and Virulence of Pseudomonas aeruginosa During High-Density Infection. 2020. 11. 26. Cheng, A.T., et al., NtrC Adds a New Node to the Complex Regulatory Network of Biofilm Formation and vps Expression in Vibrio cholerae. J Bacteriol, 2018. 200(15). 27. Jia, T., et al., A Novel Small RNA Promotes Motility and Virulence of Enterohemorrhagic Escherichia coli O157:H7 in Response to Ammonium. mBio, 2021. 12(2). 28. Studholme, D.J. and M. Buck, The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol Lett, 2000. 186(1): p. 1-9. 29. Morett, E. and L. Segovia, The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol, 1993. 175(19): p. 6067-74. 30. Shingler, V., Signal sensory systems that impact σ⁵⁴ -dependent transcription. FEMS Microbiol Rev, 2011. 35(3): p. 425-40. 31. Wigneshweraraj, S., et al., Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol, 2008. 68(3): p. 538-46. 32. Riordan, J.T. and A. Mitra, Regulation of Escherichia coli Pathogenesis by Alternative Sigma Factor N. EcoSal Plus, 2017. 7(2). 33. Kazmierczak, M.J., M. Wiedmann, and K.J. Boor, Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev, 2005. 69(4): p. 527-43. 34. Gaillardin, C.M. and B. Magasanik, Involvement of the product of the glnF gene in the autogenous regulation of glutamine synthetase formation in Klebsiella aerogenes. J Bacteriol, 1978. 133(3): p. 1329-38. 35. Hunt, T.P. and B. Magasanik, Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Proc Natl Acad Sci U S A, 1985. 82(24): p. 8453-7. 36. Hirschman, J., et al., Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. Proc Natl Acad Sci U S A, 1985. 82(22): p. 7525-9. 37. Popham, D.L., et al., Function of a bacterial activator protein that binds to transcriptional enhancers. Science, 1989. 243(4891): p. 629-35. 38. Reitzer, L. and B.L. Schneider, Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev, 2001. 65(3): p. 422-44, table of contents. 39. Francke, C., et al., Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics, 2011. 12: p. 385. 40. Zhao, K., M. Liu, and R.R. Burgess, Promoter and regulon analysis of nitrogen assimilation factor, sigma54, reveal alternative strategy for E. coli MG1655 flagellar biosynthesis. Nucleic Acids Res, 2010. 38(4): p. 1273-83. 41. Leang, C., et al., Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens. BMC Genomics, 2009. 10: p. 331. 42. Wolfe, A.J., et al., Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization. Appl Environ Microbiol, 2004. 70(4): p. 2520-4. 43. Mitra, A., et al., σ(N) -dependent control of acid resistance and the locus of enterocyte effacement in enterohemorrhagic Escherichia coli is activated by acetyl phosphate in a manner requiring flagellar regulator FlhDC and the σ(S) antagonist FliZ. Microbiologyopen, 2014. 3(4): p. 497-512. 44. Pesavento, C., et al., Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev, 2008. 22(17): p. 2434-46. 45. Pesavento, C. and R. Hengge, The global repressor FliZ antagonizes gene expression by σS-containing RNA polymerase due to overlapping DNA binding specificity. Nucleic Acids Res, 2012. 40(11): p. 4783-93. 46. Hooton, T.M., Recurrent urinary tract infection in women. Int J Antimicrob Agents, 2001. 17(4): p. 259-68. 47. Garini, G. and A. Mazzi, [Urinary infections in adults: clinical approach and therapeutic indications]. Ann Ital Med Int, 1995. 10(1): p. 25-30. 48. Flores-Mireles, A.L., et al., Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol, 2015. 13(5): p. 269-84. 49. Horng, Y.T., et al., Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation. J Microbiol Immunol Infect, 2018. 51(2): p. 174-183. 50. Peerbooms, P.G., A.M. Verweij, and D.M. MacLaren, Vero cell invasiveness of Proteus mirabilis. Infect Immun, 1984. 43(3): p. 1068-71. 51. Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22. 52. Yang, Z., et al., Master regulator NtrC controls the utilization of alternative nitrogen sources in Pseudomonas stutzeri A1501. World J Microbiol Biotechnol, 2021. 37(10): p. 177. 53. Kim, H.S., S.J. Park, and K.H. Lee, Role of NtrC-regulated exopolysaccharides in the biofilm formation and pathogenic interaction of Vibrio vulnificus. Mol Microbiol, 2009. 74(2): p. 436-53. 54. Carniello, V., et al., Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Advances in Colloid and Interface Science, 2018. 261: p. 1-14. 55. Sivick, K.E., et al., The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection. J Immunol, 2010. 184(4): p. 2065-75. 56. Cheng, N., et al., Serum amyloid A promotes LPS clearance and suppresses LPS-induced inflammation and tissue injury. EMBO Rep, 2018. 19(10). 57. Owusu-Boaitey, N., et al., Macrophagic control of the response to uropathogenic E. coli infection by regulation of iron retention in an IL-6-dependent manner. Immun Inflamm Dis, 2016. 4(4): p. 413-426. 58. Gao, J.J., et al., Bacterial DNA and Lipopolysaccharide Induce Synergistic Production of TNF-α Through a Post-Transcriptional Mechanism. The Journal of Immunology, 2001. 166(11): p. 6855. 59. Muotiala, A. and P.H. Mäkelä, The role of IFN-γ in murine Salmonella typhimurium infection. Microbial Pathogenesis, 1990. 8(2): p. 135-141. 60. Lim, J.H., C.H. Woo, and J.D. Li, Critical role of type 1 plasminogen activator inhibitor (PAI-1) in early host defense against nontypeable Haemophilus influenzae (NTHi) infection. Biochem Biophys Res Commun, 2011. 414(1): p. 67-72. 61. Keates, A.C., et al., Helicobacter pylori infection stimulates plasminogen activator inhibitor 1 production by gastric epithelial cells. Infect Immun, 2008. 76(9): p. 3992-9. 62. Roger, T., et al., High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates. Proc Natl Acad Sci U S A, 2016. 113(8): p. E997-1005. 63. Liu, M.C., et al., New aspects of RpoE in uropathogenic Proteus mirabilis. Infect Immun, 2015. 83(3): p. 966-77. 64. Roger, T., et al., Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis. J Infect Dis, 2013. 207(2): p. 331-9. 65. Sabharwal, H., et al., Interleukin-8, CXCL1, and MicroRNA miR-146a Responses to Probiotic Escherichia coli Nissle 1917 and Enteropathogenic E. coli in Human Intestinal Epithelial T84 and Monocytic THP-1 Cells after Apical or Basolateral Infection. Infect Immun, 2016. 84(9): p. 2482-92. 66. Saliu, F., et al., Chronic infection by nontypeable Haemophilus influenzae fuels airway inflammation. ERJ Open Res, 2021. 7(1). 67. Malago, J.J., P.C. Tooten, and J.F. Koninkx, Anti-inflammatory properties of probiotic bacteria on Salmonella-induced IL-8 synthesis in enterocyte-like Caco-2 cells. Benef Microbes, 2010. 1(2): p. 121-30. 68. Yang, J.S., et al., Vibrio cholerae OmpU induces IL-8 expression in human intestinal epithelial cells. Mol Immunol, 2018. 93: p. 47-54. 69. Ihim, S.A., et al., Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front Immunol. 2022 Aug 11;13:919973. doi: 10.3389/fimmu.2022.919973. eCollection 2022. 70. Guo, Y., et al., Resistance to oxidative stress by inner membrane protein ElaB is regulated by OxyR and RpoS. Microb Biotechnol, 2019. 12(2): p. 392-404. 71. Pal, R.R., et al., Genetic components of stringent response in Vibrio cholerae. Indian J Med Res, 2011. 133(2): p. 212-7. 72. Dalebroux, Z.D., R.L. Edwards, and M.S. Swanson, SpoT governs Legionella pneumophila differentiation in host macrophages. Mol Microbiol, 2009. 71(3): p. 640-58. 73. Brown, D.R., et al., Nitrogen stress response and stringent response are coupled in Escherichia coli. Nat Commun, 2014. 5: p. 4115. 74. Brown, D.R., Nitrogen Starvation Induces Persister Cell Formation in Escherichia coli. J Bacteriol, 2019. 201(3). 75. Rahman, M.M., et al., The Structure of the Colony Migration Factor from PathogenicProteus mirabilis: A CAPSULAR POLYSACCHARIDE THAT FACILITATES SWARMING*. Journal of Biological Chemistry, 1999. 274(33): p. 22993-22998. 76. Armbruster, C.E., H.L.T. Mobley, and M.M. Pearson, Pathogenesis of Proteus mirabilis Infection. EcoSal Plus, 2018. 8(1). 77. Krajewska-Grynkiewicz, K. and S. Kustu, Evidence that nitrogen regulatory gene ntrC of Salmonella typhimurium is transcribed from the glnA promoter as well as from a separate ntr promoter. Mol Gen Genet, 1984. 193(1): p. 135-42. 78. Sui, W., et al., Nephrolithiasis and Elevated Urinary Ammonium: A Matched Comparative Study. Urology, 2020. 144: p. 77-82. 79. Bouatra, S., et al., The human urine metabolome. PLoS One, 2013. 8(9): p. e73076. 80. Javelle, A. and M. Merrick, Complex formation between AmtB and GlnK: an ancestral role in prokaryotic nitrogen control. Biochem Soc Trans, 2005. 33(Pt 1): p. 170-2. 81. Nguyen, P.-T., et al., Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiology, 2020. 6(4): p. 451-469. 82. Bisht, D. and L.S. Meena, Adhesion molecules facilitate host-pathogen interaction & mediate Mycobacterium tuberculosis pathogenesis. Indian J Med Res, 2019. 150(1): p. 23-32. 83. Okkotsu, Y., et al., Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility. J Bacteriol, 2013. 195(24): p. 5499-515. 84. Aquino, P., et al., Coordinated regulation of acid resistance in Escherichia coli. BMC Syst Biol, 2017. 11(1): p. 1. 85. Nguyen, P.T., et al., Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiol, 2020. 6(4): p. 451-469. 86. Chevalier, G., et al., Blockage of bacterial FimH prevents mucosal inflammation associated with Crohn's disease. Microbiome, 2021. 9(1): p. 176. 87. Karan, S., et al., Recombinant FimH, a fimbrial tip adhesin of Vibrio parahaemolyticus, elicits mixed T helper cell response and confers protection against Vibrio parahaemolyticus challenge in murine model. Mol Immunol, 2021. 135: p. 373-387. 88. Wilson, M., R. Seymour, and B. Henderson, Bacterial perturbation of cytokine networks. Infect Immun, 1998. 66(6): p. 2401-9. 89. Henderson, B., S. Poole, and M. Wilson, Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol Rev, 1996. 60(2): p. 316-41. 90. Alford, M.A., et al., NtrBC Selectively Regulates Host-Pathogen Interactions, Virulence, and Ciprofloxacin Susceptibility of Pseudomonas aeruginosa. 2021. 11. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84493 | - |
| dc.description.abstract | 奇異變形桿菌(Proteus mirabilis)是造成伺機性尿道感染之常見致病菌。NtrBC two-component system為氮源調控之主要系統,而其亦是影響許多細菌毒力之重要調節子,根據先前實驗室研究,氮源調節相關之sigma factor-RpoN的缺乏使P. mirabilis表面移行能力(swarming)下降,NtrC為RpoN enhancer binding protein之一,且諸多文獻指出ntrC的缺失亦影響其他細菌之運動性與諸多毒力因子,因此我們擬分析ntrC於P. mirabilis中所扮演之角色,並探討其調控機制。 首先經動物實驗結果顯示,ntrC突變株於小鼠之膀胱與腎臟定殖能力皆較野生株差,說明了ntrC於P. mirabilis致病力中扮演著重要的角色,我們接著分析ntrC的缺失所影響之毒力因子。結果可知ntrC突變株相較於野生株,其運動性、壓力抗性與胞外多醣體分泌能力皆下降,而細胞貼附能力、促進細胞激素之分泌則較野生株上升。此後經reporter assay與RT-qPCR進行基因分析可知, NtrC透過正調控flhDC促進鞭毛蛋白生成,讓細菌具備較好的運動性,而當其分化成swarmer cell所分泌的溶血素,亦使之具備較佳溶血能力。當P. mirabilis面臨壓力時,NtrC會上調節spoT,因此由抗壓相關表現型可觀察到ntrC突變株於酸性、氧化壓力環境中與巨噬細胞試驗之生存率較野生株下降;NtrC亦會正調控cpsF來促使胞外多醣體之分泌,增加壓力抗性與作為表面移行時所需之潤滑劑。檢測其纖毛相關基因顯示NtrC負調控pmpA,因此由細胞貼附試驗結果可知ntrC突變株貼附能力較野生株上升。最後則觀察到ntrC突變株較易促使細胞激素分泌。綜合上述可知,ntrC於P. mirabilis致病力中扮演著重要的角色。 NtrC可獨立轉錄亦可與glnA共用promoter一起轉錄,且NtrC具自我調控機制,會抑制ntrBC與glnA表現量。最後由reporter assay結果顯示,硫酸銨濃度逐漸提高的情況下,NtrC逐漸喪失對glnK-amtB promoter之促進能力,表示NtrC會在低濃度硫酸銨時受活化,而當處於硫酸銨充足的情況下,NtrC活性則下降。為探討NtrB是否只透過磷酸化NtrC來調控表現型,我們將ntrB基因剔除,分析ntrB突變株之表現型,並比較結果是否與ntrC突變株一致。結果顯示,ntrB突變株與ntrC突變株表現型趨勢相同為表面移行能力、泳動能力、酸性與氧化壓力抗性與生物膜生成能力,相異的部分為ntrB突變株之尿素酶活性較野生株顯著下降,因此我們推測NtrB會cross-regulate其他response regulator。 總結以上實驗結果,NtrC促進小鼠腎臟與膀胱中之定殖,正向調控flhDC、spoT與cpsF來分別提升表面移行能力、抗壓能力與增加胞外多醣體生成。而ntrC突變株PmpA纖毛表現量增加也較易促使細胞激素之分泌。由上述可知NtrC於P. mirabilis之致病力中扮演重要的角色。 | zh_TW |
| dc.description.abstract | Proteus mirabilis is an opportunistic pathogen commonly causing urinary tract infection. NtrBC, a two-component system mainly serves to regulate nitrogen utilization, also contributing to virulence factors expression such as motility in various bacterial species. Our previous studies showed lack of sigma factor-RpoN leads to a decreased swarming ability. In view that NtrC is one of the enhancer binding proteins on RpoN, we wondered if ntrC is involved in the RpoN-mediated phenotypes. Therefore, the purpose of this study is to disclose the role of ntrC in P. mirabilis and investigate the underlying mechanisms. First, we confirmed the ntrC mutation had no effect on growth and performed the mouse colonization experiment. The ntrC mutant showed a significant reduction in both kidney and bladder colonization compared with the wild-type, indicating the importance of ntrC in pathogenicity. We next analyzed the impact of ntrC deficiency on virulence factor expression. The results showed that ntrC mutation had no effect on urease activity and biofilm formation ability but a significant decrease in swarming ability, swimming ability, flagellin level, stress-resistance and exopolysaccharide (EPS) formation. The ntrC mutant exhibited higher adhesion ability and induced higher cytokine production than the wild-type strain. The reporter assay revealed that NtrC positively regulated flhDC promoter activity. The ntrC mutant had lower spoT (a gene coping with stress environment) expression by the reporter assay and RT-qPCR. Accordingly, we observed that ntrC mutant had a lower survival rate on exposure to low pH or menadione and in macrophages than the wild-type. NtrC also upregulated cpsF expression to promote production of EPS which protects bacteria from stresses and also increases medium surface fluidity to facilitate swarming migration. We further constructed ntrB mutant and analyzed related phenotypes of ntrB mutant. Data showed that swarming ability, stress resistance and biofilm formation were similar to the ntrC mutant. Wherase, the urease activity of ntrB mutant was different from ntrC mutant. Thus, NtrB may cross-regulate other response regulators. Moreover, NtrC positively regulates expression of PmpA pili. NtrBC can be transcribed independently or co-transcribed with glnA and acts as a repressor of ntrBC and glnAp1 promoter. We identified that low concentration of ammonium acts as a signal for the NtrC-transduction pathway by the reporter assay using NtrC-regulated glnK promoter. Together, NtrC positively regulates flhDC, spoT and cpsF to promote swarming ability, stress-resistance and EPS production, respectively, and inhibits cytokine production, contributing to the mouse colonization. In conclusion, ntrC plays an important role in the pathogeneicity of P. mirabilis. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:13:21Z (GMT). No. of bitstreams: 1 U0001-2609202210504300.pdf: 3678013 bytes, checksum: a20e04e6917c296e1ed774a47f3965fe (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書……………………………………………………………………….i 誌謝……………………………………………………………………………………ii 摘要…………………………………………………………………………………...iii Abstract………………………………………………………………………………..v 目錄…………………………………………………………………………………..vii 圖目錄………………………………………………………………………………...ix 表目錄………………………………………………………………………………...xi 第一章 續論……………………………………………………………...……………..1 第一節 奇異變形桿菌(Proteus mirabilis)的基本介紹…………………………...1 第二節 P. mirabilis的致病因子……………………………………...…………..1 第三節 NtrBC two-component system之簡介…..……………………...………..5 第四節 NtrC對細菌毒力因子之影響……………….…………………...………6 第五節 RpoN之簡介………………..………………………………………….....6 第六節 研究動機與目的……………………...……………………………...…...7 第二章 實驗材料與方法…………………………………………………………….....8 第一節 實驗設計………………………………………………………………….8 第二節 實驗材料………………………………………………………………….9 第三節 質體建構方法…………………………………………………………...12 第四節 表現型(phenotypes)及毒力因子(virulence factors)分析……………….21 第五節 基因表達………………………………………………………………...34 第三章 實驗結果……………………………………………………………………...38 第一節 小鼠感染之定殖(colonization)能力試驗……………………………….38 第二節 ntrC突變株之表現型分析………………………………………….......31 第三節 ntrC之表現型相關基因調控機制……………………………………...52 第四節 Two-component system NtrBC之特性……………………………........57 第四章 結論與討論…………………………………………………………………...70 第一節 結論……………………………………………………………………...70 第二節 討論……………………………………………………………………...71 第五章 表……………………………………………………………………………...75 參考文獻……………………………………………………………………………….82 附錄………………………………………………………………………………….....92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 尿道致病菌 | zh_TW |
| dc.subject | 奇異變形桿菌 | zh_TW |
| dc.subject | NtrC | zh_TW |
| dc.subject | 氮源調節子 | zh_TW |
| dc.subject | 毒力因子 | zh_TW |
| dc.subject | virulence factor | en |
| dc.subject | uropathogen | en |
| dc.subject | Proteus mirabilis | en |
| dc.subject | NtrC | en |
| dc.subject | nitrogen regulator | en |
| dc.title | 雙組成系統之反應調節子-NtrC於尿道致病性奇異變形桿菌中扮演之角色 | zh_TW |
| dc.title | The role of NtrC, a two-component system response regulator, in uropathogenic Proteus mirabilis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴信志(Hsin-Chih Lai),楊翠青(Tsuey-Ching Yang) | |
| dc.subject.keyword | 尿道致病菌,奇異變形桿菌,NtrC,氮源調節子,毒力因子, | zh_TW |
| dc.subject.keyword | uropathogen,Proteus mirabilis,NtrC,nitrogen regulator,virulence factor, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU202204052 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-14 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2609202210504300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
