請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84449完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾宇鳳(Yufeng Jane Tseng) | |
| dc.contributor.author | Yu-Hao Ni | en |
| dc.contributor.author | 倪宇澔 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:11:58Z | - |
| dc.date.copyright | 2022-09-27 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-26 | |
| dc.identifier.citation | 1. Furge, L. L., & Guengerich, F. P. (2006). Cytochrome P450 enzymes in drug metabolism and chemical toxicology: An introduction. Biochemistry and Molecular Biology Education, 34(2), 66-74. 2. Nebert, D. W., & Russell, D. W. (2002). Clinical importance of the cytochromes P450. The Lancet, 360(9340), 1155-1162. 3. Lynch, T., & Neff, A. P. (2007). The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American family physician, 76(3), 391-396. 4. Zanger, U. M., & Schwab, M. (2013). Cytochrome P450 enzymes in drug metabolism regulate gene expression, enzyme activities, and impact of genetic variation. Pharmacology & therapeutics, 138(1), 103-141. 5. Lewis, D. F., & Ito, Y. (2010). Human CYPs involved in drug metabolism: structures, substrates and binding affinities. Expert opinion on drug metabolism & toxicology, 6(6), 661-674. 6. Kesharwani, S. S., Nandekar, P. P., Pragyan, P., Rathod, V., & Sangamwar, A. T. (2016). Characterizing differences in substrate specificity among CYP1A1, CYP1A2 and CYP1B1: an integrated approach employing molecular docking and molecular dynamics simulations. Journal of Molecular Recognition, 29(8), 370-390. 7. Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., & Tropsha, A. (2014). QSAR modeling: where have you been? Where are you going to?. Journal of medicinal chemistry, 57(12), 4977-5010. 8. Shaikh, N., Sharma, M., & Garg, P. (2017). Selective fusion of heterogeneous classifiers for predicting substrates of membrane transporters. Journal of Chemical Information and Modeling, 57(3), 594-607. 9. Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier. 10. Vapnik, V. N. (1995). The nature of statistical learning. Theory. 11. Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844. 12. Ramsundar, B., Eastman, P., Walters, P., & Pande, V. (2019). Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more. O'Reilly Media. 13. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. 14. Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. Advances in neural information processing systems, 28. 15. Karpov, P., Godin, G., & Tetko, I. V. (2020). Transformer-CNN: Swiss knife for QSAR modeling and interpretation. Journal of Cheminformatics, 12(1), 1-12. 16. Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., & Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints. Advances in neural information processing systems, 28. 17. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2). 18. Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. Advances in neural information processing systems, 25. 19. Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. Advances in neural information processing systems,24. 20. Simulations Plus. ADMET Predictor Metabolism Module. (2021). Retrieved from https://www.simulations-plus.com/software/ admetpredictor/ 21. Hunt, P. A., Segall, M. D., & Tyzack, J. D. (2018). WhichP450: a multi-class categorical model to predict the major metabolising CYP450 isoform for a compound. Journal of Computer-Aided Molecular Design, 32(4), 537-546. 22. ADMEWORKS Properties Prediction System. (2021). Retrieved from https://www.fujitsu.com/global/solutions/businesstechnology/tc/sol/admeworks/index.html 23. ACD/Labs. Percepta Platform. (2021). Retrieved from https://www.acdlabs.com 24. Yap, C. W., & Chen, Y. Z. (2005). Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. Journal of chemical information and modeling, 45(4), 982-992. 25. DRUGDEXSystem; MICROMEDEX: Greenwood Village. (2003). 26. Rendic, S. (2002). Summary of information on human CYP enzymes: human P450 metabolism data. Drug metabolism reviews, 34(1-2), 83-448. 27. Lacy, C. F. (2002). Drug information handbook, 10th ed. 28. Pearlman, R. S. CONCORD User's Manual. 29. Todeschini, R. C., V.; Mauri, A.; Pavan, M. (2003.). DRAGON Web, version 3.0; Talete SRL: Milan. 30. Frohlich, H., Chapelle, O., & Scholkopf, B. (2003, November). Feature selection for support vector machines by means of genetic algorithm. In Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence (pp. 142-148). IEEE. 31. Michielan, L., Terfloth, L., Gasteiger, J., & Moro, S. (2009). Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome p450 substrates. Journal of chemical information and modeling, 49(11), 2588-2605. 32. Block, J. H., & Henry, D. R. (2008). Evaluation of descriptors and classification schemes to predict cytochrome substrates in terms of chemical information. Journal of Computer-Aided Molecular Design, 22(6), 385-392. 33. Bonnabry, P., Sievering, J., Leemann, T., & Dayer, P. (2001). Quantitative drug interactions prediction system (Q-DIPS). Clinical Pharmacokinetics, 40(9), 631-640. 34. Pharmacist’s Letter. (2008). Retrieved from http://www. pharmacistsletter.com 35. Metabolite Database; MDL Inc. (2008). Retrieved from http://www.mdl.com/products/predictive/ metabolite/index.jsp 36. ADRIANA. Code; Molecular Networks (2008). Retrieved from http://www.molecular-networks.com 37. Mishra, N. K., Agarwal, S., & Raghava, G. P. (2010). Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule. BMC pharmacology, 10(1), 1-9. 38. Wishart DS, K. C., Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M. (2008). DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36, D901-D906. 39. CORINA. Retrieved from http://www.molecular-networks.com/products/corina 40. TSAR-3.3. Retrieved from http://accelrys.com/products/accord/desktop/tsar.html 41. ADEWorksModelBuilder. Retrieved from http://www.fqs.pl/Chemistry_Materials_Life_Science/products/admeworks_modelbuilder 42. Carbon‐Mangels, M., & Hutter, M. C. (2011). Selecting relevant descriptors for classification by bayesian estimates: a comparison with decision trees and support vector machines approaches for disparate data sets. Molecular informatics, 30(10), 885-895. 43. Duda, R. O. (2001). PE hart and DG Stork, pattern classification. Address: Wiley-Interscience. 44. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. Springer series in statistics. New York, NY, USA. 45. Rendic, S. (2002). Drug Metabol. 46. Yap, C. W., & Chen, Y. Z. (2005). Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. Journal of chemical information and modeling, 45(4), 982-992. 47. Manga, N., Duffy, J. C., Rowe, P. H., & Cronin, M. T. D. (2005). Structure-based methods for the prediction of the dominant P450 enzyme in human drug biotransformation: consideration of CYP3A4, CYP2C9, CYP2D6. SAR and QSAR in Environmental Research, 16(1-2), 43-61. 48. Lewis, D. F. (2000). On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics: towards the prediction of human p450 substrate specificity and metabolism. Biochemical pharmacology, 60(3), 293-306. 49. de Groot, M. J., Ackland, M. J., Horne, V. A., Alex, A. A., & Jones, B. C. (1999). Novel approach to predicting P450-mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6. Journal of medicinal chemistry, 42(9), 1515-1524. 50. de Groot, M. J., Ackland, M. J., Horne, V. A., Alex, A. A., & Jones, B. C. (1999). A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. Journal of medicinal chemistry, 42(20), 4062-4070. 51. G. Rauhut, A. A., J. Chandrasekhar, T. Steinke, W. Sauer, B. Beck, M. Hutter, P. Gedeck, T. Clark. (1997). VAMP, Version 6.5, Oxford Molecular Ltd. 52. Schneider, N., Jäckels, C., Andres, C., & Hutter, M. C. (2008). Gradual in silico filtering for druglike substances. Journal of chemical information and modeling, 48(3), 613-628. 53. Zhang, T., Dai, H., Liu, L. A., Lewis, D. F., & Wei, D. (2012). Classification models for predicting cytochrome P450 enzyme‐substrate selectivity. Molecular informatics, 31(1), 53-62. 54. Rendic, S. (2002). Summary of information on human CYP enzymes: human P450 metabolism data. Drug metabolism reviews, 34(1-2), 83-448. 55. Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of computational chemistry, 17(5‐6), 490-519. 56. Goswami, K., Park, Y., & Song, C. (2017). Impact of reviewer social interaction on online consumer review fraud detection. Journal of Big Data, 4(1), 1-19. 57. M. L. Zhang, Z. H. Z. (2005). Intell. Syst. Applic. IEEE transactions on pattern analysis and machine intelligence, 24. 58. Tian, S., Djoumbou-Feunang, Y., Greiner, R., & Wishart, D. S. (2018). CypReact: a software tool for in silico reactant prediction for human cytochrome P450 enzymes. Journal of chemical information and modeling, 58(6), 1282-1291. 59. Zaretzki, J., Rydberg, P., Bergeron, C., Bennett, K. P., Olsen, L., & Breneman, C. M. (2012). RS-Predictor models augmented with SMARTCyp reactivities: robust metabolic regioselectivity predictions for nine CYP isozymes. Journal of chemical information and modeling, 52(6), 1637-1659. 60. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N. (2018). HMDB4.0: The Human Metabolome Database for 2018. Nucleic acids research, 46, D608–D617. 61. KEGG Database. (2017). Retrieved from http://www.genome.jp/kegg/kegg1.html 62. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., & Wishart, D. S. (2014). DrugBank 4.0: shedding new light on drug metabolism. Nucleic acids research, 42(D1), D1091-D1097. 63. Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic acids research, 44(D1), D1202-D1213. 64. Willighagen, E. L., Mayfield, J. W., Alvarsson, J., Berg, A., Carlsson, L., Jeliazkova, N., & Steinbeck, C. (2017). The Chemistry Development Kit (CDK) v2. 0: atom typing, depiction, molecular formulas, and substructure searching. Journal of cheminformatics, 9(1), 1-19. 65. BIOVIA: The keys to understanding MDL keyset technology. (2017) Retrieved from http://accelrys.com/products/pdf/keys-to-keyset-technology.pdf 66. Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106. 67. Holmer, M., de Bruyn Kops, C., Stork, C., & Kirchmair, J. (2021). CYPstrate: A Set of Machine Learning Models for the Accurate Classification of Cytochrome P450 Enzyme Substrates and Non-Substrates. Molecules, 26(15), 4678. 68. Tyzack, J. D., Hunt, P. A., & Segall, M. D. (2016). Predicting regioselectivity and lability of cytochrome P450 metabolism using quantum mechanical simulations. Journal of Chemical Information and Modeling, 56(11), 2180-2193. 69. Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., & Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research, 46(D1), D1074-D1082. 70. Holmer, M., de Bruyn Kops, C., Stork, C., & Kirchmair, J. (2021). CYPstrate: A Set of Machine Learning Models for the Accurate Classification of Cytochrome P450 Enzyme Substrates and Non-Substrates. Molecules, 26(15), 4678. 71. Bento, A. P., Hersey, A., Félix, E., Landrum, G., Gaulton, A., Atkinson, F., & Leach, A. R. (2020). An open source chemical structure curation pipeline using RDKit. Journal of Cheminformatics, 12(1), 1-16. 72. Landrum, G. (2006). RDKit: Open-source cheminformatics. 73. Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., & Wishart, D. S. (2014). DrugBank 4.0: shedding new light on drug metabolism. Nucleic acids research, 42(D1), D1091-D1097. 74. Preissner, S., Kroll, K., Dunkel, M., Senger, C., Goldsobel, G., Kuzman, D., Guenther, S., Winnenburg, R., Schroeder, M., & Preissner, R. (2010). SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic acids research, 38(suppl_1), D237-D243. 75. Cytochrome P450 Knowledgebase. (2006). http://cpd.ibmh.msk.su/ 76. Horn, J. R., & Hansten, P. D. (2008, July). Get to know an enzyme: CYP2D6. Pharmacy Times. Retrieved from www.pharmacytimes.com/publications/issue/2008/2008-07/2008-07-8624 77. Flockhart, D. (2007). Drug interactions: Cytochrome P450 drug interaction table. Indiana University School of Medicine. Retrieved from https://drug-interactions.medicine.iu.edu. 78. Genelex Corporation. (2005). Physician Guidelines: Drugs Metabolized by Cytochrome P450's. Retrieved from http://ildcare.eu/Downloads/artseninfo/Drugs_metabolized_by_CYP450s.pdf 79. US Food and Drug Administration. (2020). Drug development and drug interactions: table of substrates, inhibitors and inducers. Retrieved from https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664.htm#table2-1 80. Mayo Clinic laboratories. (2019). Pharmacogenomic Associations Tables. Retrieved from https://www.mayocliniclabs.com/it-mmfiles/Pharmacogenomic_Associations_Tables.pdf 81. Yamashita, F., Feng, C., Yoshida, S., Itoh, T., & Hashida, M. (2011). Automated Information Extraction and Structure− Activity Relationship Analysis of Cytochrome P450 Substrates. Journal of chemical information and modeling, 51(2), 378-385. 82. Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., & Shoemaker, B. A. (2016). PubChem substance and compound databases. Nucleic acids research, 44(D1), D1202-D1213. 83. Modi, S., Li, J., Malcomber, S., Moore, C., Scott, A., White, A., & Carmichael, P. (2012). Integrated in silico approaches for the prediction of Ames test mutagenicity. Journal of computer-aided molecular design, 26(9), 1017-1033. 84. Pharmacist's Letter. (2016). Retrieved from https://pharmacist.therapeuticresearch.com/Content/Segments/PRL/2016/May/Cytochrome-P450-CYP-Drug-Interactions-9674 85. Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of chemical information and computer sciences, 28(1), 31-36. 86. Landrum, G. (2006). RDKit: Open-source cheminformatics. 87. Yap, C. W. (2011). PaDEL‐descriptor: An open-source software to calculate molecular descriptors and fingerprints. Journal of computational chemistry, 32(7), 1466-1474. 88. Karpov, P., Godin, G., & Tetko, I. V. (2020). Transformer-CNN: Swiss knife for QSAR modeling and interpretation. Journal of Cheminformatics, 12(1), 1-12. 89. Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., & Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints. Advances in neural information processing systems, 28. 90. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. 91. Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. Advances in neural information processing systems, 28. 92. Bjerrum, E. J. (2017). SMILES enumeration as data augmentation for neural network modeling of molecules. arXiv preprint arXiv:1703.07076. 93. Ojala, M., & Garriga, G. C. (2010). Permutation tests for studying classifier performance. Journal of machine learning research, 11(6). 94. Bergstra, J., Yamins, D., & Cox, D. (2013, February). Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. International conference on machine learning (pp. 115-123). PMLR. 95. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830. 96. Chen, J. H., & Tseng, Y. J. (2022). A general optimization protocol for molecular property prediction using a deep learning network. Briefings in Bioinformatics, 23(1), bbab367. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84449 | - |
| dc.description.abstract | 細胞色素CYP450的解毒能力對於調節我們體內中的藥物或有害化合物起著至關重要的作用。 其中,CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP2E1 和 CYP3A4 是負責 90% 以上藥物代謝的主要酵素。CYP450對於我們體內藥物的生物利用度有著顯著影響,而這也和藥理功效相關。因此,預測CYP450 介導的小分子代謝能加速配體的篩選過程並且對於藥物開發的早期階段至關重要。所有相關研究中用於預測CYP450介導代謝的QSAR模型所使用的數據集仍然不足且雜亂。此外,由於數據集中資料的有限,這些模型的表現也還不夠好或不適用。因此,本研究中我們系統性的評估了多種機器學習和深度學習方法,並且使用了多種優化方式,最後為六種重要的 CYP450 酵素構建了一組穩健的預測模型。此外,我們從所有可用的資料來源中蒐集了所有和CYP450介導代謝作用的化合物,經過一系列的前處理和人工驗證方法,最後提供一組最全面、高效且最新的化合物數據集。結果表明,經過我們所整理的數據集訓練的預測模型和其他研究的訓練集資料相比表現得更好,證明我們所使用的清理及驗證方式是有效的。另外,經過對各種演算方法的系統評估,圖形卷積網絡(GCN)所構建的預測模型性能最高,MCCs落在0.50(CYP2C19)和0.72(CYP1A2)之間。這些成果有助於其他CYP450交互作用的預測模型開發,並能支持藥物開發過程中的化合物篩選。 | zh_TW |
| dc.description.abstract | The detoxification ability of cytochrome P450(CYP450) enzymes plays an essential role in regulating the existence of drugs or harmful compounds in our bodies. CYP1A2, CYP2C9, 2C19, CYP2D6, CYP2E1, and CYP3A4 are the main enzymes in charge of over 90 percent of drug metabolism. Consequently, they significantly affect the bioavailability of drugs in our body, which are related to pharmacological efficacy. Therefore, predicting the property of small molecules related to CYP450-mediated metabolism is essential for the early stage of drug discovery by accelerating the ligand screening process. Datasets used in QSAR models for CYP450 substrate prediction from all related studies are still insufficient and inconsistent. Furthermore, the performance of these models is also insufficient or non-applicable due to the limited dataset. In this case, we construct a set of robust predicting models for the six essential CYP450 enzymes by evaluating various machine learning and deep learning approaches with practical optimization techniques. In addition, we presented the most comprehensive and high-quality datasets of compounds with CYP450 enzyme interaction from all available resources. The high quality of the dataset proceeds through various artificial curation means. The results show that our highly curated dataset possesses competitive capacity on model training for CYP450 substrate prediction. After a systematic evaluation of various approaches, predicting models constructed by Graph Convolution Network (GCN) algorithm reached the highest performance, with Matthews correlation coefficients (MCCs) between 0.50(CYP2C19) and 0.72(CYP1A2). We hope these achievements are helpful for other in silico approaches on CYP450 mediated metabolism and support the compound screening section during drug development. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:11:58Z (GMT). No. of bitstreams: 1 U0001-2109202210562400.pdf: 3949814 bytes, checksum: 2aacbc841c3175d35e3881a3335b5d16 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Contents iii Abstract vi List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Algorithms for QSAR model construction 2 1.3 Reviews of the related studies 5 1.4 Thesis Motivation and Novelty in this Study 12 Chapter 2 Materials and Methods 14 2.1 Dataset preparation 14 2.1.1 Data collection 14 2.1.2 Data curation 16 2.2 QSAR model construction and feature extraction 19 2.2.1 Construction of traditional machine learning models 19 2.2.2 Construction of deep learning models 20 2.3 Model Optimization 21 2.3.1 Data augmentation through SMILES enumeration 21 2.3.2 Data splitting for Cross-validation and Hyperparameter Optimization 21 2.3.3 Algorithm for hyperparameter tuning 23 2.3.4 Epoch optimization for GCN models 23 2.4 Model evaluation and Comparison 24 2.4.1 Performance metrics 24 2.4.2 External testing sets for model evaluation 25 Chapter 3 Result 27 3.1 GCN-based classifiers for CYP450 metabolism 27 3.1.1 Evaluation of our curated dataset 29 3.2 Comparisons of other model algorithms on prediction of CYP-mediated metabolism 30 3.2.1 Comparison of the neural network-based classifiers 30 3.2.2 Comparison of the traditional machine learning classifiers 32 3.3 Comparison of our best performing models to the CYPstrate models 35 Chapter 4 Discussion 38 4.1 Comprehensively-Curated Dataset 38 4.2 Advantages of the GCN approaches to CYP450 modeling 39 4.3 Compare with related work 39 4.4 Capacity of CYP450 interaction prediction on steroids 41 4.5 Limitations of this study 42 Chapter 5 Conclusion and Future Work 44 5.1 Conclusion 44 5.2 Future Work 45 Reference 46 | |
| dc.language.iso | en | |
| dc.subject | QSAR模型 | zh_TW |
| dc.subject | 細胞色素P450介導代謝 | zh_TW |
| dc.subject | 全面性數據集 | zh_TW |
| dc.subject | 圖形卷積網絡 | zh_TW |
| dc.subject | 機器學習的系統評估 | zh_TW |
| dc.subject | Systematic evaluation of ML methods | en |
| dc.subject | CYP450-mediated | en |
| dc.subject | Comprehensively-Curated Dataset | en |
| dc.subject | QSAR model | en |
| dc.subject | Graph Convolution Network (GCN) | en |
| dc.title | 用於預測細胞色素P450介導代謝的全面性數據集:機器學習和深度學習的系統評估 | zh_TW |
| dc.title | A Comprehensively-Curated Dataset for Prediction of Cytochrome P450 Isoforms Mediated Metabolism: A Systematic Evaluation of Machine Learning and Deep Learning Methods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇柏翰(Bo-Han Su),杜羿樞(Yi-Shu Tu) | |
| dc.subject.keyword | 細胞色素P450介導代謝,全面性數據集,QSAR模型,圖形卷積網絡,機器學習的系統評估, | zh_TW |
| dc.subject.keyword | CYP450-mediated,Comprehensively-Curated Dataset,QSAR model,Graph Convolution Network (GCN),Systematic evaluation of ML methods, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202203704 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-27 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2109202210562400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
