Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84458
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江茂雄(Mao-Hsiung Chiang)
dc.contributor.authorCherng-Jer Chuehen
dc.contributor.author闕成哲zh_TW
dc.date.accessioned2023-03-19T22:12:14Z-
dc.date.copyright2022-10-19
dc.date.issued2022
dc.date.submitted2022-09-26
dc.identifier.citation[1] 'History of Net Power Generated and Purchased by Energy Type.' Taipower. https://www.taipower.com.tw/tc/index.aspx (accessed. [2] 'Global Offshore Wind Speeds Rankings.' 4C Offshore. https://www.4coffshore.com/windfarms/windspeeds.aspx (accessed. [3] C.-L. Lee. 'Policy of Offshore Wind in Taiwan.' Bureau of Energy, MOEA. https://www.tresor.economie.gouv.fr/Articles/f27ed9b3-e7db-40bf-880c-5f1351c0a826/files/f4318f81-7d7b-44cc-a462-193ca3840d20 (accessed. [4] 'FOWI, Formosa offshore wind farm ' Formosa I Wind Power Co., Ltd. https://formosa1windpower.com/ (accessed. [5] A. Buljan. (2021) TPC's 109.2MW Offshore WInd Farm in Full Array. offshoreWIND.biz. Available: https://www.offshorewind.biz/2021/06/23/tpcs-109-2-mw-offshore-wind-farm-in-full-array/ [6] 'MOEA initiates the Offshore Wind Energy Zonal Development Selection Mechanism.' Bureau of Energy, Ministry of Economic Affairs. (accessed. [7] 'Green Energy Estimation.' Meteorological-Information Based Green Energy Operations Center. https://greenmet.cwb.gov.tw/evaluation (accessed. [8] 'FAQs.' DP Energy, Iberdrola. https://clarusoffshorewindfarm.com/faqs/ (accessed. [9] N. Goudarzi and W. Zhu, 'A review of the development of wind turbine generators across the world,' in ASME International Mechanical Engineering Congress and Exposition, 2012, vol. 45202: American Society of Mechanical Engineers, pp. 1257-1265. [10] S. Suboh et al., 'Output Power Maximization of DFIG Wind Turbine using Linear MPC Technique,' in Journal of Physics: Conference Series, 2021, vol. 1878, no. 1: IOP Publishing, p. 012045. [11] D.-C. Phan and S. Yamamoto, 'Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking,' Energy, vol. 111, pp. 377-388, 2016. [12] K. Thiagarajan and H. Dagher, 'A review of floating platform concepts for offshore wind energy generation,' Journal of offshore mechanics and Arctic engineering, vol. 136, no. 2, 2014. [13] H. M. Johlas, L. A. Martínez‐Tossas, M. J. Churchfield, M. A. Lackner, and D. P. Schmidt, 'Floating platform effects on power generation in spar and semisubmersible wind turbines,' Wind Energy, vol. 24, no. 8, pp. 901-916, 2021. [14] T. WAKUI, K. TANAKA, and R. YOKOYAMA, 'Reduction in platform motion and dynamic loads of a floating offshore wind turbine-generator system by feedforward control using wind speed preview,' Mechanical Engineering Journal, pp. 22-00066, 2022. [15] T. Wakui, A. Nagamura, and R. Yokoyama, 'Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances,' Renewable Energy, vol. 173, pp. 105-127, 2021. [16] A. Galán-Lavado and M. Santos, 'Analysis of the effects of the location of passive control devices on the platform of a floating wind turbine,' Energies, vol. 14, no. 10, p. 2850, 2021. [17] B. Boukhezzar, L. Lupu, H. Siguerdidjane, and M. Hand, 'Multivariable control strategy for variable speed, variable pitch wind turbines,' Renewable energy, vol. 32, no. 8, pp. 1273-1287, 2007. [18] E. Lindeberg, H. G. Svendsen, and K. Uhlen, 'Smooth transition between controllers for floating wind turbines,' Energy Procedia, vol. 24, pp. 83-98, 2012. [19] S. Bashetty and S. Ozcelik, 'Effect of Pitch Control on the Performance of an Offshore Floating Multi-Wind-Turbine Platform,' in Journal of Physics: Conference Series, 2021, vol. 1828, no. 1: IOP Publishing, p. 012055. [20] F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak, 'New methodologies for adaptive sliding mode control,' International journal of control, vol. 83, no. 9, pp. 1907-1919, 2010. [21] C.-G. Hsieh, 'Dynamic Analysis and Control for a 5MW Semi-submersible Floating Offshore Wind Turbine Combining with a Direct-drive Permanent Magnet Synchronous Generator and Grid,' National Taiwan University, Department of Engineering Science and Ocean Engineering, 2020. [22] K.-X. Luo, 'Analysis and Control for a 5MW Semi-submersible Floating Offshore Wind Turbine Combining with a Doubly-fed Induction Generator and Grid,' National Taiwan University, Department of Engineering Science and Ocean Engineering, 2020. [23] T.-Y. Lin, 'Dynamic Simulation of a 5MW Semi-submersible Floating Offshore Wind Turbine Using FAST+SIMPACK+MATLAB,' National Taiwan University, Department of Engineering Science and Ocean Engineering, 2021. [24] C.-H. Chien, 'Analysis and Control for a 10MW Semi-submersible Floating Offshore Wind Turbine with Doubly-fed Induction Generator for Taiwan Offshore Wind Farms,' National Taiwan University, Department of Engineering Science and Ocean Engineering, 2021. [25] C. Lin, 'Dynamic Simulation and Control for 10MW Semi-submersible Floating Direct-Driving Offshore Wind Turbine under Taiwan Strait Environment,' National Taiwan University, Department of Engineering Science and Ocean Engineering, 2021. [26] 'Simpack mechanism analysis.' SIMUTECH. https://www.3ds.com/products-services/simulia/products/simpack/ (accessed 2022. [27] J. M. Jonkman, G. Hayman, B. Jonkman, R. Damiani, and R. Murray, 'AeroDyn v15 user’s guide and theory manual,' NREL Draft Report, p. 46, 2015. [28] C. Lee, 'Theory Manual,' 1995. [29] J. M. Jonkman, A. Robertson, and G. J. Hayman, 'HydroDyn user’s guide and theory manual,' National Renewable Energy Laboratory, 2014. [30] B. J. Jonkman, 'TurbSim user's guide,' National Renewable Energy Lab.(NREL), Golden, CO (United States), 2006. [31] P. H. Madsen and D. Risø, 'Introduction to the IEC 61400-1 standard,' Risø National Laboratory, Technical University of Denmark, 2008. [32] M. Masciola, 'MAP++ Documentation,' NREL: Golden, CO, USA, 2018. [33] C. Jung and D. Schindler, 'The role of the power law exponent in wind energy assessment: A global analysis,' International Journal of Energy Research, vol. 45, no. 6, pp. 8484-8496, 2021. [34] DNV. https://www.dnv.com/services/meteorological-and-oceanographic-studies-12401 (accessed. [35] S. Huler, Defining the wind: the Beaufort scale and how a 19th-century admiral turned science into poetry. Crown, 2007. [36] E. Gaertner et al., 'IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine,' National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020. [37] C. Allen et al., 'Definition of the UMaine VolturnUS-S reference platform developed for the IEA Wind 15-megawatt offshore reference wind turbine,' National Renewable Energy Lab.(NREL), Golden, CO (United States); Univ. of …, 2020. [38] Y. Zhou, P. Bauer, J. A. Ferreira, and J. Pierik, 'Operation of grid-connected DFIG under unbalanced grid voltage condition,' IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 240-246, 2009. [39] N. J. Abbas, D. S. Zalkind, L. Pao, and A. Wright, 'A reference open-source controller for fixed and floating offshore wind turbines,' Wind Energy Science, vol. 7, no. 1, pp. 53-73, 2022. [40] M. Chiang, Y. Yeh, F. Yang, and Y. Chen, 'Integrated control of clamping force and energy-saving in hydraulic injection moulding machines using decoupling fuzzy sliding-mode control,' The International Journal of Advanced Manufacturing Technology, vol. 27, no. 1, pp. 53-62, 2005. [41] C.-C. Wu, 'Simulation and Experiment of a Turbine Access System with Three-Axial Active Motion Compensation,' National Taiwan University, Department of Engineering Science and Ocean Engineering, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84458-
dc.description.abstract本研究使用IEA15MW風力發電機結合UMaine VolturnUS-S reference platform半潛式浮台,以台灣海峽水深作為主要深度條件來進行全機組系統動態整合模擬分析及控制器設計測試,發展IEA15MW 半潛浮動式風機數位孿生系統,藉由MATLAB/SIMULINK結合SIMPACK整合AeroDyn、HydroDyn、WAMIT、MAP++四個模組進行氣動力-水動力-伺服-彈性的全機組系統整合模擬實現主要風機模型架構在SIMPACK中建立,包含葉片、機艙、塔柱、浮台及錨定繫泊系統。AeroDyn提供對葉片及塔柱的空氣動力計算,HydroDyn透過WAMIT提供的水動力係數、設定波浪計計算浮動平台的負載與運動,MAP++則負責繫泊系統的參數設定。整合上述四項,並在MATLAB/SIMULINK中建立雙饋式感應發電機控制系統、併網側轉換器、功率控制系統、閥控液壓式葉片變旋角系統等全機組主要控制系統,並透過連結介面SIMAT與SIMPACK進行資訊傳遞以完成此動態整合模擬。 過去風機動態系統模擬皆以PI控制器為主,但隨著風機大型化及離岸浮動式風機的趨勢,使原先PI控制器越來越難達成所設想的控制目標。故本研究設計一模糊滑動式控制器與PI控制器進行比較,在正常運轉風速下進行控制器效能分析。但浮動式平台的縱搖是影響風力發電機發電功率穩定的主要因素,因此設計一回授給功率控制器來減小縱搖的影響。接著以實際運作環境條件配合紊流強度設定來進行風機效能測試及在不同變旋角控制器之比較。同時也以全域風速進行測試。此外,本研究更發展極端條件功率控制以提升風力發電機系統之運轉發電性能,風速超過切出風速時本應停機,而本研究嘗試在極端風速下進行降載控制測試,以調控葉片旋角方式進行發電功率追蹤控制五階曲線及線性曲線,由額定功率逐漸降載至停機,使風機在極端條件下仍可在安全狀態下持續發電,也測試風機在五十年迴歸週期環境條件下停機之情形。 由於浮動式發電機會因受到波浪及風力的影響使之產生多餘的運動,對風力發電機的效能有負面的影響。故此研究嘗試以調整壓載改變吃水方式,探討在不同的吃水情況下是否能改善風力發電機的運動,便能有效減少外力對風機結構上的傷害。 本研究所使用的風機模擬軟體是SIMPACK,相較於由NREL所研發的Openfast是目前廣為人知的風力發電機模擬套件。但基於SIMPACK的各項優點,舉例來說,方便使用者的圖形化使用介面以及能快速且自由修改模型的能力,故本篇論文將風機模型建立在SIMPACK當中。因此,本研究也在正常運轉條件下比較在不同的模型架構下風力發電機組的表現。zh_TW
dc.description.abstractThis study aims to develop a digital twins system for analyzing the IEA 15MW semi-submersible floating wind turbine with a doubly-fed induction generator under Taiwan Strait. The IEA 15MW wind turbine is mounted on a UMaine VolturnUS-S reference platform. This digital twins system combines MATALB/SIMULINK with SIMPACK, including AeroDyn, HydroDyn, WAMIT, MAP++, to operate an aero-hydro-servo-elastic simulation. The floating wind turbine model is mainly built in SIMPACK, including blades, nacelle, tower, floating platform. AeroDyn provides aerodynamic to blades and tower. HydroDyn is responsible for hydrodynamic calculation of floating platform by hydrodynamic parameters and design wave condition provided by WAMIT. MAP++ is for the setting of mooring system. Together, the four modules and the control system which is built in MATLAB/SIMULINK includes rotor speed control system, power control system to complete the co-simulation via the interface, SIMAT. In the past, the traditional wind turbine system for power control uses a PI controller. Due to the large-scale wind turbine, the control performance by PI controller cannot reach our goal. Therefore, in this research, the PI controller is replaced by fuzzy sliding mode controller. Fuzzy sliding mode controller has an ability to cancel out the nonlinear term. This controller improves the disadvantages of the traditional PI controller in transient time. This study compares the simulation result of traditional PI controller with fuzzy sliding mode controller in power control system with different operating wind and wave. Besides, motions of floating platform, especially pitching motion, contribute to unstable power performance. Therefore, the power control system is added pitching rate feedback aiming to cancel out the floating platform rotation. These controllers and control strategies are tested in normal and extreme condition. Apart from the power control system, the study also proposed innovative ballast control strategy to reduce the platform displacement and mitigate the structural load by draft adjustment. Openfast is the most common wind turbine analysis software, which is developed by NREL. Due to the advantage of SIMPACK, including graphic user interface and easily modified the model, the wind turbine model in this study is still built in SIMPACK. Thus, this study shows the comparison between Openfast and SIMPACK. All the simulations are tested in a normal condition.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:12:14Z (GMT). No. of bitstreams: 1
U0001-1909202214165600.pdf: 15255637 bytes, checksum: 7c50fba4c2a982281ef5f37abccf7d64 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iv Contents vi List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature Survey 3 1.3 Motivation 5 1.4 Thesis Structure 6 Chapter 2 Simulation Software Framework 8 2.1 Multibody Simulation Software – Simpack 9 2.2 Aerodynamic Software Module – AeroDyn 10 2.3 Frequency Domain Wave Analysis – WAMIT 10 2.4 Time Domain Hydrodynamic Analysis – HydroDyn 11 2.5 Input Wind – IEC Wind and TurbSim 11 2.6 Mooring System Analysis Module – MAP++ 12 Chapter 3 15MW Floating Wind Turbine Model 13 3.1 Wind Speed and Wave Condition 13 3.1.1 Wind Speed 13 3.1.2 Wave Condition 14 3.2 Wind Turbine Model 16 3.2.1 Tower Model 17 3.2.2 Blade Model 19 3.3 Floating Platform Model 20 3.4 Mooring System Model 21 Chapter 4 Subsystem Modeling of Floating Wind Turbine System 23 4.1 Doubly – Fed Induction Generator (DFIG) 23 4.1.1 Doubly-Fed Induction Generator Mathematical Model 26 4.1.2 Generator Field-Oriented Control 30 4.2 Grid – Connected System 35 4.2.1 Converter 35 4.2.2 Filter 36 4.3 Hydraulic Variable Pitch Control System 40 4.3.1 Hydraulic Valve Mechanism Design 40 4.3.2 Hydraulic Valve Mathematical Model 41 Chapter 5 Wind Turbine Control Strategy 48 5.1 Wind Turbine Controller Methodology 48 5.2 Control Theory and Controller Design 50 5.2.1 PID Control 50 5.2.2 Fuzzy Sliding Mode Control 52 5.3 Wind Turbine Control System 58 5.3.1 Rotor Speed Control System 59 5.3.2 Power Control System 60 Chapter 6 Simulation Results 62 6.1 Power Control with PID and FSMC 63 6.2 Power Control with Pitch Rate Feedback 69 6.3 Normal Condition Simulation 75 6.3.1 Normal Condition Simulation - Wind Speed 3m/s to 16m/s 75 6.3.2 Normal Condition Simulation – Wind Speed 3m/s to 16m/s with 3%Turb 81 6.3.3 Normal Condition Simulation - Wind Speed 3m/s to 25m/s 87 6.4 Extreme Condition Simulation and Control 93 6.4.1 Extreme Condition Power Control 93 6.4.2 Extreme Condition Power Control with 3% Turbulence 108 6.4.3 50-year Return Period Extreme Condition 122 6.5 Comparison of Simpack and OpenFast 128 6.6 Floating Platform Ballast Control 133 Chapter 7 Conclusion 139 References 141
dc.language.isoen
dc.subject數位孿生系統zh_TW
dc.subject浮動式半潛式風力發電機zh_TW
dc.subject雙饋式感應發電機zh_TW
dc.subject模糊滑動控制器zh_TW
dc.subject浮動式運動補償zh_TW
dc.subject極端條件功率控制zh_TW
dc.subject壓載控制zh_TW
dc.subjectOffshore floating semi-submersible wind turbineen
dc.subjectDigital twins systemen
dc.subjectBallast controlen
dc.subjectExtreme condition power controlen
dc.subjectFloating platform motion compensationen
dc.subjectFuzzy sliding mode controlen
dc.subjectDoubly-fed induction generatoren
dc.titleIEA 15 MW離岸浮動半潛式浮台結合雙饋式感應風力發電機之數位孿生系統及控制之研究zh_TW
dc.titleDigital Twins and Control of an IEA 15MW Offshore Floating Semisubmersible Wind Turbine with Doubly-Fed Induction Generatoren
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江茂欽(Maoh-Chun Jiang),林浩庭(Hao-Ting Lin),楊舜涵(Shun-Han Yang)
dc.subject.keyword浮動式半潛式風力發電機,雙饋式感應發電機,模糊滑動控制器,浮動式運動補償,極端條件功率控制,壓載控制,數位孿生系統,zh_TW
dc.subject.keywordOffshore floating semi-submersible wind turbine,Doubly-fed induction generator,Fuzzy sliding mode control,Floating platform motion compensation,Extreme condition power control,Ballast control,Digital twins system,en
dc.relation.page143
dc.identifier.doi10.6342/NTU202203567
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
dc.date.embargo-lift2027-09-24-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1909202214165600.pdf
  未授權公開取用
14.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved