Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84444
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林亮音(Liang-In Lin)
dc.contributor.authorChun-Hao Liuen
dc.contributor.author劉君豪zh_TW
dc.date.accessioned2023-03-19T22:11:48Z-
dc.date.copyright2022-10-14
dc.date.issued2022
dc.date.submitted2022-09-24
dc.identifier.citation台灣質譜學會. 2016. 第2章游離法. p.9-80.質譜分析技術原理與應用. 全華圖書. 台灣質譜學會. 2016. 第5章質譜與分離技術的結合. p.175-200.質譜分析技術原理與應用. 全華圖書. 台灣質譜學會. 2016. 第4章串聯質譜分析. p.133-174.質譜分析技術原理與應用. 全華圖書. 台灣質譜學會. 2016. 第8章定量分析. p.249-264.質譜分析技術原理與應用. 全華圖書. 行政院農業委員會. 2017. 雞蛋驗出芬普尼事件. 網頁路徑:https://www.coa.gov.tw/theme_list.php?theme=news&sub_theme=fentoni. 行政院農業委員會. 2022. 農業生產(二)畜牧生產. 農業統計年報. 行政院農業委員會動植物防疫檢疫局. 2022. 准用藥品監測資訊. 網頁路徑:行政院農業委員會動植物防疫檢疫局(https://www.baphiq.gov.tw)>主要業務>動物用藥與農藥>動藥相關資訊>畜牧場用藥監測資訊>准用藥品監測資訊. 行政院農業委員會動植物防疫檢疫局. 2022. 造成畜禽水產品殘留藥物之原因. 網頁路徑:動物用藥資訊服務網(https://amdrug2.baphiq.gov.tw/)>常見問題>造成畜禽水產品殘留藥物之原因. 吳永寧、邵兵. 2007. 獸藥殘留檢測與監控技術. 化學工業出版社. 李仁傑、王培成、李茂榮. 2011. 新前處理技術-QuEChERS之簡介. 科儀新知. 33, 67-74. 施明智、蕭思玉、蔡敏郎. 2019. 食品加工學. 五南圖書出版股份有限公司. 衛生福利部食品藥物管理署. 2022. 食品篩檢方法公開標準作業流程. 衛生福利部食品藥物管理署. 2022. 檢驗機構實驗室品質系統基本規範. 許春向. 2009. 第六章樣品預處理. p.90-130. 現代衛生化學(第二版). 人民衛生出版社. 陳家揚. 2007. 液相層析/質譜儀的基質效應與因應之道. 化學. 65, 151-155. 陳啟民、黃淑鳳、林炎英、林宜蓉、陳姿伶. 2017. 105年度市售畜禽水產品中動物用藥殘留監測. 食品藥物研究年報. 8, 54-62. 傅曉萍、陳啟民、黃淑鳳、林炎英、林宜蓉、陳姿伶. 2018. 106年度市售禽畜水產品中動物用藥殘留監測. 食品藥物研究年報. 9, 115-124. 傅曉萍、黃竹珈、林宜蓉、陳姿伶. 2019. 107年度市售禽畜水產品中動物用藥殘留監測. 食品藥物研究年報. 10, 50-57. 傅曉萍、黃竹珈、陳信志、林炎英、林宜蓉、蔡淑貞、陳姿伶. 2020. 108年度市售禽畜水產品中動物用藥殘留監測. 食品藥物研究年報. 11, 91-99. 熊同銘. 2012. 第八章層析分析技術. p.289-364. 環境分析-原理與應用. 中華民國環境分析學會. 劉朝鑫、許振忠、張聰洲、林志勳. 2009. 家禽常用動物用藥品使用手冊. 行政院農業委員會動植物防疫檢疫局. 劉朝鑫、許振忠、張聰洲、林志勳. 2012. 產蛋雞飼養管理與安全用藥手冊. 行政院農業委員會動植物防疫檢疫局. 劉朝鑫、許振忠、張聰洲、林志勳. 2014. 肉用雞飼養管理與安全用藥手冊. 行政院農業委員會動植物防疫檢疫局. 劉朝鑫、謝文逸、許晉賓、林志勳、余碧. 2015. 豬隻飼養管理與安全用藥手冊. 行政院農業委員會動植物防疫檢疫局. 劉朝鑫、陳啓銘、張聰洲、張文發、張紹光、郭忠政、林志勳、朱純燕. 2008. 豬常用動物用藥品使用手冊. 行政院農業委員會動植物防疫檢疫局. 戴惠玉、傅曉萍、黃竹珈、陳信志、林炎英、林宜蓉、陳姿伶. 2021. 109年度市售禽畜水產品中動物用藥殘留監測. 食品藥物研究年報. 12, 62-71. Amirahmadi, M., H. Yazdanpanah, S. Shoeibi, M. Pirali-Hamedani, M. Ostad Gholami, M.F. Mohseninia, and F. Kobarfard. 2013. Simultaneous determination of 17 pesticide residues in rice by GC/MS using a direct sample introduction procedure and spiked calibration curves. Iran. J. Pharm. Res. 12, 295-302. https://doi.org/10.22037/IJPR.2013.1303. Al-Mazeedi, H.M., A.B. Abbas, H.F. Alomirah, W.Y. Al-Jouhar, S.A. Al-Mufty, M.M. Ezzelregal, and R.A. Al-Owaish. 2010. Screening for tetracycline residues in food products of animal origin in the State of Kuwait using Charm II radio-immunoassay and LC/MS/MS methods. Food Addit. Contam. Part A. 27, 291-301. https://doi.org/10.1080/19440040903331027. Alechaga, É., E. Moyano, and M.T. Galceran. 2012. Ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of phenicol drugs and florfenicol-amine in foods. Analyst. 137, 2486-2494. https://doi.org/10.1039/C2AN16052H. Anastassiades, M., S.J. Lehotay, D. Stajnbaher, and F.J. Schenck. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and 'dispersive solid-phase extraction' for the determination of pesticide residues in produce. J. AOAC Int. 86, 412-431. https://doi.org/10.1093/jaoac/86.2.412. Atta, A.H., S.A. Atta, S.M. Nasr, and S.M. Mouneir. 2022. Current perspective on veterinary drug and chemical residues in food of animal origin. Environ. Sci. Pollut. Res. 29, 15282-15302. https://doi.org/10.1007/s11356-021-18239-y. Aurélien, D., K. Fan, M. M. Tien, M. Savoy, A. Tarres, D. Fuger, A. Goyon, T. Bessaire, and P. Mottier. 2018. Determination of 105 antibiotic, anti-inflammatory, antiparasitic agents and tranquilizers by LC-MS/MS based on an acidic QuEChERS-like extraction. Food Addit Contam. 35, 647-661. https://doi.org/10.1080/19440049.2018.1429677 Barker, S.A., A.R. Long, and C.R. Short. 1989. Isolation of drug residues from tissues by solid phase dispersion. J. Chromatogr. A. 475, 353-361. https://doi.org/10.1016/S0021-9673(01)89689-8. Bertini, S., S. Feirrero, and P. Berny. 2003. A new improved high performance thin layer chromatography (HPTLC) method for the detection of ionophore antibiotics in feeds and animal tissues. J. Liq. Chromatogr. Relat. Technol. 26, 147-156. https://doi.org/10.1081/JLC-120017159. Betts, T.A. and J.A. Palkendo. 2018. Teaching undergraduates LC-MS/MS theory and operation via multiple reaction monitoring (MRM) method development. J. Chem. Educ. 95, 1035-1039. https://doi.org/10.1021/acs.jchemed.7b00914. Chang, S.H., Y.H. Lai, C.N. Huang, G.J. Peng, C.D. Liao, Y.M. Kao, S.H. Tseng, and D.Y. Wang. 2019. Multi-residue analysis using liquid chromatography tandem mass spectrometry for detection of 20 coccidiostats in poultry, livestock, and aquatic tissues. J. Food Drug Anal. 27, 703-716. https://doi.org/10.1016/j.jfda.2019.02.004. Cámara, C. Sample preparation for speciation. 2005. Anal. Bioanal. Chem. 381, 277-278. https://doi.org/10.1007/s00216-004-2982-6. Colombo, R. and A. Papetti. 2019. Advances in the analysis of veterinary drug residues in food matrices by capillary electrophoresis techniques. Molecules. 24, 4617. https://doi.org/10.3390/molecules24244617. Cuadros-Rodríguez, L., M.G. Bagur-González, M. Sánchez-Viñas, A. González-Casado, and A.M. Gómez-Sáez. 2007. Principles of analytical calibration/quantification for the separation sciences. J. Chromatogr. A. 1158, 33-46. https://doi.org/10.1016/j.chroma.2007.03.030. Dawadi, S., R. Thapa, B. Modi, S. Bhandari, A.P. Timilsina, R.P. Yadav, B. Aryal, S. Gautam, P. Sharma, B.B. Thapa, N. Aryal, S. Aryal, B.P. Regmi, and N. Parajuli. 2021. Technological advancements for the detection of antibiotics in food products. Processes. 9, 1500. https://doi.org/10.3390/pr9091500. DG SANTE, 2021. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed SANTE 11312/2021. EU Reference Laboratories for Residues of Pesticides. Domon, B. and R. Aebersold. 2006. Mass spectrometry and protein analysis. Science. 312, 212-217. https://doi.org/10.1126/science.1124619 Ellefson, W.C. 2017. Fat Analysis. p.299-314. Food Analysis. Springer Cham. https://doi.org/10.1007/978-3-319-45776-5. EU, 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. 2002. EU, COMMISSION REGULATION (EU) No 37/2010 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. 2010. EU, REGULATION (EU) 2017/625 official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products. 2017. EU, REGULATION (EU) 2021/808 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling. 2021. Food and Agriculture Organization (FAO). 2021. Meat and meat products. p. 45-51. Food Outlook:Biannual report on global food markets. Freitas, S.K.B., A.P.S. Paim, and, P.T. de Souza e Silva. 2013. Development of a LC-IT-TOF MS Procedure to Quantify Veterinary Drug Residues in Milk Employing a QuEChERS Approach. Food Anal. Methods 7, 39–46 (2014). https://doi.org/10.1007/s12161-013-9595-7 García-Campaña, A.M., L. Gámiz-Gracia, F.J. Lara, M. del Olmo Iruela, and C. Cruces-Blanco. 2009. Applications of capillary electrophoresis to the determination of antibiotics in food and environmental samples. Anal. Bioanal. Chem. 395, 967-986. https://doi.org/10.1007/s00216-009-2867-9. Islas, G., I.S. Ibarra, P. Hernandez, J.M. Miranda, and A. Cepeda. 2017. Dispersive solid phase extraction for the analysis of veterinary drugs applied to food samples: A review. Int. J. Anal. Chem. 2017, 8215271. https://doi.org/10.1155/2017/8215271. Jadhav, M.R., A. Pudale, P. Raut, S. Utture, T.P. Ahammed Shabeer, and K. Banerjee. 2019. A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC-MS/MS. Food Chem. 272, 292-305. https://doi.org/10.1016/j.foodchem.2018.08.033. Kang, J., C. L. Fan, Q. Y. Chang, M. N. Bu, Z. Y. Zhao, W. Wang, and G. F. Pang. 2014. Simultaneous determination of multi-class veterinary drug residues in different muscle tissues by modified QuEChERS combined with HPLC-MS/MS. Anal. Methods. 16, 6285-6293. http://dx.doi.org/10.1039/C4AY00589A Kanu, A.B. 2021. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J. Chromatogr. A. 1654, 462444. https://doi.org/10.1016/j.chroma.2021.462444. Kuselman, I. and F. Pennecchi. 2016. Human errors in a routine analytical laboratory-Classification, modeling and quantification: Overview of the IUPAC/CITAC guide. Chemistry International. 38, 27-30. https://doi.org/10.1515/ci-2016-0520. Kuselman, I., F. Pennecchi, A. Fajgelj, and Y. Karpov. 2013. Human errors and reliability of test results in analytical chemistry. Accredit. Qual. Assur. 18, 3-9. https://doi.org/10.1007/s00769-012-0934-y. Landis, J.R. and G.G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics. 33, 159-174. https://doi.org/10.2307/2529310. Lee, H.C., C.M. Chen, J.T. Wei, and H.Y. Chiu. 2018. Analysis of veterinary drug residue monitoring results for commercial livestock products in Taiwan between 2011 and 2015. J. Food Drug Anal. 26, 565-571. https://doi.org/10.1016/j.jfda.2017.06.008. Lee, H.S., N.Y. Kim, Y. Song, G.Y. Oh, D.W. Jung, D.H. Jeong, H.S. Kang, H.S. Oh, Y. Park, J.S. Hong, and Y.E. Koo. 2019. Assessment of human estrogen receptor agonistic/antagonistic effects of veterinary drugs used for livestock and farmed fish by OECD in vitro stably transfected transcriptional activation assays. Toxicol. In Vitro. 58, 256-263. https://doi.org/10.1016/j.tiv.2019.02.003. Lehotay, S.J., A. de Kok, M. Hiemstra, and P. Van Bodegraven. 2005. Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J. AOAC Int. 88, 595-614. https://doi.org/10.1093/jaoac/88.2.595. Lehotay, S.J., K. Mastovská, and S.J. Yun. 2005. Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes. J. AOAC Int. 88, 630-638. https://doi.org/10.1093/jaoac/88.2.630. Li, S., Q. Zhang, M. Chen, X. Zhang, and P. Liu. 2020. Determination of veterinary drug residues in food of animal origin: Sample preparation methods and analytical techniques. J. Liq. Chromatogr. Relat. Technol. 43, 701-724. https://doi.org/10.1080/10826076.2020.1798247. Lin, Y.P., Y.L. Lee, C.Y. Hung, W.J. Huang, and S.C. Lin. 2017. Determination of multiresidue analysis of β-agonists in muscle and viscera using liquid chromatograph/tandem mass spectrometry with Quick, Easy, Cheap, Effective, Rugged, and Safe methodologies. J. Food Drug Anal. 25, 275-284. https://doi.org/10.1016/j.jfda.2016.06.010. Lozano, A., Ł. Rajski, S. Uclés, N. Belmonte-Valles, M. Mezcua, and A.R. Fernández-Alba. 2014. Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry. Talanta. 118, 68-83. https://doi.org/10.1016/j.talanta.2013.09.053. Majors, R. E. 2013. Chapter 1 Introduction. p.1-8. Sample preparation fundamentals for chromatography. Agilent Technologies. 3989-6969EN. Martins, M.L., T.M. Rizzetti, M. Kemmerich, N. Saibt, O.D. Prestes, M.B. Adaime, and R. Zanella. 2016. Dilution standard addition calibration: A practical calibration strategy for multiresidue organic compounds determination. J. Chromatogr. A. 1460, 84-91. https://doi.org/10.1016/j.chroma.2016.07.013. Masiá, A., M.M. Suarez-Varela, A. Llopis-Gonzalez, and Y. Picó. 2016. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal. Chim. Acta. 936, 40-61. https://doi.org/10.1016/j.aca.2016.07.023. Mesa-Pineda, C., J.L. Navarro-Ruíz, S. López-Osorio, J.J. Chaparro-Gutiérrez, and L.M. Gómez-Osorio. 2021. Chicken coccidiosis: from the parasite lifecycle to control of the disease. Front. Vet. Sci. 8, 787653. https://doi.org/10.3389/fvets.2021.787653. Mukota, A.K., M.F.K. Gondam, J.J.T. Tsafack, J. Sasanya, W. Reybroeck, M. Ntale, S.A. Nyanzi, and E. Tebandeke. 2020. Primary validation of Charm II tests for the detection of antimicrobial residues in a range of aquaculture fish. BMC Chem. 14, 32-32. https://doi.org/10.21203/rs.2.19701/v2. Organisation for Economic Cooperation and Development/Food and Agriculture Organization (OECD/FAO). 2021. Chapter 6 meat. p. 163-177.OECD-FAO Agricultural Outlook 2021-2030. Patel, T., T. Marmulak, R. Gehring, M. Pitesky, M.O. Clapham, and L.A. Tell. 2018. Drug residues in poultry meat: A literature review of commonly used veterinary antibacterials and anthelmintics used in poultry. J. Vet. Pharmacol. Ther. 41, 761-789. https://doi.org/10.1111/jvp.12700. Perestrelo, R., P. Silva, P. Porto-Figueira, J.A.M. Pereira, C. Silva, S. Medina, and J.S. Camara. 2019. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta. 1070, 1-28. https://doi.org/10.1016/j.aca.2019.02.036. Picó, Y. 2012. 3.28-Recent advances in sample preparation for pesticide analysis. p. 569-590. Comprehensive sampling and sample preparation. Academic Press:Oxford. Quang Hoang Hanh, L., T. Nguyen Ngoc Chau, N. Thi Cam Tuyen, N. Huong Giang, L. Kien Trieu, P. Thi Anh, and C. Pham Ngoc Son. 2022. Comparison and applicability of Agilent EMR-Lipid and Captiva EMR-Lipid Sorbents in QuEChERS method for food analysis. Vietnam J. Sci. Technol. 62, 19-25. https://doi.org/10.31276/VJSTE.62(3).19-25. Serrano, M.J., L. Mata, D. García-Gonzalo, A. Antón, P. Razquin, S. Condón, and R. Pagán. 2021. Optimization and validation of a new microbial inhibition test for the detection of antimicrobial residues in living animals intended for human consumption. Foods. 10, 1897. https://doi.org/10.3390/foods10081897. Shaeer, K.M., E.B. Chahine, S. Varghese Gupta, and J.C. Cho. 2019. Macrolide allergic reactions. Pharmacy (Basel). 7, 135. https://doi.org/10.3390/pharmacy7030135. Socas-Rodríguez, B., A.V. Herrera-Herrera, M. Asensio-Ramos, and J. Hernández-Borges. 2015. Chapter 6 Dispersive solid-phase extraction, in analytical separation science. p.1525-1570. Wiley online library. https://doi.org/10.1002/9783527678129.assep056. Solensky, R. 2003. Hypersensitivity reactions to beta-lactam antibiotics. Clin. Rev. Allergy. Immunol. 24, 201-219. https://doi.org/10.1385/CRIAI:24:3:201. Sun, J. L., C. Liu, and Y. Song. 2012. Screening 36 veterinary drugs in animal origin food by LC/MS/MS combined with modified QuEChERS method. Agilent Application Note. 5991-0013EN. Talib, N.A.A., F. Salam, and Y. Sulaiman. 2018. Development of highly sensitive immunosensor for clenbuterol detection by using poly(3,4-ethylenedioxythiophene)/graphene oxide modified screen-printed carbon electrode. Sensors. 18, 4324. https://doi.org/10.3390/s18124324. Tribalat, L., O. Paisse, G. Dessalces, and M.F. Grenier-Loustalot. 2006. Advantages of LC-MS-MS compared to LC-MS for the determination of nitrofuran residues in honey. Anal. Bioanal. Chem. 386, 2161-2168. https://doi.org/10.1007/s00216-006-0878-3. Trufelli, H., P. Palma, G. Famiglini, and A. Cappiello. 2011. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom. Rev. 30, 491-509. https://doi.org/10.1002/mas.20298. Tu, X. and W. Chen. 2018. A review on the recent progress in matrix solid phase dispersion. Molecules. 23, 2767. https://doi.org/10.3390/molecules23112767. Wang, B., K. Xie, and K. Lee. 2021. Veterinary drug residues in animal-derived foods: Sample preparation and analytical methods. Foods. 10, 555. https://doi.org/10.3390/foods10030555. Wang, J., Q. Hu, P. Li, Y. Fang, W. Yang, N. Ma, and F. Pei. 2019. Comparison of three different lipid removal cleanup techniques prior to the analysis of sulfonamide drug residues in porcine tissues. Food Sci. Nutr. 7, 3006-3016. https://doi.org/10.1002/fsn3.1158. Wu, Q., Q. Zhu, Y. Liu, M.A.B. Shabbir, A. Sattar, D. Peng, Y. Tao, D. Chen, Y. Wang, and Z. Yuan. 2019. A microbiological inhibition method for the rapid, broad-spectrum, and high-throughput screening of 34 antibiotic residues in milk. J. Dairy Sci. 102, 10825-10837. https://doi.org/10.3168/jds.2019-16480. Xu, M.L., Y. Gao, X. Wang, X.X. Han, and B. Zhao. 2021. Comprehensive strategy for sample preparation for the analysis of food contaminants and residues by GC-MS/MS: A review of recent research trends. Foods. 10, 2473. https://doi.org/10.3390/foods10102473. Zhao, L. and D. Lucas. 2015. Multiresidue analysis of veterinary drugs in bovine liver by LC-MS/MS. Agilent Application Note. 5991-6096EN.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84444-
dc.description.abstract在大量飼養家禽下,業者需使用動物用藥治療及預防禽類疾病並提升其產量。為確保食品安全,此類產品上市前後分別由農政單位與衛政單位抽樣監控。動物用藥種類各有不同特性,對應之檢驗方法亦多元,故需花費較多人力與物力來執行檢驗。本研究建立一種檢驗禽類產品中磺胺劑類、喹諾酮類抗生素、巨環內酯類抗生素及其代謝物、氯黴素類抗生素、抗原蟲劑類及離子型抗球蟲藥類之方法,並執行其確效相關工作。前處理過程使用Enhanced Matrix Removal (EMR-lipid)替代固相萃取法與液-液萃取法,再以液相層析串聯式質譜儀檢驗並以基質添加檢量線法定量。實驗結果顯示於79品項藥劑中salinomycin及narasin在EMR-lipid處理之檢液混合後出現明顯降解情形;florfenicol amine因在C18管柱中不易滯留,無法有良好的線性關係,故本研究並未整併此3品項。標準品穩定性測試結果顯示,在10oC溫控的環境下,溶解於溶劑部分品項於第54小時檢驗訊號面積與第0小時起始訊號面積相比已低於50%,主要為喹諾酮類抗生素。若測試藥品添加含有經EMR-lipid處理之禽肉及蛋基質檢液,則出現磺胺劑類降解而喹諾酮類抗生素反而穩定現象。使用禽肉、蛋及內臟基質之添加試驗結果顯示,添加10 ppb標準品之禽肉類、蛋類及內臟類的回收率分別為65%-116%、76%-144%及69%-163%;添加25 ppb者分別為87%-118%、70%-127%及60%-133%;而添加50 ppb者則分別為67%-105%、82%-133%及60%-127%。10 ppb添加試驗之相對標準偏差(RSD%)於禽肉類、蛋類及內臟類分別為2%-26%、1%-30%及0%-40%;添加25 ppb者分別為2%-25%、1%-16%及3%-36%;而添加50 ppb者則分別為3%-23%、2%-37%及1%-30%。本研究方法所獲得之定量極限與公告檢驗方法相比,erythromycin, clindamycin, lincomycin及metronidazole (內臟基質)等4品項未能符合要求,其餘72品項皆可符合要求。最後本研究實際測試2件真實樣品,此結果與公告檢驗方法之結果相符,故本方法後續可進行作為篩檢用途之公告檢驗方法可行性評估。zh_TW
dc.description.abstractUnder the large-scale breeding of poultry, the operators need to use animal medicines to treat and prevent poultry diseases to increase their production. In order to ensure food safety, such products are sampled and monitored by Council of Agriculture and Taiwan Food and Drug Administration, respectively, before and after they are put on the market. Since the types of veterinary drugs have different characteristics and the corresponding inspection methods are also varied, it takes a lot of manpower and material resources to carry out these tests. In this study, a multi-residues testing method for poultry products has been developed and validated, including sulfonamides, quinolone antibiotics, macrolide antibiotics, antiprotozoal drugs, chloramphenicol antibiotics, and ionophore coccidiostats. In the pretreatment process, a commercial kit-Enhanced Matrix Removal-lipid (EMR lipid) was used to replace the traditional solid-phase extraction and liquid-liquid extraction, and subsequently, liquid chromatography tandem mass spectrometer was used to detect multiple animal drug residues, and quantified by procedural standard calibration. The experimental results showed that salinomycin and narasin degraded obviously in the EMR-lipid treated solution, and the poor repeatability and linearity of the calibration curve of florfenicol amine due to the poor retention ability in the C18 column. Therefore, the three drugs could not be integrated into the testing method in this study. The stability test of standards showed that the peak area of 11 quinolone drugs decreased about 50% after 54 hours in the pure solvent solution under the temperature-controlled environment of 10°C. The sulfonamides decreased significantly and the quinolone drugs were stable in the EMR-lipid treated chicken and the egg-matrix test solution. The recovery rates of 10 μg/kg fortified tests were 65%-116%, 76%-144%, and 69%-163% for chicken, egg, and viscera, respectively; those of 25 μg/kg fortified tests were 87%-118%, 70%-127%, and 60%-133%, respectively; and those of 50 μg/kg fortified tests were 67%-105%, 82%-133% and 60%-127% for chicken, egg, and viscera, respectively. The relative standard deviation (RSD%) of 10 μg/kg fortified tests were 2%-26%, 1%-30%, and 0%-40% for chicken, egg, and viscera, respectively; those of 25 μg/kg fortified tests were 2%-25%, 1%-16%, and 3%-36%, and those of 50 μg/kg fortified tests were 3%-23%, 2%-37% and 1%-30%, respectively. The limit of detection of this method was then compared with those of the official method. Four veterinary drugs including erythromycin, clindamycin, lincomycin and metronidazole (in visceral matrix) failed to meet the requirements, and the other 72 veterinary drugs could meet the requirements. In this study, two real samples were tested, and the results were consistent with those of the official methods. The feasibility of using the method developed in this study as an alternative for the official methods can be evaluated in the future.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:11:48Z (GMT). No. of bitstreams: 1
U0001-1609202211315800.pdf: 6396168 bytes, checksum: 0939277222d38ced27636347dca6a9c6 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 謝辭 中文摘要 i Abstract ii 目錄 iv 第1章 緒論 1 1.1 簡介 1 1.1.1 全球肉類市場消費分析 1 1.1.2 台灣肉類產量 1 1.1.3 食品安全事件 2 1.2 現況分析 2 1.3 動物用藥概念 3 1.4 常見動物用藥種類 4 1.4.1 抗微生物類藥物 4 1.4.1.1 磺胺劑(sulfonamide) 4 1.4.1.2 喹諾酮類抗生素(quinolone antibiotics) 4 1.4.1.3 氯黴素類抗生素(chloramphenicols) 5 1.4.1.4 巨環內酯類抗生素(macrolides) 5 1.4.2 抗原蟲劑類(antiprotozoal drugs) 5 1.4.3 離子型抗球蟲藥類(ionophore coccidiostats) 5 1.5 動物用藥殘留及其危害 6 1.5.1 動物用藥殘留(veterinary drug residue)定義 6 1.5.2 動物用藥殘留產生的原因 6 1.5.3 動物用藥殘留產生的危害 6 1.6 動物用藥殘留容許量及法規要求 7 1.7 台灣與國際間對動物用藥殘留標準與檢驗方法相關規定 7 第2章 動物用藥檢驗樣品前處理方法及檢驗方法 9 2.1 樣品前處理概念 9 2.2 液-液萃取法 9 2.3 固相萃取法 10 2.3.1 基質固相分散萃取法(matrix solid-phase dispersion, MSPD) 11 2.4 分散式固相萃取法(dispersive solid-phase extraction, DSPE) 11 2.4.1 QuEChERS技術 11 2.4.2 Enhanced Matrix Removal lipid (EMR-lipid) 12 2.5 動物用藥殘留分析檢驗方法 13 2.5.1 微生物抑制檢驗法(microbial inhibition test) 13 2.5.2 Charm II系統 13 2.5.3 免疫檢驗法與酶聯免疫吸附法(ELISA) 13 2.5.4 氣相層析法(gas chromatography, GC)與氣相層析質譜法(gas chromatography-mass spectrometry, GC-MS) 14 2.5.5 高效薄層層析法(high-performance thin-layer chromatography, HPTLC) 14 2.5.6 毛細管電泳法(capillary electrophoresis, CE) 14 2.5.7 高效液相層析法(high performance liquid chromatography, HPLC) 15 2.5.8 液相層析-質譜聯用技術(liquid chromatography-mass spectrometry, LC-MS) 15 2.5.9 液相層析-串聯質譜分析技術 15 2.6 基質效應 16 2.7 對動物用藥殘留檢驗結果之確認要求 17 第3章 現行動物用藥檢驗樣品之前處理方法及檢驗方法與研究目的 19 第4章 材料與方法 21 4.1 裝置 21 4.2 試藥 21 4.3 器具及材料 22 4.4 試劑之配製 22 4.5 標準溶液之配製 22 4.6 Bond Elut EMR-lipid前處理之檢液製作方式 23 4.7 儀器分析條件 23 4.8 基質添加檢量線及基質匹配檢量線製作方式 24 4.9 鑑別試驗及含量測定 24 4.10 標準品穩定性測試 25 4.11 以添加試驗結果評估基質添加檢量線及基質匹配檢量線 25 4.12 蛋、禽肉及禽內臟之添加試驗 25 4.13 EMR-lipid與2種modified AOAC QuEChERS前處理之檢驗結果比較 25 4.13.1 EMR-lipid之執行方式 26 4.13.2 Modified AOAC QuEChERS方法一(Q方法一) 26 4.13.3 Modified AOAC QuEChERS方法二(Q方法二) 26 4.14 評估EMR-lipid對公告檢驗方法要求定量極限之符合性 26 4.15 真實樣品檢驗評估 27 第5章 結果 29 5.1 標準溶液配製方式 29 5.1.1 儲備標準溶液配製方式 29 5.1.2 工作標準溶液配製 29 5.2 質譜儀之最適分析條件 30 5.3 不同基質背景下標準品的穩定性測試 30 5.4 基質添加檢量線與基質匹配檢量線之效能評估 33 5.4.1 使用基質添加檢量線計算添加樣品之回收率 34 5.4.2 使用基質匹配檢量線計算添加樣品之回收率 35 5.4.3 添加樣品回收率之相對標準偏差 35 5.4.4 後續研究決定使用基質添加檢量線定量之原因 36 5.5 評估不同種類基質(蛋、禽肉及內臟)添加回收率 36 5.5.1 於禽肉類基質樣品之添加回收率及其相對標準偏差 36 5.5.2 於蛋類基質樣品之添加回收率及其相對標準偏差 37 5.5.3 於內臟基質樣品之添加回收率及其相對標準偏差 37 5.6 本研究比較與2種modified AOAC QuEChERS之前處理方法之比對結果 38 5.6.1 檢量線之相關係數r 38 5.6.2 5 ppb添加樣品中各品項定量離子訊噪比符合率 39 5.7 與公告檢驗方法要求定量極限之比較 40 5.8 使用EMR-lipid方法執行以公告檢驗方法檢出之市售檢出樣品 40 第6章 討論 41 第7章 結論 45 第8章 參考文獻 47
dc.language.isozh-TW
dc.subject基質添加檢量線法zh_TW
dc.subject多重動物用藥殘留zh_TW
dc.subjectEnhanced Matrix Removal technique (EMR-QuEChERS)zh_TW
dc.subject液相層析串聯式質譜zh_TW
dc.subjectprocedural standard calibrationen
dc.subjectveterinary drug multi-residuesen
dc.subjectenhanced matrix removal technique (EMR-QuEChERS)en
dc.subjectliquid chromatography-tandem mass spectrometryen
dc.title禽類產品運用EMR-QuEChERS前處理技術以液相層析串聯式質譜儀分析多重動物用藥殘留的方法建立與確效zh_TW
dc.titledevelopment and validation of veterinary drug multi-residues analysis in poultry products with EMR-QuEChERS technique and liquid chromatography-tandem mass spectrometryen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.coadvisor周繼中(Kevin Chi-Chung Chou)
dc.contributor.oralexamcommittee潘敏雄(Min-Hsiung Pan),胡忠怡(Chung-Yi Hu),方偉宏(Woei-Horng Fang),王應然(Ying-Jan Wang)
dc.subject.keyword多重動物用藥殘留,Enhanced Matrix Removal technique (EMR-QuEChERS),液相層析串聯式質譜,基質添加檢量線法,zh_TW
dc.subject.keywordveterinary drug multi-residues,enhanced matrix removal technique (EMR-QuEChERS),liquid chromatography-tandem mass spectrometry,procedural standard calibration,en
dc.relation.page143
dc.identifier.doi10.6342/NTU202203464
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫事技術學研究所zh_TW
dc.date.embargo-lift2022-10-14-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-1609202211315800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved