請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84469
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張弘潔(Hung-Chieh Chang) | |
dc.contributor.author | Kai-Na Niu | en |
dc.contributor.author | 鈕愷娜 | zh_TW |
dc.date.accessioned | 2023-03-19T22:12:35Z | - |
dc.date.copyright | 2022-10-13 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-26 | |
dc.identifier.citation | 英文文獻 1. Abercrombie, G. (1953). December fog in London and the emergency bed service. The Lancet, 261(6753), 234-235. 2. Abichahine, H., & Veenstra, G. (2017). Inter-categorical intersectionality and leisure-based physical activity in Canada. Health promotion international, 32(4), 691-701. 3. Agénor, M., Abboud, S., Delgadillo, J. G., Pérez, A. E., Peitzmeier, S. M., & Borrero, S. (2018). Intersectional nativity and racial/ethnic disparities in human papillomavirus vaccination initiation among US women: a national population-based study. Cancer Causes & Control, 29(10), 927-936. 4. Aguayo-Romero, R. A. (2021). (Re) centering black feminism into intersectionality research. In (Vol. 111, pp. 101-103): American Public Health Association. 5. Alexander-Floyd, N. G. (2012). Disappearing Acts: Reclaiming Intersectionality in the Social Sciences in a Post—Black Feminist Era. Feminist Formations, 24(1), 1-25. Retrieved from http://www.jstor.org/stable/23275087 6. Alvidrez, J., Greenwood, G. L., Johnson, T. L., & Parker, K. L. (2021). Intersectionality in public health research: a view from the National Institutes of Health. In (Vol. 111, pp. 95-97): American Public Health Association. 7. Assembly, U. G. (1979). Convention on the elimination of all forms of discrimination against women. Retrieved April, 20, 2006. 8. Atkinson, J. L., & Sloan, R. G. (2017). Exploring the impact of age, race, and stereotypes on perceptions of language performance and patronizing speech. Journal of Language and Social Psychology, 36(3), 287-305. 9. Bertakis, K. D., Azari, R., Helms, L. J., Callahan, E. J., & Robbins, J. A. (2000). Gender Differences in the Utilization of Health Care Services. Journal of Family Practice, 49(2), 147-152. Retrieved from https://search.ebscohost.com/login.aspx?direct=true&db=asr&AN=2850496&site=ehost-live&scope=site 10. Bourabain, D., & Verhaeghe, P.-P. (2019). Could you help me, please? Intersectional field experiments on everyday discrimination in clothing stores. Journal of Ethnic and Migration Studies, 45(11), 2026-2044. doi:10.1080/1369183X.2018.1480360 11. Bowleg, L. (2012). The problem with the phrase women and minorities: intersectionality—an important theoretical framework for public health. American journal of public health, 102(7), 1267-1273. 12. Brown, R. L., & Moloney, M. E. (2019). Intersectionality, work, and well-being: The effects of gender and disability. Gender & Society, 33(1), 94-122. 13. Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233-1242. doi:https://doi.org/10.1016/S0140-6736(02)11274-8 14. Carrasquillo, O. (2013). Health Care Utilization. In M. D. Gellman & J. R. Turner (Eds.), Encyclopedia of Behavioral Medicine (pp. 909-910). New York, NY: Springer New York. 15. Chang, E. S., Kannoth, S., Levy, S., Wang, S.-Y., Lee, J. E., & Levy, B. R. (2020). Global reach of ageism on older persons’ health: A systematic review. PLOS ONE, 15(1), e0220857. doi:10.1371/journal.pone.0220857 16. Chaudhuri, A. (2012). Socio-economic inequity in health care utilization & expenditures in richer States in India. The Indian journal of medical research, 136(3), 368. 17. Clarke, A. Y., & McCall, L. (2013). Intersectionality and social explanation in social science research. Du Bois Review: Social Science Research on Race, 10(2), 349-363. 18. Crenshaw, K. (1989). Demarginalizing the intersection of race and sex: A Black feminist critique of antidiscrimination doctrine, feminist theory, and antiracist politics. University of Chicago Legal Forum, 139–167. 19. Crimmins, E. M., Kim, J. K., & Hagedorn, A. (2002). Life With and Without Disease: Women Experience More of Both. Journal of Women & Aging, 14(1-2), 47-59. doi:10.1300/J074v14n01_04 20. Cylus, J., Hartman, M., Washington, B., Andrews, K., & Catlin, A. (2011). Pronounced gender and age differences are evident in personal health care spending per person. Health Aff (Millwood), 30(1), 153-160. doi:10.1377/hlthaff.2010.0216 21. Da Silva, R. B., Contandriopoulos, A.-P., Pineault, R., & Tousignant, P. (2011). A global approach to evaluation of health services utilization: concepts and measures. Healthcare policy = Politiques de sante, 6(4), e106-e117. Retrieved from https://pubmed.ncbi.nlm.nih.gov/22548101 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107120/ 22. Davis, K. (2008). Intersectionality as buzzword: A sociology of science perspective on what makes a feminist theory successful. Feminist theory, 9(1), 67-85. 23. Dockery, D. W., & Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual review of public health, 15(1), 107-132. 24. Donabedian, A. C. F. (1973). Aspects of medical care administration: specifying requirements for health care. Cambridge: Published for the Commonwealth Fund by Harvard Univ. Press. 25. Duan, Z., Han, X., Bai, Z., & Yuan, Y. (2016). Fine particulate air pollution and hospitalization for pneumonia: a case-crossover study in Shijiazhuang, China. Air Quality, Atmosphere & Health, 9(7), 723-733. doi:10.1007/s11869-015-0383-y 26. Evans, C. R., Williams, D. R., Onnela, J.-P., & Subramanian, S. V. (2018). A multilevel approach to modeling health inequalities at the intersection of multiple social identities. Social Science & Medicine, 203, 64-73. doi:https://doi.org/10.1016/j.socscimed.2017.11.011 27. Fedina, L., Backes, B. L., Jun, H.-J., Shah, R., Nam, B., Link, B. G., & DeVylder, J. E. (2018). Police violence among women in four U.S. cities. Preventive Medicine, 106, 150-156. doi:https://doi.org/10.1016/j.ypmed.2017.10.037 28. Fernández-Olano, C., Hidalgo, J. D. L.-T., Cerdá-Díaz, R., Requena-Gallego, M., Sánchez-Castaño, C., Urbistondo-Cascales, L., & Otero-Puime, A. (2006). Factors associated with health care utilization by the elderly in a public health care system. Health Policy, 75(2), 131-139. doi:https://doi.org/10.1016/j.healthpol.2005.02.005 29. Folland, S., Goodman, A. C., & Stano, M. (2016). The Economics of Health and Health Care: Pearson New International Edition: Routledge. 30. Gao, Q., Prina, A. M., Ma, Y., Aceituno, D., & Mayston, R. (2022). Inequalities in Older age and Primary Health Care Utilization in Low- and Middle-Income Countries: A Systematic Review. Int J Health Serv, 52(1), 99-114. doi:10.1177/00207314211041234 31. Gerst-Emerson, K., & Jayawardhana, J. (2015). Loneliness as a public health issue: the impact of loneliness on health care utilization among older adults. American journal of public health, 105(5), 1013-1019. 32. Guan, A., Thomas, M., Vittinghoff, E., Bowleg, L., Mangurian, C., & Wesson, P. (2021). An investigation of quantitative methods for assessing intersectionality in health research: A systematic review. SSM-Population Health, 16, 100977. 33. Gundgaard, J. (2006). Income-related inequality in utilization of health services in Denmark: Evidence from Funen County. Scandinavian Journal of Public Health, 34(5), 462-471. doi:10.1080/14034940600554644 34. Hadwiger, M., König, H. H., & Hajek, A. (2019). Determinants of frequent attendance of outpatient physicians: A longitudinal analysis using the German socio-economic panel (GSOEP). International journal of environmental research and public health, 16(9). 35. Hajek, A., Kretzler, B., & König, H. H. (2021). Determinants of healthcare use based on the Andersen model: a study protocol for a systematic review of longitudinal studies. BMJ open, 11(5). 36. Hankivsky, O., & Christoffersen, A. (2008). Intersectionality and the determinants of health: a Canadian perspective. Critical Public Health, 18(3), 271-283. doi:10.1080/09581590802294296 37. Hankivsky, O., & Cormier, R. (2011). Intersectionality and public policy: Some lessons from existing models. Political Research Quarterly, 64(1), 217-229. 38. Hankivsky, O., Cormier, R., & De Merich, D. I. (2009). Moving women’s health research and policy forward. Vancouver: Women’s Health Research Network. 39. Hankivsky, O., Grace, D., Hunting, G., Giesbrecht, M., Fridkin, A., Rudrum, S., . . . Clark, N. (2014). An intersectionality-based policy analysis framework: critical reflections on a methodology for advancing equity. International Journal for Equity in Health, 13(1), 119. doi:10.1186/s12939-014-0119-x 40. Hansell, S., Sherman, G., & Mechanic, D. (1991). Body awareness and medical care utilization among older adults in an HMO. Journal of Gerontology, 46(3), S151-S159. 41. Harper, P. R. (2005). A review and comparison of classification algorithms for medical decision making. Health Policy, 71(3), 315-331. 42. Hartman, M., Catlin, A., Lassman, D., Cylus, J., & Heffler, S. (2007). US Health Spending By Age, Selected Years Through 2004: Recent trends indicate that per person spending for the oldest elderly is growing more slowly than spending for all other age groups. Health Affairs, 26(Suppl2), w1-w12. 43. Hwang, J.-S., & Chan, C.-C. (2002). Effects of Air Pollution on Daily Clinic Visits for Lower Respiratory Tract Illness. American Journal of Epidemiology, 155(1), 1-10. doi:10.1093/aje/155.1.1 44. International Agency for Research on Cancer (IARC). IARC: outdoor air pollution a leading environmental cause of cancer deaths. 45. Klemm, R. J., Mason, R. M., Heilig, C. M., Neas, L. M., & Dockery, D. W. (2000). Is Daily Mortality Associated Specifically with Fine Particles? Data Reconstruction and Replication of Analyses. Journal of the Air & Waste Management Association, 50(7), 1215-1222. doi:10.1080/10473289.2000.10464149 46. Kloos, H. (1990). Utilization of selected hospitals, health centres and health stations in Central, Southern and Western Ethiopia. Social Science & Medicine, 31(2), 101-114. doi:https://doi.org/10.1016/0277-9536(90)90052-T 47. Krause, N. M., & Jay, G. M. (1994). What Do Global Self-Rated Health Items Measure? Medical Care, 32(9), 930-942. Retrieved from http://www.jstor.org/stable/3766597 48. Leinonen, R., Heikkinen, E., & Jylhä, M. (1998). Self-rated health and self-assessed change in health in elderly men and women — A five-year longitudinal study. Social Science & Medicine, 46(4), 591-597. doi:https://doi.org/10.1016/S0277-9536(97)00205-0 49. Lemon, S. C., Roy, J., Clark, M. A., Friedmann, P. D., & Rakowski, W. (2003). Classification and regression tree analysis in public health: methodological review and comparison with logistic regression. Annals of behavioral medicine, 26(3), 172-181. 50. Leslie, J., & Gupta, G. R. (1989). Utilization of formal services for maternal nutrition and health care: Citeseer. 51. Lizotte, D. J., Mahendran, M., Churchill, S. M., & Bauer, G. R. (2020). Math versus meaning in MAIHDA: A commentary on multilevel statistical models for quantitative intersectionality. Social Science & Medicine, 245, 112500. doi:https://doi.org/10.1016/j.socscimed.2019.112500 52. Lokot, M., & Avakyan, Y. (2020). Intersectionality as a lens to the COVID-19 pandemic: implications for sexual and reproductive health in development and humanitarian contexts. Sexual and Reproductive Health Matters, 28(1), 1764748. doi:10.1080/26410397.2020.1764748 53. MacKian, S. (2003). A review of health seeking behaviour: problems and prospects. Health Systems Development Programme. 54. Mahendran, M., Lizotte, D., & Bauer, G. R. (2022). Quantitative methods for descriptive intersectional analysis with binary health outcomes. SSM - Population Health, 17, 101032. doi:https://doi.org/10.1016/j.ssmph.2022.101032 55. Markides, K. S., Levin, J. S., & Ray, L. A. (1985). Determinants of Physician Utilization among Mexican-Americans: A Three-Generations Study. Medical Care, 23(3), 236-246. Retrieved from http://www.jstor.org/stable/3764684 56. Mearns, R., & Norton, A. (2009). Social dimensions of climate change: Equity and vulnerability in a warming world: World Bank Publications. 57. Mena, E., Bolte, G., & Group, A. S. (2021). CART-analysis embedded in social theory: A case study comparing quantitative data analysis strategies for intersectionality-based public health monitoring within and beyond the binaries. SSM-Population Health, 13, 100722. 58. Mubayi, A. (2017). Computational modeling approaches linking health and social sciences: Sensitivity of social determinants on the patterns of health risk behaviors and diseases. In Handbook of statistics (Vol. 36, pp. 249-304): Elsevier. 59. Mutran, E., & Ferraro, K. F. (1988). Medical need and use of services among older men and women. Journal of Gerontology, 43(5), S162-S171. 60. Nash, J. C. (2008). Re-Thinking Intersectionality. Feminist Review, 89(1), 1-15. doi:10.1057/fr.2008.4 61. National Academies of Sciences, E., & Medicine. (2018). Health and Medicine Division, Board on Health Care Services, Committee on Health Care Utilization and Adults with Disabilities. Health-care utilization as a proxy in disability determination. Washington DC: National Academies Press. 62. National Center for Health, S. (2012). Health, United States. In Health, United States, 2011: With Special Feature on Socioeconomic Status and Health. Hyattsville (MD): National Center for Health Statistics (US). 63. National Center for Health, S. (2017). Health, United States. In Health, United States, 2016: With Chartbook on Long-term Trends in Health. Hyattsville (MD): National Center for Health Statistics (US). 64. Neal, R. D., Heywood, P. L., & Morley, S. (2000). 'I always seem to be there'--a qualitative study of frequent attenders. The British Journal of General Practice, 50(458), 716. 65. Owens, G. (2008). Gender differences in health care expenditures, resource utilization, and quality of care. Journal of Managed Care Pharmacy, 14(3), 2-6. 66. Peel, J. L., Tolbert, P. E., Klein, M., Metzger, K. B., Flanders, W. D., Todd, K., . . . Frumkin, H. (2005). Ambient Air Pollution and Respiratory Emergency Department Visits. Epidemiology, 16(2), 164-174. Retrieved from http://www.jstor.org/stable/20486023 67. Poteat, T. (2021). Navigating the storm: how to apply intersectionality to public health in times of crisis. In (Vol. 111, pp. 91-92): American Public Health Association. 68. Roberts, R. O., Bergstralh, E. J., Schmidt, L., & Jacobsen, S. J. (1996). Comparison of self-reported and medical record health care utilization measures. Journal of Clinical Epidemiology, 49(9), 989-995. doi:https://doi.org/10.1016/0895-4356(96)00143-6 69. Robertson, S. (2009). Theories of masculinities and men’s health-seeking practices. Nowhere Man’s Press, 9(2012), 149-172. 70. Salganicoff, A., Ranji, U., Beamesderfer, A., & Kurani, N. (2014). Women and health care in the early years of the ACA: key findings from the 2013 Kaiser Women’s Health Survey. Retrieved from Menlo Park (CA): 71. Segall, M. (1999). Economic reform, poverty and equity in access to health care : case studies in Viet Nam / Malcolm Segall [and others]. Brighton: Institute of Development Studies. 72. Shaw, L. R., Chan, F., & McMahon, B. T. (2012). Intersectionality and disability harassment: The interactive effects of disability, race, age, and gender. Rehabilitation Counseling Bulletin, 55(2), 82-91. 73. Snih, S. A., Markides, K. S., Ray, L. A., Freeman, J. L., Ostir, G. V., & Goodwin, J. S. (2006). Predictors of healthcare utilization among older Mexican Americans. Ethnicity & disease, 16(3), 640-646. 74. Suh, H. H., Zanobetti, A., Schwartz, J., & Coull, B. A. (2011). Chemical properties of air pollutants and cause-specific hospital admissions among the elderly in Atlanta, Georgia. Environ Health Perspect, 119(10), 1421-1428. doi:10.1289/ehp.1002646 75. Suls, J., Marco, C. A., & Tobin, S. (1991). The role of temporal comparison, social comparison, and direct appraisal in the elderly's self‐evaluations of health. Journal of Applied Social Psychology, 21(14), 1125-1144. 76. Swift, H. J., & Steeden, B. (2020). Doddery but dear? – Examining age-related stereotypes. Retrieved from https://ageing-better.org.uk/sites/default/files/2021-08/Doddery-but-dear-examining-stereotypes.pdf 77. Taylor, D. E. (2000). The Rise of the Environmental Justice Paradigm:Injustice Framing and the Social Construction of Environmental Discourses. American Behavioral Scientist, 43(4), 508-580. doi:10.1177/0002764200043004003 78. Thompson, A. E., Anisimowicz, Y., Miedema, B., Hogg, W., Wodchis, W. P., & Aubrey-Bassler, K. (2016). The influence of gender and other patient characteristics on health care-seeking behaviour: a QUALICOPC study. BMC Family Practice, 17(1), 38. doi:10.1186/s12875-016-0440-0 79. Tian, Y., Liu, H., Wu, Y., Si, Y., Li, M., Wu, Y., . . . Hu, Y. (2019). Ambient particulate matter pollution and adult hospital admissions for pneumonia in urban China: A national time series analysis for 2014 through 2017. PLoS Med, 16(12), e1003010. doi:10.1371/journal.pmed.1003010 80. Truth, S. (1851). Ain't I A Woman? Women's Convention. Old Stone Church (since demolished), Akron, Ohio. 81. Van Doorslaer, E., Masseria, C., & Koolman, X. (2006). Inequalities in access to medical care by income in developed countries. Cmaj, 174(2), 177-183. 82. Verbrugge, L. M. (1982). Sex differentials in health. Public Health Rep, 97(5), 417-437. 83. WHO. (2019). Ten threats to global health in 2019. Retrieved from https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 84. Wong, A., Wouterse, B., Slobbe, L. C. J., Boshuizen, H. C., & Polder, J. J. (2012). Medical innovation and age-specific trends in health care utilization: Findings and implications. Social Science & Medicine, 74(2), 263-272. doi:https://doi.org/10.1016/j.socscimed.2011.10.026 85. Yesudian, C. (1988). Health Services Utilisation in Urban India: A Study: Mittal Publications. 86. Zanobetti, A., Schwartz, J., & Gold, D. (2000). Are there sensitive subgroups for the effects of airborne particles? Environ Health Perspect, 108(9), 841-845. doi:10.1289/ehp.00108841 中文文獻 87. 江東亮、林瑞雄(1994)。吸菸是否會增加利用醫療服務?中華公共衛生雜誌,13(3),214-222。 88. 行政院性別平等會(2022)。2022年性別圖像,取自 https://gec.ey.gov.tw/Page/5950AEA34211CEE3/d0653999-ec9f-417e-9cd2-ea9b670764eb 89. 行政院環境保護署(2019)。中華民國空氣品質監測報告(108年年報),取自 https://www.epa.gov.tw/Page/672FA2BDDEAA22C7/71fedbd8-9829-49e0-b02b-0addb5bd470a 90. 李玉君、張瑞君(2007)。全民健保法對經濟弱勢者醫療保障規定之評析。臺大法學論叢,36(1),157-208。 91. 李丞華、周穎政、陳龍生、張鴻仁(2004)。全民健保中醫門診利用率及其影響因素。臺灣公共衛生雜誌,23(2),100-107。 92. 李妙純、沈茂庭(2008)。全民健保下不同所得群體醫療利用不均因素分析。臺灣公共衛生雜誌,27(3),223-231。 93. 李妙純、張華庭(2011)。社經地位與健康路徑關係之性別差異。臺灣公共衛生雜誌,30(5),453-467。 94. 李忠懿(2018)。全民健保門診高利用者就醫型態分析。臺灣大學公共衛生碩士學位學程學位論文。 95. 李彥儫(2014)。老人脆弱狀況與醫療服務利用之關係。長榮大學醫務管理學系(所)學位論文。 96. 林四海、楊惠真、陳墩仁、邱惠慈(2000)。中部地區醫療服務高低利用者之相關因素研究。醫務管理期刊,1(1),57-70。 97. 林麗芬、林宜靜(2019)。細懸浮微粒PM(2.5)與急性支氣管炎之門診就醫關係。Journal of Data Analysis,14(4),39-61。 98. 翁瑞宏、郝宏恕、黃金安、黃靖媛、羅萱(2004)。健保中醫門診醫療服務之市場區隔變數分析。醫務管理期刊,5(2),171-186。 99. 張玨(2000)。全球化趨勢與婦女健康。中華公共衛生雜誌,19(1),5-9。 100. 張苙雲、楊孟麗、趙景雲(2011)。就醫行為的潛在類型與健康測量:全民健康保險資料的應用。臺灣社會學刊,207-247。 101. 張筑涵,(2009)。臺灣地區成人健康行為對醫療利用之分析研究。亞洲大學健康暨醫務管理學系研究所碩士論文。 102. 張鴻仁、黃信忠、蔣翠蘋(2002)。全民健保醫療利用集中狀況及高、低使用者特性之探討。臺灣公共衛生雜誌,21(3),207-213。 103. 許芝綾(2010)。老人健康行為合併型態與醫療利用之相關研究。長榮大學醫務管理研究所碩士論文。 104. 陳玉筠(2016)。門診透析病患自評健康與就醫經驗感受之相關因素探討。國立臺北護理健康大學健康事業管理研究所碩士論文。 105. 傅仰止(2020)。臺灣社會變遷基本調查計畫2019第七期第五次:科技與風險組(C00351_2)【原始數據】。中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫,取自: https://srda.sinica.edu.tw/datasearch_detail.php?id=3160 106. 喻崇文(2009)。持續門診高醫療利用保險對象之人口特徵及就醫背景因素探討。中國醫藥大學醫務管理學研究所碩士論文。 107. 曾郁文(2005)。臺灣老年人門診醫療利用之長期分析: 1997-2001。長庚大學碩士論文。 108. 黃乙芹、侯文萱、呂芊曄、李岳蓁、李佩珍、陳怡臻、李中一(2021)。臺灣成年民眾之室外空氣污染健康識能調查。臺灣公共衛生雜誌,40(5),479-493。 109. 黃金安、賴其勛、胡哲生(2006)。急診醫療服務與其它醫療服務之類別間關係。臺灣公共衛生雜誌,25(5),384-393。 110. 楊長興、賴芳足(1996)。全民健保實施對於民眾醫療利用率影響之初期評估。中央健康保險局。 111. 蔡淑貞(2003)。低收入戶全民健康保險資源耗用分析。國防醫學院公共衛生學研究所碩士論文。 112. 解堊(2009)。與收入相關的健康及醫療服務利用不平等研究。經濟研究,2(2),93-105。 113. 衛生福利部(2020)。全民健康保險醫療統計。 114. 蕭筱宣(2017)。性別差異對就醫情形之影響:從保險公司的角度分析。 115. 羅偉成、謝瑞豪、詹長權、林先和(2016)。臺灣可歸因於PM2.5暴露之死亡負擔。臺灣醫學,20(4),396-405。 116. 行政院環境保護署(2020)。空氣品質標準法規,取自 https://airtw.epa.gov.tw/cht/Information/Standard/Rules.aspx | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84469 | - |
dc.description.abstract | 背景:影響醫療服務利用的因素多元,其中包括健康的決定因子以及空氣污染程度,空氣污染又與社會經濟政策有關聯,並且會因為不同社會、文化和經濟等結構,而對民眾造成不同程度的健康風險。本研究透過交織性(intersectionality)的概念,分析不同影響因素與醫療服務利用頻率之間的關係。 目的與方法:本研究以交織性作為框架,探討臺灣18歲以上民眾性別、年齡、月收入與PM2.5濃度的交織性,對臺灣民眾醫療服務利用之影響,並識別出高醫療服務利用的風險族群特性,採用中央研究院「學術調查研究資料庫」(Social Research Data Archive,簡稱SRDA)中「臺灣社會變遷基本調查計畫 2019 第七期第五次:科技與風險組」,以及行政院環保署「空氣品質監測報告(108年版)」部分資料進行次級資料分析。本研究選用2019年之資料,排除遺漏個案後,最後納入1691人。本研究使用SPSS 25統計軟體,並以羅吉斯迴歸和決策樹進行統計分析。 結果:本研究羅吉斯迴歸結果顯示,年齡與高醫療服務利用呈現正向關係,月收入與高醫療服務利用呈現負向關係,性別、PM2.5濃度與高醫療服務利用則呈現不顯著;然而透過決策樹CHAID分析,結果顯示,性別、年齡和月收入對於高醫療服務利用則有交織性影響,年齡66歲以上者是高醫療服務利用的最高風險族群,且年齡46至65歲且月收入20000元以下者是高醫療服務利用的次高風險族群,此外,在年齡18至45歲者當中,女性較男性有更高比例成為高醫療服務利用族群。 建議:依據本研究結果提出以下未來研究建議:1.納入更多影響醫療服務利用之因素探討,如對醫生的信任、對疾病預防的知識、有無慢性病史等。2.探討不同醫療服務利用類型,如門診、住院、急診等,更細緻的了解在交織性的框架之下,社會與環境因素對不同醫療服務利用類型有何影響。 | zh_TW |
dc.description.abstract | Background: Multiple factors affect the utilization of medical services, such as determinants of health and air pollution problem. Air pollution is related to sociopolitical policies and poses different health risks to the population due to different social, cultural and economic structures. Through the concept of intersectionality, this study analyses the relationship between different factors and the frequency of health care utilization. Objectives and methods: This study uses the intersectionality as a framework to explore the influence of the intersectionality of gender, age, monthly income and PM2.5 concentration on people over 18 years of age on the health care utilization, to identify risk group of high frequency health care utilization. This study uses the 'Social Research Data Archive' (SRDA) of the Academia Sinica, 2019 Taiwan Social Change Survey (Round 7, Year 5): Technology and Risk Society and Environmental Protection Administration, Air Quality Annual Report of Taiwan, 2019.This study uses SPSS 25 , and logistic regression and decision tree. After excluding missing data, a total of 1691 people were finally included in the secondary data analysis. Results: The results of logistic regression showed that age was positively related to high frequency health care utilization, the monthly income was negatively related to high frequency health care utilization. Gender, PM2.5 concentration and high frequency health care utilization showed no significant difference. However, The results of CHAID analysis of decision tree showed that gender, age and monthly income are significant factors to high frequency health care utilization. Those who are over 66 years old are the highest risk group for high frequency health care utilization, followed by those who are aged 46 to 65 with a monthly income of less than NTD 20,000. Furthermore, among people aged 18 to 45, females are more likely to be frequent medical user than males. Suggestions: Based on the research results, research suggestions are proposed: 1. Include more factors affecting health care utilization , such as trust in doctors, knowledge of disease prevention, and history of chronic diseases. 2. Explore different types of health care utilization, such as outpatient, inpatient, emergency, to understand how socioeconomic and environmental factors affect different types of health care utilization under the framework of intersectionality. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:12:35Z (GMT). No. of bitstreams: 1 U0001-2209202216403800.pdf: 2303500 bytes, checksum: 44b636fedb0b08d4e683f413f7715918 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract iv 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究重要性 4 第二章 文獻回顧 5 第一節 醫療服務利用之定義、測量及影響因素 5 第二節 交織性之定義、概念與測量 17 第三節 公共衛生與交織性 24 第三章 研究方法 27 第一節 研究架構 27 第二節 資料來源與研究樣本 28 第三節 研究變項之定義與測量 33 第四節 資料分析 36 第五節 研究倫理 37 第四章 研究結果 38 第一節 研究樣本之描述性統計結果 38 第二節 研究樣本各變項與民眾醫療服務利用之雙變項分析 40 第三節 研究樣本民眾醫療服務利用之二元羅吉斯迴歸 42 第四節 研究樣本各變項之交織性對民眾醫療服務利用影響 45 第五章 討論 49 第一節 社會經濟與環境因素對民眾醫療服務利用之影響 49 第二節 以交織性框架檢視高醫療服務利用情形 54 第三節 研究限制 57 第六章 結論與建議 59 第一節 結論 59 第二節 未來建議 60 參考文獻 61 圖2-1 Andersen的醫療利用行為模式 12 圖3-1 研究架構圖 27 圖3-2 研究樣本選取流程圖 32 圖4-4研究樣本各變項與高醫療服務利用之CHAID分析 47 表2-1 過去學者對於醫療服務利用之定義 7 表2-2 影響醫療服務利用因素之理論類別對照表 10 表2-3 過去學者對於交織性之定義 19 表2-4 過去交織性文獻之統計方法 23 表3-1 108年各行政區主要污染物年平均濃度統計表 30 表3-2 108年各行政區主要污染物年平均濃度與其空氣品質標準比較 31 表3-3 研究變項之操作型定義及計分方式 35 表4-1 研究樣本之分布 39 表4-2 研究樣本各變項與民眾醫療服務利用之卡方分析 41 表4-3 民眾醫療服務利用之二元羅吉斯迴歸分析 44 表4-4 CHAID分析之節點收益表 48 表5-1 歷年各行政區PM2.5平均濃度統計表 52 表5-2 108年底各縣市醫療院所家數 53 | |
dc.language.iso | zh-TW | |
dc.title | 以交織性探討社會經濟和環境因素與臺灣民眾醫療服務利用之關係 | zh_TW |
dc.title | The intersectionality of socioeconomic and environmental factors on health care utilization in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江東亮(Tung-Liang Chiang),李中一(Chung-Yi Li) | |
dc.subject.keyword | 醫療服務利用,社會經濟因素,空氣污染,交織性,決策樹, | zh_TW |
dc.subject.keyword | health care utilization,socioeconomic factors,air pollution,intersectionality,decision tree, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU202203835 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-26 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 健康政策與管理研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-13 | - |
顯示於系所單位: | 健康政策與管理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2209202216403800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。