Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84454
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯詠德zh_TW
dc.contributor.advisorYung-Te Houen
dc.contributor.author邱裕銓zh_TW
dc.contributor.authorYu-Chuan Chiuen
dc.date.accessioned2023-03-19T22:12:07Z-
dc.date.available2023-11-10-
dc.date.copyright2022-09-27-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] J.-K. Park, D.-H. Lee, Bioartificial liver systems: current status and future perspective, 99(4) (2005) 311-319.
[2] K.S. Hung, T.H. Lee, W.Y. Chou, C.L. Wu, C.L. Cho, C.N. Lu, B. Jawan, C.H. Wang, Interleukin-10 gene therapy reverses thioacetamide-induced liver fibrosis in mice, Biochemical and Biophysical Research Communications 336(1) (2005) 324-331.
[3] R.H. Westbrook, G. Dusheiko, Natural history of hepatitis C, Journal of Hepatology 61(1, Supplement) (2014) S58-S68.
[4] D.G. Farmer, M.H. Rosove, A. Shaked, R.W. Busuttil, CURRENT TREATMENT MODALITIES FOR HEPATOCELLULAR-CARCINOMA, Annals of Surgery 219(3) (1994) 236-247.
[5] J.D. Yang, P. Hainaut, G.J. Gores, A. Amadou, A. Plymoth, L.R. Roberts, A global view of hepatocellular carcinoma: trends, risk, prevention and management, Nature Reviews Gastroenterology & Hepatology 16(10) (2019) 589-604.
[6] J.M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J.F. Blanc, A.C. de Oliveira, A. Santoro, J.L. Raoul, A. Forner, M. Schwartz, C. Porta, S. Zeuzem, L. Bolondi, T.F. Greten, P.R. Galle, J.F. Seitz, I. Borbath, D. Haussinger, T. Giannaris, M. Shan, M. Moscovici, D. Voliotis, J. Bruix, S.I.S. Grp, Sorafenib in advanced hepatocellular carcinoma, New England Journal of Medicine 359(4) (2008) 378-390.
[7] G.K. Abou-Alfa, L. Schwartz, S. Ricci, D. Amadori, A. Santoro, A. Figer, J. De Greve, J.Y. Douillard, C. Lathia, B. Schwartz, I. Taylor, M. Moscovici, L.B. Saltz, Phase II study of sorafenib in patients with advanced hepatocellular carcinoma, Journal of Clinical Oncology 24(26) (2006) 4293-4300.
[8] L. Liu, Y.C. Cao, C. Chen, X.M. Zhang, A. McNabola, D. Wilkie, S. Wilhelm, M. Lynch, C. Carter, Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5, Cancer Research 66(24) (2006) 11851-11858.
[9] A. Hiraoka, T. Kumada, K. Kariyama, K. Takaguchi, M. Atsukawa, E. Itobayashi, K. Tsuji, K. Tajiri, M. Hirooka, N. Shimada, H. Shibata, T. Ishikawa, H. Ochi, T. Tada, H. Toyoda, K. Nouso, A. Tsutsui, N. Itokawa, M. Imai, K. Joko, Y. Hiasa, K. Michitaka, H.R. Real Life Practice Experts, H.C.C.G.H. Carcinom, Clinical features of lenvatinib for unresectable hepatocellular carcinoma in real-world conditions: Multicenter analysis, Cancer Medicine 8(1) (2019) 137-146.
[10] M. Kudo, R.S. Finn, S. Qin, K.H. Han, K. Ikeda, F. Piscaglia, A. Baron, J.W. Park, G. Han, J. Jassem, J.F. Blanc, A. Vogel, D. Komov, T.R.J. Evans, C. Lopez, C. Dutcus, M. Guo, K. Saito, S. Kraljevic, T. Tamai, M. Ren, A.L. Cheng, Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial, Lancet 391(10126) (2018) 1163-1173.
[11] S.J. Forbes, P.N. Newsome, Liver regeneration — mechanisms and models to clinical application, Nature Reviews Gastroenterology & Hepatology 13(8) (2016) 473-485.
[12] S. Dash, Y. Aydin, T. Wu, Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy: A novel mechanism for host-microbe survival and HCC development in liver cirrhosis, Seminars in Cell & Developmental Biology 101 (2020) 20-35.
[13] J.D. Down, M.E. White-Scharf, Reprogramming immune responses: Enabling cellular therapies and regenerative medicine, Stem Cells 21(1) (2003) 21-32.
[14] M.J. Munsie, A.E. Michalska, C.M. O'Brien, A.O. Trounson, M.F. Pera, P.S. Mountford, Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei, Current Biology 10(16) (2000) 989-992.
[15] Y.C. Hsieh, W.R. Yin, Y.Y. Xu, Y.T. Hou, HGF/heparin-immobilized decellularized liver matrices as novel hepatic patches for hepatocyte regeneration in an acute liver injury model, Biochemical Engineering Journal 180 (2022).
[16] X.Y. Zhao, H.D. Sun, A.J. Hou, Q.S. Zhao, T.T. Wei, W.J. Xin, Antioxidant properties of two gallotannins isolated from the leaves of Pistacia weinmannifolia, Biochimica Et Biophysica Acta-General Subjects 1725(1) (2005) 103-110.
[17] K. Tikoo, M.S. Sane, C. Gupta, Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy, Toxicology and Applied Pharmacology 251(3) (2011) 191-200.
[18] 林于哲, 單寧酸對於肝臟保肝效果及肝臟機能提升效果之研究, 生物機電工程學系, 國立臺灣大學, 台北市, 2021, p. 151.
[19] O. Abdifetah, K. Na-Bangchang, Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review, International Journal of Nanomedicine 14 (2019) 5659-5677.
[20] R. Dutta, R.I. Mahato, Recent advances in hepatocellular carcinoma therapy, Pharmacology & Therapeutics 173 (2017) 106-117.
[21] M.E. Davis, Z. Chen, D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer, Nature Reviews Drug Discovery 7(9) (2008) 771-782.
[22] G. Mazza, K. Rombouts, A.R. Hall, L. Urbani, T.V. Luong, W. Al-Akkad, L. Longato, D. Brown, P. Maghsoudlou, A.P. Dhillon, B. Fuller, B. Davidson, K. Moore, D. Dhar, P. De Coppi, M. Malago, M. Pinzani, Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation, Scientific Reports 5 (2015).
[23] R.O. Hynes, A. Naba, Overview of the Matrisome-An Inventory of Extracellular Matrix Constituents and Functions, Cold Spring Harbor Perspectives in Biology 4(1) (2012).
[24] S.K. Asrani, H. Devarbhavi, J. Eaton, P.S. Kamath, Burden of liver diseases in the world, Journal of Hepatology 70(1) (2019) 151-171.
[25] G. Sapisochin, J. Bruix, Liver transplantation for hepatocellular carcinoma: outcomes and novel surgical approaches, Nature Reviews Gastroenterology & Hepatology 14(4) (2017) 203-217.
[26] J.F. Trotter, A. Cárdenas, Liver transplantation around the world, Liver Transplantation 22(8) (2016) 1059-1061.
[27] T. Kitajima, D. Moonka, S. Yeddula, K. Collins, M. Rizzari, A. Yoshida, M.S. Abouljoud, S. Nagai, Outcomes in Living Donor Compared With Deceased Donor Primary Liver Transplantation in Lower Acuity Patients With Model for End-Stage Liver Disease Scores <30, Liver Transplantation 27(7) (2021) 971-983.
[28] J.A. Leithead, M.J. Armstrong, C. Corbett, M. Andrew, C. Kothari, B.K. Gunson, P. Muiesan, J.W. Ferguson, Hepatic ischemia reperfusion injury is associated with acute kidney injury following donation after brain death liver transplantation, Transplant International 26(11) (2013) 1116-1125.
[29] H. Hartog, C.J.H. May, C. Corbett, A. Phillips, J.W. Tomlinson, H. Mergental, J. Isaac, S. Bramhall, D.F. Mirza, P. Muiesan, M. Perera, Early occurrence of new-onset diabetes after transplantation is related to type of liver graft and warm ischaemic injury, Liver International 35(6) (2015) 1739-1747.
[30] H. Jeon, S.G. Lee, Living donor liver transplantation, Current Opinion in Organ Transplantation 15(3) (2010) 283-287.
[31] R.M. Ghobrial, C.E. Freise, J.F. Trotter, L. Tong, A.O. Ojo, J.H. Fair, R.A. Fisher, J.C. Emond, A.J. Koffron, T.L. Pruett, K.M. Olthoff, Donor morbidity after living donation for liver transplantation, Gastroenterology 135(2) (2008) 468-76.
[32] R. Matesanz, B. Domínguez-Gil, E. Coll, B. Mahíllo, R. Marazuela, How Spain Reached 40 Deceased Organ Donors per Million Population, Am J Transplant 17(6) (2017) 1447-1454.
[33] N. Goldaracena, J.M. Cullen, D.S. Kim, B. Ekser, K.J. Halazun, Expanding the donor pool for liver transplantation with marginal donors, Int J Surg 82s (2020) 30-35.
[34] J. Bruix, M. Sherman, Management of hepatocellular carcinoma, Hepatology 42(5) (2005) 1208-36.
[35] EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma, J Hepatol 56(4) (2012) 908-43.
[36] S. Roayaie, G. Jibara, P. Tabrizian, J.W. Park, J.J. Yang, L.N. Yan, M. Schwartz, G.H. Han, F. Izzo, M. Chen, J.F. Blanc, P. Johnson, M. Kudo, L.R. Roberts, M. Sherman, The role of hepatic resection in the treatment of hepatocellular cancer, Hepatology 62(2) (2015) 440-451.
[37] G.L. Grazi, G. Ercolani, F. Pierangeli, M. Del Gaudio, M. Cescon, A. Cavallari, A. Mazziotti, Improved results of liver resection for hepatocellular carcinoma on cirrhosis give the procedure added value, Ann Surg 234(1) (2001) 71-8.
[38] K.P. Cieslak, O. Baur, J. Verheij, R.J. Bennink, T.M. van Gulik, Liver function declines with increased age, HPB (Oxford) 18(8) (2016) 691-6.
[39] S.P. Chali, B.J. Ravoo, Polymer Nanocontainers for Intracellular Delivery, Angewandte Chemie-International Edition 59(8) (2020) 2962-2972.
[40] F. Chen, G.L. Huang, Application of glycosylation in targeted drug delivery, European Journal of Medicinal Chemistry 182 (2019).
[41] A. Mahapatro, D.K. Singh, Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines, Journal of Nanobiotechnology 9 (2011).
[42] X. Huang, M. Li, D.C. Green, D.S. Williams, A.J. Patil, S. Mann, Interfacial assembly of protein-polymer nano-conjugates into stimulus-responsive biomimetic protocells, Nature Communications 4 (2013).
[43] G. Sahay, D.Y. Alakhova, A.V. Kabanov, Endocytosis of nanomedicines, Journal of Controlled Release 145(3) (2010) 182-195.
[44] O. Naksuriya, S. Okonogi, R.M. Schiffelers, W.E. Hennink, Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment, Biomaterials 35(10) (2014) 3365-3383.
[45] B.E. Uygun, A. Soto-Gutierrez, H. Yagi, M.-L. Izamis, M.A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M.L. Yarmush, K. Uygun, Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix, Nature Medicine 16(7) (2010) 814-820.
[46] H. Shimoda, H. Yagi, H. Higashi, K. Tajima, K. Kuroda, Y. Abe, M. Kitago, M. Shinoda, Y. Kitagawa, Decellularized liver scaffolds promote liver regeneration after partial hepatectomy, Scientific Reports 9(1) (2019) 12543.
[47] S.W. Cho, S.H. Lim, I.K. Kim, Y.S. Hong, S.S. Kim, K.J. Yoo, H.Y. Park, Y. Jang, B.C. Chang, C.Y. Choi, K.C. Hwang, B.S. Kim, Small-diameter blood vessels engineered with bone marrow-derived cells, Ann Surg 241(3) (2005) 506-15.
[48] S.W. Cho, I.K. Kim, J.M. Kang, K.W. Song, H.S. Kim, C.H. Park, K.J. Yoo, B.S. Kim, Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery, Tissue Eng Part A 15(4) (2009) 901-12.
[49] C. Quint, Y. Kondo, R.J. Manson, J.H. Lawson, A. Dardik, L.E. Niklason, Decellularized tissue-engineered blood vessel as an arterial conduit, Proc Natl Acad Sci U S A 108(22) (2011) 9214-9.
[50] T.H. Petersen, E.A. Calle, L. Zhao, E.J. Lee, L. Gui, M.B. Raredon, K. Gavrilov, T. Yi, Z.W. Zhuang, C. Breuer, E. Herzog, L.E. Niklason, Tissue-engineered lungs for in vivo implantation, Science 329(5991) (2010) 538-41.
[51] H.C. Ott, T.S. Matthiesen, S.-K. Goh, L.D. Black, S.M. Kren, T.I. Netoff, D.A. Taylor, Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart, Nature Medicine 14(2) (2008) 213-221.
[52] S.B. Seif-Naraghi, J.M. Singelyn, M.A. Salvatore, K.G. Osborn, J.J. Wang, U. Sampat, O.L. Kwan, G.M. Strachan, J. Wong, P.J. Schup-Magoffin, R.L. Braden, K. Bartels, J.A. DeQuach, M. Preul, A.M. Kinsey, A.N. DeMaria, N. Dib, K.L. Christman, Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction, Sci Transl Med 5(173) (2013) 173ra25.
[53] J.S. Lee, J. Shin, H.M. Park, Y.G. Kim, B.G. Kim, J.W. Oh, S.W. Cho, Liver Extracellular Matrix Providing Dual Functions of Two-Dimensional Substrate Coating and Three-Dimensional Injectable Hydrogel Platform for Liver Tissue Engineering, Biomacromolecules 15(1) (2014) 206-218.
[54] S. Nakamura, H. Ijima, Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture, J Biosci Bioeng 116(6) (2013) 746-53.
[55] M. Papi, V. Palmieri, G. Maulucci, G. Arcovito, E. Greco, G. Quintiliani, M. Fraziano, M. De Spirito, Controlled self assembly of collagen nanoparticle, Journal of Nanoparticle Research 13(11) (2011) 6141-6147.
[56] K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices, Journal of Controlled Release 70(1) (2001) 1-20.
[57] P. Rathore, I. Arora, S. Rastogi, M. Akhtar, S. Singh, M. Samim, Collagen Nanoparticle-Mediated Brain Silymarin Delivery: An Approach for Treating Cerebral Ischemia and Reperfusion-Induced Brain Injury, Frontiers in Neuroscience 14 (2020).
[58] S. Schrade, L. Ritschl, R. Suss, P. Schilling, M. Seidenstuecker, Gelatin Nanoparticles for Targeted Dual Drug Release out of Alginate-di-Aldehyde-Gelatin Gels, Gels 8(6) (2022).
[59] B. Rössler, J. Kreuter, D. Scherer, Collagen microparticles: Preparation and properties, Journal of Microencapsulation 12(1) (1995) 49-57.
[60] M. Fach, L. Radi, P.R. Wich, Nanoparticle Assembly of Surface-Modified Proteins, Journal of the American Chemical Society 138(45) (2016) 14820-14823.
[61] T.H. Lien Nghiem, T.T. Nguyen, E. Fort, T.P. Nguyen, T.M. Nhung Hoang, T.Q. Nguyen, H. Nhung Tran, Capping and in vivo toxicity studies of gold nanoparticles, Advances in Natural Sciences: Nanoscience and Nanotechnology 3(1) (2012) 015002.
[62] Q. Yuan, Y. Fu, W.J. Kao, D. Janigro, H. Yang, Transbuccal Delivery of CNS Therapeutic Nanoparticles: Synthesis, Characterization, and In Vitro Permeation Studies, ACS Chemical Neuroscience 2(11) (2011) 676-683.
[63] T.M. Allen, G.A. Austin, A. Chonn, L. Lin, K.C. Lee, UPTAKE OF LIPOSOMES BY CULTURED MOUSE BONE-MARROW MACROPHAGES - INFLUENCE OF LIPOSOME COMPOSITION AND SIZE, Biochimica Et Biophysica Acta 1061(1) (1991) 56-64.
[64] S.M. Moghimi, J. Szebeni, Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties, Prog Lipid Res 42(6) (2003) 463-78.
[65] P.G. Degennes, POLYMERS AT AN INTERFACE - A SIMPLIFIED VIEW, Advances in Colloid and Interface Science 27(3-4) (1987) 189-209.
[66] E. Nogueira, A. Loureiro, P. Nogueira, J. Freitas, C.R. Almeida, J. Harmark, H. Hebert, A. Moreira, A.M. Carmo, A. Preto, A.C. Gomes, A. Cavaco-Paulo, Liposome and protein based stealth nanoparticles, Faraday Discussions 166 (2013) 417-429.
[67] U. Shimanovich, G.J.L. Bernardes, T.P.J. Knowles, A. Cavaco-Paulo, Protein micro- and nano-capsules for biomedical applications, Chemical Society Reviews 43(5) (2014) 1361-1371.
[68] G. Buzzelli, S. Moscarella, A. Giusti, A. Duchini, C. Marena, M. Lampertico, A pilot study on the liver protective effect of silybin-phosphatidylcholine complex (IdB1016) in chronic active hepatitis, Int J Clin Pharmacol Ther Toxicol 31(9) (1993) 456-60.
[69] R. Saller, R. Meier, R. Brignoli, The use of silymarin in the treatment of liver diseases, Drugs 61(14) (2001) 2035-2063.
[70] J. Sonnenbichler, M. Goldberg, L. Hane, I. Madubunyi, S. Vogl, I. Zetl, STIMULATORY EFFECT OF SILIBININ ON THE DNA-SYNTHESIS IN PARTIALLY HEPATECTOMIZED RAT LIVERS - NONRESPONSE IN HEPATOMA AND OTHER MALIGN CELL-LINES, Biochemical Pharmacology 35(3) (1986) 538-541.
[71] E. Magliulo, P.G. Carosi, L. Minoli, S. Gorini, STUDIES ON REGENERATIVE CAPACITY OF LIVER IN RATS SUBJECTED TO PARTIAL HEPATECTOMY AND TREATED WITH SILYMARIN, Arzneimittel-Forschung/Drug Research 23(1A) (1973) 161-167.
[72] K.R. Ball, K.V. Kowdley, A review of Silybum marianum (milk thistle) as a treatment for alcoholic liver disease, Journal of Clinical Gastroenterology 39(6) (2005) 520-528.
[73] T. Hatano, R. Edamatsu, M. Hiramatsu, A. Mori, Y. Fujita, T. Yasuhara, T. Yoshida, T. Okuda, EFFECTS OF THE INTERACTION OF TANNINS WITH CO-EXISTING SUBSTANCES .6. EFFECTS OF TANNINS AND RELATED POLYPHENOLS ON SUPEROXIDE ANION RADICAL, AND ON 1,1-DIPHENYL-2-PICRYLHYDRAZYL RADICAL, Chemical & Pharmaceutical Bulletin 37(8) (1989) 2016-2021.
[74] X. Chu, H. Wang, Y.M. Jiang, Y.Y. Zhang, Y.F. Bao, X. Zhang, J.P. Zhang, H. Guo, F. Yang, Y.C. Luan, Y.S. Dong, Ameliorative effects of tannic acid on carbon tetrachloride-induced liver fibrosis in vivo and in vitro, Journal of Pharmacological Sciences 130(1) (2016) 15-23.
[75] H. Hapidin, N.A.A. Romli, H. Abdullah, Proliferation study and microscopy evaluation on the effects of tannic acid in human fetal osteoblast cell line (hFOB 1.19), Microscopy Research and Technique 82(11) (2019) 1928-1940.
[76] 李俊諺, 標靶藥物載體之劑型開發用於肝組織再生之研究, 生物產業機電工程學研究所, 國立臺灣大學, 2018, pp. 1-77.
[77] Z.L. Song, H.M. Liu, L.W. Chen, L.L. Chen, C.X. Zhou, P.Z. Hong, C.J. Deng, Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment, Food Chemistry 340 (2021).
[78] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, T. Matsuo, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry 2(8) (1988) 151-153.
[79] A. Abuchowski, T. Vanes, N.C. Palczuk, F.F. Davis, ALTERATION OF IMMUNOLOGICAL PROPERTIES OF BOVINE SERUM-ALBUMIN BY COVALENT ATTACHMENT OF POLYETHYLENE-GLYCOL, Journal of Biological Chemistry 252(11) (1977) 3578-3581.
[80] M.J. Vold, Zeta potential in colloid science. Principles and applications, Journal of Colloid and Interface Science 88 (1982) 608.
[81] H. Tamam, J. Park, H.H. Gadalla, A.R. Masters, J.A. Abdel-Aleem, S.I. Abdelrahman, A.A. Abdelrahman, L.T. Lyle, Y. Yeo, Development of Liposomal Gemcitabine with High Drug Loading Capacity, Molecular Pharmaceutics 16(7) (2019) 2858-2871.
[82] M. Brgles, D. Jurasin, M.D. Sikiric, R. Frkanec, J. Tomasic, Entrapment of Ovalbumin into liposomes - Factors affecting entrapment efficiency, liposome size, and zeta potential, Journal of Liposome Research 18(3) (2008) 235-248.
[83] Y. Suda, M. Sumi, M. Sobel, R.M. Ottenbrite, Selective Labeling of Bioactive Polysaccharides with a New Fluorescent Reagent, Journal of Bioactive and Compatible Polymers 5(4) (1990) 412-419.
[84] W.C.M. Duivenvoorden, P. Maier, NONGENOTOXIC CARCINOGENS SHIFT CULTURED RAT HEPATOCYTES INTO G1 CELL-CYCLE PHASE - INFLUENCE OF TISSUE OXYGEN-TENSION ON CELLS WITH DIFFERENT PLOIDY, European Journal of Cell Biology 64(2) (1994) 368-375.
[85] A. Krishan, RAPID FLOW CYTOFLUOROMETRIC ANALYSIS OF MAMMALIAN-CELL CYCLE BY PROPIDIUM IODIDE STAINING, Journal of Cell Biology 66(1) (1975) 188-193.
[86] R.S. Douglas, A.D. Tarshis, C.H. Pletcher, P.C. Nowell, J.S. Moore, A simplified method for the coordinate examination of apoptosis and surface phenotype of murine lymphocytes, Journal of Immunological Methods 188(2) (1995) 219-228.
[87] J. Fried, A.G. Perez, B.D. Clarkson, FLOW CYTOFLUOROMETRIC ANALYSIS OF CELL-CYCLE DISTRIBUTIONS USING PROPIDIUM IODIDE - PROPERTIES OF METHOD AND MATHEMATICAL-ANALYSIS OF DATA, Journal of Cell Biology 71(1) (1976) 172-181.
[88] Y.T. Hou, K.C.W. Wu, C.Y. Lee, Development of glycyrrhizin-conjugated, chitosan-coated, lysine-embedded mesoporous silica nanoparticles for hepatocyte-targeted liver tissue regeneration, Materialia 9 (2020).
[89] L.L. Vindeløv, I.J. Christensen, N.I. Nissen, A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis, Cytometry 3(5) (1983) 323-7.
[90] C. Mitchell, H. Willenbring, A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice, Nature Protocols 3(7) (2008) 1167-1170.
[91] C. Mitchell, H. Willenbring, A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice (vol 3, pg 1167, 2008), Nature Protocols 9(6) (2014).
[92] D. Gerlier, N. Thomasset, Use of MTT colorimetric assay to measure cell activation, Journal of Immunological Methods 94(1) (1986) 57-63.
[93] D.C. Marks, L. Belov, M.W. Davey, R.A. Davey, A.D. Kidman, THE MTT CELL VIABILITY ASSAY FOR CYTOTOXICITY TESTING IN MULTIDRUG-RESISTANT HUMAN LEUKEMIC-CELLS, Leukemia Research 16(12) (1992) 1165-1173.
[94] E. Hasch, S. Jarnum, N. Tygstrup, ALBUMIN SYNTHESIS RATE AS A MEASURE OF LIVER FUNCTION IN PATIENTS WITH CIRRHOSIS, Acta Medica Scandinavica 182(1) (1967) 83-+.
[95] M. Malakouti, A. Kataria, S.K. Ali, S. Schenker, Elevated Liver Enzymes in Asymptomatic Patients - What Should I Do?, J Clin Transl Hepatol 5(4) (2017) 394-403.
[96] F.H. Anderson, L.C. Zeng, N.R. Rock, E.M. Yoshida, An assessment of the clinical utility of serum ALT and AST in chronic hepatitis C, Hepatology Research 18(1) (2000) 63-71.
[97] R. Spinella, R. Sawhney, R. Jalan, Albumin in chronic liver disease: structure, functions and therapeutic implications, Hepatology International 10(1) (2016) 124-132.
[98] B. Suh, S. Park, D.W. Shin, J.M. Yun, B. Keam, H.K. Yang, E. Ahn, H. Lee, J.H. Park, B. Cho, Low albumin-to-globulin ratio associated with cancer incidence and mortality in generally healthy adults, Annals of Oncology 25(11) (2014) 2260-2266.
[99] C.H. Su, S.H. Tsay, C.C. Wu, Y.M. Shyr, K.L. King, C.H. Lee, W.Y. Lui, T.J. Liu, F.K. Peng, Factors influencing postoperative morbidity, mortality, and survival after resection for hilar cholangiocarcinoma, Annals of Surgery 223(4) (1996) 384-394.
[100] F. Lopez, F. Belloc, F. Lacombe, P. Dumain, J. Reiffers, P. Bernard, M.R. Boisseau, Modalities of synthesis of Ki67 antigen during the stimulation of lymphocytes, Cytometry 12(1) (1991) 42-49.
[101] U. Mendibil, R. Ruiz-Hernandez, S. Retegi-Carrion, N. Garcia-Urquia, B. Olalde-Graells, A. Abarrategi, Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds, International Journal of Molecular Sciences 21(15) (2020).
[102] 李光閔, 以脫細胞化肝臟間質製備之多孔性生物材料應用於受損肝細胞活性恢復之研究, 生物產業機電工程學研究所, 國立臺灣大學, 台北市, 2018, p. 107.
[103] U.K. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature 227(5259) (1970) 680-685.
[104] H. Jafari, A. Lista, M.M. Siekapen, P. Ghaffari-Bohlouli, L. Nie, H. Alimoradi, A. Shavandi, Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering, Polymers 12(10) (2020) 2230.
[105] J. Fernandez-Perez, M. Ahearne, The impact of decellularization methods on extracellular matrix derived hydrogels, Scientific Reports 9 (2019).
[106] R. Kumar, R. Sripriya, S. Balaji, M. Senthil Kumar, P.K. Sehgal, Physical characterization of succinylated type I collagen by Raman spectra and MALDI-TOF/MS and in vitro evaluation for biomedical applications, Journal of Molecular Structure 994(1) (2011) 117-124.
[107] L.G. Griffith, M.A. Swartz, Capturing complex 3D tissue physiology in vitro, Nature Reviews Molecular Cell Biology 7(3) (2006) 211-224.
[108] A. Hall, L.P. Wu, L. Parhamifar, S.M. Moghimi, Differential Modulation of Cellular Bioenergetics by Poly(L-lysine)s of Different Molecular Weights, Biomacromolecules 16(7) (2015) 2119-26.
[109] A. Barth, C. Zscherp, What vibrations tell us about proteins, Quarterly Reviews of Biophysics 35(4) (2002) 369-430.
[110] T. Ansari, A. Southgate, I. Obiri-Yeboa, L.G. Jones, K. Greco, A. Olayanju, L. Mbundi, M. Somasundaram, B. Davidson, P.D. Sibbons, Development and Characterization of a Porcine Liver Scaffold, Stem Cells and Development 29(5) (2020) 314-326.
[111] H. Asadi, K. Rostamizadeh, D. Salari, M. Hamidi, Preparation of biodegradable nanoparticles of tri-block PLA-PEG-PLA copolymer and determination of factors controlling the particle size using artificial neural network, Journal of microencapsulation 28 (2011) 406-16.
[112] F. Tewes, E. Munnier, B. Antoon, L.N. Okassa, S. Cohen-Jonathan, H. Marchais, L. Douziech-Eyrolles, M. Souce, P. Dubois, I. Chourpa, Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods, European Journal of Pharmaceutics and Biopharmaceutics 66(3) (2007) 488-492.
[113] C.H. Kim, C.K. Sa, M.S. Goh, E.S. Lee, T.H. Kang, H.Y. Yoon, G. Battogtokh, Y.T. Ko, Y.W. Choi, pH-sensitive PEGylation of RIPL peptide-conjugated nanostructured lipid carriers: design and in vitro evaluation, International Journal of Nanomedicine 13 (2018) 6661-6675.
[114] X.S. Qin, Z.G. Luo, X.C. Peng, X.X. Lu, Y.X. Zou, Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickeing Emulsions with Ultrasound Treatment: Effect of lonic Strength on the Freeze-Thaw Stability, Journal of Agricultural and Food Chemistry 66(31) (2018) 8363-8370.
[115] K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao, A.M. Gonik, R.G. Agarwal, K.S. Lam, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles, Biomaterials 32(13) (2011) 3435-46.
[116] T.T.C. Nguyen, C.K. Nguyen, T.H. Nguyen, N.Q. Tran, Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs, Materials Science and Engineering C-Materials for Biological Applications 70 (2017) 992-999.
[117] Z. Zhao, S. Lou, Y. Hu, J. Zhu, C. Zhang, A Nano-in-Nano Polymer–Dendrimer Nanoparticle-Based Nanosystem for Controlled Multidrug Delivery, Molecular Pharmaceutics 14(8) (2017) 2697-2710.
[118] L. Bekale, D. Agudelo, H.A. Tajmir-Riahi, The role of polymer size and hydrophobic end-group in PEG–protein interaction, Colloids and Surfaces B: Biointerfaces 130 (2015) 141-148.
[119] K. Wadhwa, R. Pahwa, M. Kumar, S. Kumar, P.C. Sharma, G. Singh, R. Verma, V. Mittal, I. Singh, D. Kaushik, P. Jeandet, Mechanistic Insights into the Pharmacological Significance of Silymarin, Molecules 27(16) (2022).
[120] M. Li, L. Wu, C. Zhang, W. Chen, C. Liu, Hydrophilic and antifouling modification of PVDF membranes by one-step assembly of tannic acid and polyvinylpyrrolidone, Applied Surface Science 483 (2019) 967-978.
[121] R.D. Piazza, J.V. Brandt, G.G. Gobo, A.C. Tedesco, F.L. Primo, R.F.C. Marques, M.J. Junior, mPEG-co-PCL nanoparticles: The influence of hydrophobic segment on methotrexate drug delivery, Colloids and Surfaces A: Physicochemical and Engineering Aspects 555 (2018) 142-149.
[122] Z. Huang, L. Liao, D.J. McClements, J. Li, R. Li, Y. Zou, M. Li, W. Zhou, Utilizing protein-polyphenol molecular interactions to prepare moringa seed residue protein/tannic acid Pickering stabilizers, LWT 154 (2022) 112814.
[123] G. Ciapetti, E. Cenni, L. Pratelli, A. Pizzoferrato, INVITRO EVALUATION OF CELL BIOMATERIAL INTERACTION BY MTT ASSAY, Biomaterials 14(5) (1993) 359-364.
[124] N. Krasteva, U. Harms, W. Albrecht, B. Seifert, M. Hopp, G. Altankov, T. Groth, Membranes for biohybrid liver support systems - investigations on hepatocyte attachment, morphology and growth, Biomaterials 23(12) (2002) 2467-2478.
[125] S. Ruijtenberg, S. van den Heuvel, Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression, Cell Cycle 15(2) (2016) 196-212.
[126] F. Sedlic, F. Seiwerth, A. Sepac, S. Sikiric, M. Cindric, M. Milavic, L. Batelja Vuletic, M. Jakopovic, S. Seiwerth, Mitochondrial ROS Induce Partial Dedifferentiation of Human Mesothelioma via Upregulation of NANOG, Antioxidants (Basel) 9(7) (2020).
[127] L. Radko, W. Cybulski, Application of silymarin in human and animal medicine, J Pre Clin Clin Res. 1(1) (2007) 22-26.
[128] M.P. Margarson, N. Soni, Serum albumin: touchstone or totem?, Anaesthesia 53(8) (1998) 789-803.
[129] M. Kushida, L.M. Kamendulis, T.J. Peat, J.E. Klaunig, Dose-related induction of hepatic preneoplastic lesions by diethylnitrosamine in C57BL/6 mice, Toxicol Pathol 39(5) (2011) 776-86.
[130] F. Braet, E. Wisse, Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review, Comp Hepatol 1(1) (2002) 1.
[131] R. Bottger, G. Pauli, P.H. Chao, N. Al Fayez, L. Hohenwarter, S.D. Li, Lipid-based nanoparticle technologies for liver targeting, Advanced Drug Delivery Reviews 154 (2020) 79-101.
[132] M.K. Bijsterbosch, T.J.C. Vanberkel, UPTAKE OF LACTOSYLATED LOW-DENSITY-LIPOPROTEIN BY GALACTOSE-SPECIFIC RECEPTORS IN RAT-LIVER, Biochemical Journal 270(1) (1990) 233-239.
[133] N. Parker, M.J. Turk, E. Westrick, J.D. Lewis, P.S. Low, C.P. Leamon, Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay, Analytical Biochemistry 338(2) (2005) 284-293.
[134] Y.E. Cai, Y.Q. Xu, H.F. Chan, X.B. Fang, C.W. He, M.W. Chen, Glycyrrhetinic Acid Mediated Drug Delivery Carriers for Hepatocellular Carcinoma Therapy, Molecular Pharmaceutics 13(3) (2016) 699-709.
[135] H. Nishino, K. Yoshioka, A. Iwashima, H. Takizawa, S. Konishi, H. Okamoto, H. Okabe, S. Shibata, H. Fujiki, T. Sugimura, GLYCYRRHETIC ACID INHIBITS TUMOR-PROMOTING ACTIVITY OF TELEOCIDIN AND 12-O-TETRADECANOYLPHORBOL-13-ACETATE IN 2-STAGE MOUSE SKIN CARCINOGENESIS, Japanese Journal of Cancer Research 77(1) (1986) 33-38.
[136] Y. Satomi, H. Nishino, S. Shibata, Glycyrrhetinic acid and related compounds induce G1 arrest and apoptosis in human hepatocellular carcinoma HepG2, Anticancer Research 25(6B) (2005) 4043-4047.
[137] S.R. Chen, L.Y. Zou, L. Li, T. Wu, The Protective Effect of Glycyrrhetinic Acid on Carbon Tetrachloride-Induced Chronic Liver Fibrosis in Mice via Upregulation of Nrf2, Plos One 8(1) (2013).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84454-
dc.description.abstract肝臟是人體中相當重要的器官,在循環系統中亦主要扮演代謝物質的角色,體內的蛋白質合成、碳水化合物代謝、脂質代謝、以及排毒等都是肝臟負責的重要機能。然而慢性肝炎一直是國人十大死因之一,過往的研究提出水飛薊素可以改善慢性肝病的症狀,但效率不彰;此外,由於肝臟所肩負多種生理作用,因此肝功能障礙往往使得肝病患者在手術治療期間會增加發病和死亡的風險。因此臨床上迫切需要能夠提升肝病患者之肝再生能力的標靶藥物、並透過與手術搭配應用的輔助性療法,讓更多肝病病患得以進行手術治療並提高其成功率。為了突破這個困境,本研究將開發一新穎的奈米載體,以促進部分肝切除術後的肝臟機能之回復效率。
本研究主要分為兩個部份進行。第一部分致力於奈米載體的開發 (以 mPEG 修飾之脫細胞化肝臟間質) 及其奈米載體的性質檢測。第二部分則是將大鼠初代成熟肝細胞與奈米載體進行共培養並觀察細胞活性與肝臟機能檢測;此外,亦嘗試建立小鼠體內 2/3 部分肝切除模型、並檢測包埋單寧酸之奈米載體對於部分肝切除術後小鼠肝臟再生之影響。本研究期許未來能實際應用於臨床治療,為肝病治療給予新的方法與展望。
zh_TW
dc.description.abstractThe liver plays an indispensable role in the human body with important functions such as protein synthesis, urea metabolism, and detoxification. However, chronic hepatitis ranks top 10 in the most common causes of adult deaths worldwide. Silymarin has long been used as an ideal reagent for the comparison of hepato-protective bioactive components, but absorption of oral silymarin is low with poor bioavailability. On the other hand, liver dysfunction often puts liver-diseased patients at increased risk of morbidity and mortality during surgical operation, for more patients which can undergo surgical operation and improve their success rate, development a targeted drug which can improve liver regeneration in liver-diseased patients seems to be urgent.
Thus, a mPEG-modified decellularized liver matrix (mPEG-DLM) was developed for improving the hepatic functions after partial hepatectomy (PH). We firstly synthesized the mPEG-DLM and determined its characteristics, then, the cell viability and hepatic functions of mPEG-DLM were checked in vitro, furthermore, the establishment of 2/3 PH in vivo model was confirmed, and the effect of tannic acid (TA)-embedded mPEG-DLM on liver regeneration after 2/3 PH was further clarified. This study may have potential in clinical applications and can give us new prospects for the treatment of liver disease in the near future.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:12:07Z (GMT). No. of bitstreams: 1
U0001-2009202201454900.pdf: 4694578 bytes, checksum: 0c8cf5d49baeed56cf9692ab547a9fe8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 xii
第ㄧ章 緒論 1
1.1 前言 1
1.2 研究目的 3
1.3明確的目標 (Specific Aims) 5
第二章 文獻探討 7
2.1 肝臟治療 7
2.1.1 肝臟移植 7
2.1.2 肝臟切除手術 8
2.2 蛋白質藥物載體 9
2.2.1 脫細胞化肝臟間質 (Decellularized liver matrix; DLM) 10
2.2.2 蛋白質藥物載體之奈米化的方法 11
2.3 載體表面修飾 12
聚乙二醇 (Polyethylene glycol; PEG) 12
2.4 肝臟再生藥物 13
2.4.1 水飛薊素 (Silymarin) 13
2.4.2 單寧酸 (Tannic acid) 14
第三章 研究方法 15
3.1 實驗藥品、耗材、儀器設備與實驗動物 15
3.1.1 實驗藥品 15
3.1.2 實驗耗材 17
3.1.3 實驗儀器設備 18
3.1.4 實驗動物 20
3.2 脫細胞化肝臟間質 (DLM) 之製備 21
3.3脫細胞化肝臟間質的萃取與材料分析 22
3.3.1 DLM 的萃取 22
3.3.2 SDS-PAGE 檢測 22
3.3.3 MALDI 檢測 23
3.4奈米載體的合成 24
3.5 奈米載體的分析鑑定 26
3.5.1 FTIR 圖譜分析 26
3.5.2 奈米載體的粒徑分析與表面電位 26
3.5.3 TEM 拍攝奈米載體並觀察其型態 27
3.5.4 檢測奈米載體的藥物包埋量 28
3.5.5 檢測奈米載體的藥物釋放率 29
3.6 大鼠肝細胞與奈米載體的共培養 30
3.7 觀察肝細胞對奈米載體的胞吞情況並進行螢光定量 31
3.8 檢測包埋藥物的奈米載體對細胞週期的影響 33
3.9 小鼠體內實驗 35
3.9.1 建立小鼠 2/3 部分肝切除模型 36
3.10 實驗相關檢測方法 38
3.10.1 肝細胞活性檢測 (MTT assay) 38
3.10.2 白蛋白檢測 (Albumin ELISA) 39
3.10.3 血清生化分析 40
3.10.4 病理切片染色 41
第四章 實驗結果 42
4.1 脫細胞化肝臟間質之製備 42
4.2 SDS-PAGE 分析 43
4.3 MALDI 分析 44
4.4 FTIR 分析 46
4.5 DLS 分析 48
4.6 Zeta potental 分析 50
4.7 使用 TEM 觀察 DLM 奈米載體的形態 52
4.8 DLM 奈米載體的藥物包埋率以及藥物釋放率 54
4.9 DLM 奈米載體對肝細胞的毒性測試 58
4.10 DLM 奈米載體對肝細胞的影響 60
4.10.1 相對細胞生存率檢測 60
4.10.2 Albumin ELISA 檢測 62
4.10.3 體外培養之細胞生長型態 64
4.11 包埋單寧酸之 DLM 奈米載體對肝細胞的影響 66
4.11.1 相對細胞生存率檢測 66
4.11.2 Albumin ELISA 檢測 68
4.11.3 體外培養之細胞生長型態 70
4.12包埋水飛薊素之 DLM 奈米載體對肝細胞的影響 73
4.12.1 相對細胞生存率檢測 73
4.12.2 Albumin ELISA 檢測 75
4.12.3 體外培養之細胞生長型態 77
4.13 肝細胞對於 DLM 奈米載體之胞吞行為 80
4.14 包埋單寧酸之 DLM 奈米載體對細胞週期的影響 85
4.15 包埋單寧酸之 DLM 奈米載體對體內肝臟再生情況和機能的影響 88
4.15.1 血清生化分析結果 88
4.15.2 相對肝臟重量分析 98
4.15.3 免疫組織切片分析 100
第五章 結論與未來展望 103
5.1 結論 103
5.2 未來展望 107
參考文獻 109
-
dc.language.isozh_TW-
dc.title脫細胞化肝臟間質之奈米載體的開發與其於肝臟再生之應用zh_TW
dc.titleDevelopment of a decellularized liver matrix-based nanomedicine for liver regenerationen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee倪衍玄;黃凱文;游佳欣zh_TW
dc.contributor.oralexamcommitteeYen-Hsuan Ni;Kai-Wen Huang;Jia-shing Yuen
dc.subject.keyword脫細胞化肝臟間質,奈米粒子藥物傳遞系統,單寧酸,部分肝切除,肝臟再生,zh_TW
dc.subject.keywordDecellularized Liver Matrix,Nanoparticle Drug Delivery System,Tannic Acid,Partial Hepatectomy,Liver Regeneation,en
dc.relation.page120-
dc.identifier.doi10.6342/NTU202203616-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2022-09-27-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved