請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84455
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 管傑雄(Chieh-Hsiung Kuan) | |
dc.contributor.author | CHUN-SHENG HUANG | en |
dc.contributor.author | 黃雋升 | zh_TW |
dc.date.accessioned | 2023-03-19T22:12:09Z | - |
dc.date.copyright | 2022-09-29 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-24 | |
dc.identifier.citation | [1] Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487-496, doi:10.1038/nnano.2010.89 (2010). [2] Nowbahari, A., Roy, A. & Marchetti, L. Junctionless Transistors: State-of-the-Art. Electronics 9, 1174 (2020). [3] Zeng, S., Tang, Z., Liu, C. & Zhou, P. Electronics based on two-dimensional materials: Status and outlook. Nano Res. 14, 1752-1767, doi:10.1007/s12274-020-2945-z (2021). [4] Novoselov, K. S. et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences 102, 10451-10453, doi:doi:10.1073/pnas.0502848102 (2005). [5] Balandin, A. A. et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 8, 902-907, doi:10.1021/nl0731872 (2008). [6] Mayorov, A. S. et al. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 11, 2396-2399, doi:10.1021/nl200758b (2011). [7] Bunch, J. S. et al. Impermeable Atomic Membranes from Graphene Sheets. Nano Lett. 8, 2458-2462, doi:10.1021/nl801457b (2008). [8] Toh, R. J., Sofer, Z., Luxa, J., Sedmidubský, D. & Pumera, M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. 53, 3054-3057, doi:10.1039/C6CC09952A (2017). [9] Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805, doi:10.1103/PhysRevLett.105.136805 (2010). [10] Han, S. W. et al. Band-gap transition induced by interlayer van der Waals interaction in MoS2. Physical Review B 84, 045409, doi:10.1103/PhysRevB.84.045409 (2011). [11] Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200, doi:10.1038/nature04233 (2005). [12] Jalali, B., Paniccia, M. & Reed, G. Silicon photonics. IEEE Microwave Mag. 7, 58-68, doi:Doi 10.1109/Mmw.2006.1638290 (2006). [13] Lee, G. J., Choi, C., Kim, D.-H. & Song, Y. M. Bioinspired Artificial Eyes: Optic Components, Digital Cameras, and Visual Prostheses. Adv. Funct. Mater. 28, 1705202, doi:https://doi.org/10.1002/adfm.201705202 (2018). [14] Hu, X. et al. Recent Progress of Methods to Enhance Photovoltaic Effect for Self‐Powered Heterojunction Photodetectors and Their Applications in Inorganic Low‐Dimensional Structures. Adv. Funct. Mater. 31, 2011284, doi:10.1002/adfm.202011284 (2021). [15] Tian, W., Wang, Y., Chen, L. & Li, L. Self-Powered Nanoscale Photodetectors. Small 13, 1701848, doi:https://doi.org/10.1002/smll.201701848 (2017). [16] Qiao, H. et al. Self-Powered Photodetectors Based on 2D Materials. Adv. Opt. Mater. 8, 1900765, doi:https://doi.org/10.1002/adom.201900765 (2020). [17] Xie, Y., Li, H., Zhang, D., Wang, Q. & Zhang, L. High performance blue light detector based on ZnO nanowire arrays. Appl. Opt. 58, 1242-1245, doi:10.1364/AO.58.001242 (2019). [18] Zheng, Q., Huang, J., Han, C. & Chen, Y. Self-Powered UV-B Photodetector Based on Hybrid Al:MgZnO/PEDOT:PSS Schottky Diode. IEEE Electron Device Lett. 38, 79-82 (2017). [19] Sundararaju, U., Haniff, M., Ker, P. J. & Menon, P. S. MoS2/h-BN/Graphene Heterostructure and Plasmonic Effect for Self-Powering Photodetector: A Review. Materials 14, 1672, doi:10.3390/ma14071672 (2021). [20] Dhakal, K. P. et al. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6, 13028-13035, doi:10.1039/C4NR03703K (2014). [21] Muth, J. et al. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 71, 2572, doi:10.1063/1.120191 (1997). [22] Wang, B., Ning, J., Zhang, J. F., Wang, D. & Hao, Y. Band alignments tuned by spontaneous polarization in two-dimensional MoS2/GaN van der Waals heterostructures. Physica E, 115360, doi:10.1016/j.physe.2022.115360 (2022). [23] Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Lett. 14, 4785-4791, doi:10.1021/nl501962c (2014). [24] Tsai, D.-S. et al. Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano 7, 3905-3911, doi:10.1021/nn305301b (2013). [25] Choi, W. et al. High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Adv. Mater. 24, 5832-5836, doi:https://doi.org/10.1002/adma.201201909 (2012). [26] Chakraborty, B. et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Physical Review B 85, 161403, doi:10.1103/PhysRevB.85.161403 (2012). [27] Chen, K. et al. Lateral Built-In Potential of Monolayer MoS2–WS2 In-Plane Heterostructures by a Shortcut Growth Strategy. Adv. Mater. 27, 6431-6437, doi:https://doi.org/10.1002/adma.201502375 (2015). [28] Yan, R. et al. Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. ACS Nano 8, 986-993, doi:10.1021/nn405826k (2014). [29] Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765-769, doi:10.1038/nnano.2015.143 (2015). [30] SCINCO TAIWAN CO., L. A. R. R. 淺談拉曼光譜儀分析技術原理, <https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-39.html> [31] 拉曼光譜學, <https://zh.m.wikipedia.org/zh-tw/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8> [32] Yang, Y. et al. Thermal expansion coefficient of monolayer MoS<sub>2</sub> determined using temperature-dependent Raman spectroscopy combined with finite element simulations. Microstructures 1, 2021002, doi:10.20517/microstructures.2021.02 (2021). [33] Huang, M., Yan, H., Heinz, T. F. & Hone, J. Probing Strain-Induced Electronic Structure Change in Graphene by Raman Spectroscopy. Nano Lett. 10, 4074-4079, doi:10.1021/nl102123c (2010). [34] Jin, K., Liu, D. & Tian, Y. Enhancing the interlayer adhesive force in twisted multilayer MoS2 by thermal annealing treatment. Nanotechnology 26, 405708, doi:10.1088/0957-4484/26/40/405708 (2015). [35] X射線光電子能譜學, <https://zh.wikipedia.org/zh-tw/X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6> [36] Zhang, C. et al. MoS2 Decorated Carbon Nanofibers as Efficient and Durable Electrocatalyst for Hydrogen Evolution Reaction. C 3, 33, doi:10.3390/c3040033 (2017). [37] Poudel, Y. et al. Absorption and emission modulation in a MoS2 ;GaN (0001) heterostructure by interface phonon; exciton coupling. Photonics Res. 7, 1511-1520, doi:10.1364/PRJ.7.001511 (2019). [38] Lee, F.-W., Ke, W.-C., Cheng, C.-H., Liao, B.-W. & Chen, W.-K. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates. Appl. Surf. Sci. 375, 223-229, doi:https://doi.org/10.1016/j.apsusc.2016.03.027 (2016). [39] Kaganer, V. M., Brandt, O., Trampert, A. & Ploog, K. H. X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films. Physical Review B 72, 045423, doi:10.1103/PhysRevB.72.045423 (2005). [40] Lee, S. R. et al. Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers. Appl. Phys. Lett. 86, 241904, doi:10.1063/1.1947367 (2005). [41] Tangi, M. et al. Determination of band offsets at GaN/single-layer MoS2 heterojunction. Appl. Phys. Lett. 109, 032104, doi:10.1063/1.4959254 (2016). [42] Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538-1544, doi:10.1021/nl2043612 (2012). [43] Altavilla, C., Sarno, M. & Ciambelli, P. A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M═Mo, W). Chem. Mater. 23, 3879-3885, doi:10.1021/cm200837g (2011). [44] Wong, K. C. et al. Surface and friction characterization of MoS2 and WS2 third body thin films under simulated wheel/rail rolling-sliding contact. WEAR 264, 526-534, doi:10.1016/j.wear.2007.04.004 (2008). [45] Wan, Y. et al. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity. Adv. Mater. 30, 1703888, doi:https://doi.org/10.1002/adma.201703888 (2018). [46] Singh, D. K., Pant, R. K., Nanda, K. K. & Krupanidhi, S. B. Differentiation of ultraviolet/visible photons from near infrared photons by MoS2/GaN/Si-based photodetector. Appl. Phys. Lett. 119, 121102, doi:10.1063/5.0060403 (2021). [47] Wu, Y. et al. Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors. Photonics Res. 7, 1127-1133, doi:10.1364/PRJ.7.001127 (2019). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84455 | - |
dc.description.abstract | 本研究利用化學氣相沉積法的方式將二硫化鉬直接成長於氮化鎵基板上,此法能夠減少傳統機械剝離法及溼式轉印法在製程中容易產生的缺陷、材料厚度難以控制的問題,還能夠透過溫度、基板與材料源間的距離…等參數,調整成長後二硫化鉬的覆蓋率及大小。大面積二硫化鉬使我們可以利用更高製程效率的黃光微影取代電子束微影,成功製備出二硫化鉬/氮化鎵異質接面光偵測器。本研究對此二硫化鉬/氮化鎵光偵測器元件進行了光響應能力評估及分析,發現此元件具有自供能光偵測特性。在入射光波長404 nm,無外加偏壓時 (0V),可得響應度為406 (mA/W),偵測率為8.2×1011 (jones),並且擁有良好的響應速度,上升/下降響應時間常數為18.6/74.9 ms (532nm, 0V),以及對入射光功率密度良好的線性度,顯示了此元件優異的自供能光偵測能力。此外,利用二硫化鉬與氮化鎵結合能夠提升自近紅外光自紫外光波段的光吸收係數,使此元件在404、532、633、808 (nm)雷射量測下皆有良好的光響應,顯示了此元件寬頻偵測的能力。我們利用二維能帶模型對此二硫化鉬/氮化鎵異質接面結構之載子傳輸原理提出解釋。二硫化鉬/氮化鎵為第二型異質接面結構,透過光生伏打效應的概念,介面間的內建電場在無外加偏壓下能夠分離電子-電洞對產生光電流,使他能夠擁有自供能響應的特性。最後,我們針對了不同二硫化鉬分布密度進行光響應分析,得到擁有越高覆蓋率的二硫化鉬在無外加偏壓時有更高的響應度與偵測率,這吻合我們對於此材料是透過二硫化鉬與氮化鎵間的內建電場來形成自供能光偵測特性的推論。 | zh_TW |
dc.description.abstract | In this work, the wafer-scale van der Waals epitaxial direct growth of Molybdenum disulfide (MoS2) on p-GaN/sapphire substrates using chemical vapor deposition (CVD) is demonstrated. The CVD method can avoid some of the issues often happen in conventional 2D materials transfer methods, such as interface defects, layer numbers control, or large-scale transfer. We fabricated MoS2/GaN heterostructure photodetectors by photolithography. The MoS2/GaN heterostructure photodetector shows self-powered and broadband photoresponse capability from near-infrared (NIR) to ultraviolet (UV). The high esponsivity of 406 (mA/W), a detectivity of 8.2×1011 (jones), is demonstrated at zero voltage bias under 404 nm laser. It also shows a fast response speed, the time constants of rising/decay are 18.5/74.9 ms (532nm, 0V bias), respectively. We provide a 2D band diagram to explain the carrier transport theory of the self-power properties. According to the Photovoltaic effect (PVE), the photo-generated carriers are split by the built-in voltage to detect without external bias.We also evaluate the photoresponse properties of different coverage MoS2. The higher coverage MoS2 device shows higher responsivity and detectivity without external bias. The results are consistent with our inference that PVE causes MoS2/GaN photodetectors' self-power capability. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:12:09Z (GMT). No. of bitstreams: 1 U0001-1909202217103800.pdf: 4974769 bytes, checksum: 0bc04b97d854f0649b8fcdd0c818b150 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 ...........................................................................................................# 誌謝 ....................................................................................................................................i 中文摘要.......................................................................................................................... ii ABSTRACT .................................................................................................................... iii CONTENTS .....................................................................................................................iv LIST OF FIGURES..........................................................................................................vi LIST OF TABLES............................................................................................................ix Chapter 1 緒論............................................................................................................1 1.1 二維材料的發展與應用................................................................................1 1.2 二硫化鉬之基本特性....................................................................................2 1.3 自供能光偵測器............................................................................................2 1.4 研究動機........................................................................................................4 Chapter 2 背景理論....................................................................................................7 2.1 光電流產生機制(Photocurrent Generation Mechanism)...............................7 2.1.1 光電導效應(Photoconductive Effect, PCE) .........................................7 2.1.2 光生伏打效應(photovoltaic effect, PVE).............................................8 2.1.3 光門控效應(Photogating Effect, PGE).................................................9 2.1.4 光熱電效應(Photothermoelectric Effect, PTE)..................................11 2.1.5 光輻射熱效應(Photobolometric Effect, PBE) ...................................12 2.2 光偵測器品質因數(Figure-of-Merits).........................................................13 2.2.1 響應度(Responsivity, R) .....................................................................13 2.2.2 偵測率(Detectivity, D)........................................................................14 2.2.3 外部量子效率(External Quantum Efficiency, EQE)..........................14 2.2.4 光電導增益(Photoconductive Gain, G)..............................................14 2.2.5 雜訊等效功率(Noise Equivalent Power, NEP)..................................15 2.3 二維材料非破壞性檢測(Nondestructive testing,NDT) ...........................15 2.3.1 拉曼光譜學(Raman spectroscopy) .....................................................15 2.3.2 X 射線光電子能譜學(X-ray photoelectron spectroscopy, XPS) .......18 2.3.3 光致發光(Photoluminescence, PL)光譜學........................................20 Chapter 3 元件製程..................................................................................................22 3.1 元件結構設計..............................................................................................22 3.2 製程流程(process flow) ...............................................................................23 3.2.1 氮化鎵基板磊晶.................................................................................24 3.2.2 二硫化鉬直接成長.............................................................................26 3.2.3 歐姆接觸電極製作.............................................................................27 Chapter 4 實驗結果與分析.....................................................................................32 4.1 光電流量測架設..........................................................................................32 4.2 材料分析結果..............................................................................................32 4.2.1 原子力顯微鏡(AFM)分析.................................................................32 4.2.2 拉曼(Raman)光譜學分析...................................................................33 4.2.3 光致發光(PL)分析.............................................................................34 4.2.4 X 射線光電子能譜學(XPS) ...............................................................35 4.2.5 掃描式電子顯微鏡(SEM)分析..........................................................35 4.3 二硫化鉬/氮化鎵光偵測器光電特性分析.................................................37 4.3.1 暗電流分析.........................................................................................37 4.3.2 光電響應特性.....................................................................................40 4.3.3 響應速度分析.....................................................................................50 4.3.4 重複性及分布密度研究.....................................................................51 Chapter 5 結論與未來展望.....................................................................................53 5.1 結論..............................................................................................................53 5.2 未來展望......................................................................................................53 REFERENCE ..................................................................................................................55 | |
dc.language.iso | zh-TW | |
dc.title | CVD直接成長之大面積MoS2/GaN異質接面自供能寬頻光偵測器 | zh_TW |
dc.title | CVD Direct Growth of Large-area MoS2/GaN Heterostructure Self-powered Broadband Photodetector | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 藍彥文(Yann-Wen Lan) | |
dc.contributor.oralexamcommittee | 孫允武(Yuen-Wuu Suen),孫建文(Kien-Wen Sun),蘇炎坤(Yan-Kuin Su) | |
dc.subject.keyword | 二硫化鉬,氮化鎵,化學氣相沉積法,響應度,偵測率,自供能,寬頻,第二型異質結構,光生伏打效應, | zh_TW |
dc.subject.keyword | molybdenum disulfide,gallium nitride,chemical vapor deposition,responsivity,detectivity,self-power,broadband,type II heterostructure,Photovoltaic effect, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU202203591 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-26 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-29 | - |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1909202217103800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。