請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84431完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭宏(Jau-Horng Chen) | |
| dc.contributor.author | You-Huei Chen | en |
| dc.contributor.author | 陳祐翬 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:11:22Z | - |
| dc.date.copyright | 2022-09-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-29 | |
| dc.identifier.citation | [1] K. L. Chan, J. Y. Zhu, and I. Galton, “Dynamic element matching to prevent nonlinear distortion from pulse-shape mismatches in high-resolution DACs,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2067-2078, Sep. 2008. [2] K. O'Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, “A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm2,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1064-1072, Jul. 2004. [3] B. Jewett, J. Liu, and K. Poulton, “A 1.2GS/s 15b DAC for precision signal generation,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2005, pp. 110-587 Vol. 1. [4] W. T. Lin, H. Y. Huang, and T. H. Kuo, “A 12-bit 40 nm DAC achieving SFDR > 70 dB at 1.6 GS/s and IMD <-61dB at 2.8 GS/s with DEMDRZ technique,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 708-717, Mar. 2014. [5] F. Balteanu, “RF front end module architectures for 5G,” in Proc. 2019 IEEE BiCMOS and Compound Semiconductor Integrated Circuits Technol. Symp. (BCICTS), 3-6 Nov. 2019, pp. 1-8. [6] J. B. Groe and L. E. Larson, “CDMA mobile radio design,” Artech House, 2000. [7] T. Kihara et al., “A multiband LTE SAW-less CMOS transmitter with source-follower-driven passive mixers, envelope-tracked RF-PGAs, and marchand baluns,” IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2013. [8] O. Oliaei et al., “A multiband multimode transmitter without driver amplifier,” in Proc. IEEE Int. Solid-State Circuits Conf, 19-23 Feb. 2012, pp. 164-166. [9] M. Cassia et al., “A low-power CMOS SAW-less quad band WCDMA/HSPA/HSPA+/1X/EGPRS transmitter,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1897-1906, Jul. 2009. [10] M. Collados, H. L. Zhang, B. Tenbroek, and H. H. Chang, “A low-current digitally predistorted direct-conversion transmitter with 25% duty-cycle passive mixer,” IEEE Trans. Microwave Theory Tech., vol. 62, no. 4, pp. 726-731, Apr. 2014. [11] P. Rossi et al., “An LTE transmitter using a class-A/B power mixer,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 17-21 Feb. 2013, pp. 340-341. [12] B. Jann et al., “21.5 A 5G sub-6GHz zero-IF and mm-Wave IF transceiver with MIMO and carrier aggregation,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 17-21 Feb. 2019, pp. 352-354. [13] G. Brenna, D. Tschopp, J. Rogin, I. Kouchev, and Q. T. Huang, “A 2-GHz carrier leakage calibrated direct-conversion WCDMA transmitter in 0.13-mu m CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1253-1262, Aug. 2004. [14] Z. W. Zhu, X. P. Huang, and H. Leung, “Joint I/Q mismatch and distortion compensation in direct conversion transmitters,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2941-2951, Jun. 2013. [15] L. R. Kahn, “Single-sideband transmission by envelope elimination and restoration,” Proc. IRE, vol. 40, no. 7, pp. 803-806, 1952. [16] Y. Wang, “An improved Kahn transmitter architecture based on delta-sigma modulation,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, vol. 2, 8-13 Jun. 2003, pp. 1327-1330 vol.2. [17] R. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray scale,” Proc. Soc. Image Display, vol. 17, pp. 75-77, 1976. [18] N. B. de Carvalho and J. C. Pedro, “A comprehensive explanation of distortion sideband Asymmetries,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 9, pp. 2090-2101, Sep. 2002. [19] H. C. Ku and J. S. Kenney, “Behavioral modeling of nonlinear RF power amplifiers considering memory effects,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 12, pp. 2495-2504, Dec. 2003. [20] N. M. Blachman, “The intermodulation and distortion due to quantization of sinusoids,” IEEE Trans. Acoust., Speech, Signal Process., vol. 33, no. 6, pp. 1417-1426, 1985. [21] L. Ding et al., “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun., vol. 52, no. 1, pp. 159-165, Jan. 2004. [22] Y. Li, X. Y. Wang, J. Z. Pang, and A. D. Zhu, “Boosted model tree-based behavioral modeling for digital predistortion of RF power amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 69, no. 9, pp. 3976-3988, Sep. 2021. [23] H. Yin et al., “Data-clustering-assisted digital predistortion for 5G millimeter-wave beamforming transmitters with multiple dynamic configurations,” IEEE Trans. Microwave Theory Tech., vol. 69, no. 3, pp. 1805-1816, Mar. 2021. [24] T. Cao et al., “Frequency multiplier-based millimeter-wave vector signal transmitter using digital predistortion with constrained feedback bandwidth,” IEEE Trans. Microwave Theory Tech., vol. 68, no. 5, pp. 1819-1829, May 2020. [25] N. Kumar, M. Rawat, and K. Rawat, “Software-defined radio transceiver design using FPGA-based system-on-chip embedded platform with adaptive digital predistortion,” IEEE Access, vol. 8, pp. 214882-214893, 2020. [26] P. L. Gilabert, G. Montoro, and E. Bertran, “FPGA implementation of a real-time NARMA-based digital adaptive predistorter,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 58, no. 7, pp. 402-406, Jul. 2011. [27] C. Quindroit, N. Naraharisetti, P. Roblin, S. Gheitanchi, V. Mauer, and M. Fitton, “FPGA implementation of orthogonal 2D digital predistortion system for concurrent dual-band power amplifiers based on time-division multiplexing,” IEEE Trans. Microwave Theory Tech., vol. 61, no. 12, pp. 4591-4599, Dec. 2013. [28] J. -H. Chen, H. -S. Yang, and Y. -J. E. Chen, “A multi-level pulse modulated polar transmitter using digital pulse-width modulation,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 295-297, May 2010. [29] A. M. A. Amin, M. I. El-Korfolly, and S. A. Mohammed, “Exploring aliasing distortion effects on regularly-sampled PWM signals,” in Proc. IEEE Conf. Industrial Electronics and Applications, 3-5 Jun. 2008, pp. 2036-2041. [30] K. Hausmair, S. L. Chi, P. Singerl, and C. Vogel, “Aliasing-free digital pulse-width modulation for burst-mode RF transmitters,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 60, no. 2, pp. 415-427, Feb. 2013. [31] K. Sozański, “Signal-to-noise ratio in power electronic digital control circuits,” in 2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 21-23 Sep. 2016, pp. 162-171. [32] D. Wang et al., “An 8 GSps 14 bit RF DAC with IM3 <-62 dBc up to 3.6 GHz,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 5, pp. 768-772, May 2019. [33] Z. H. Zhou and G. S. L. Rue, “A 12-Bit nonlinear DAC for direct digital frequency synthesis,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 9, pp. 2459-2468, Oct. 2008. [34] J. Osth, Owais, M. Karlsson, A. Serban, S. F. Gong, and P. Karlsson, “Direct carrier six-port modulator using a technique to suppress carrier leakage,” IEEE Trans. Microwave Theory Tech., vol. 59, no. 3, pp. 741-747, Mar. 2011. [35] J. Kim, H. S. Jo, K. J. Lee, D. H. Lee, D. H. Choi, and S. Kim, “A low-complexity I/Q imbalance calibration method for quadrature modulator,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 27, no. 4, pp. 974-977, Apr. 2019. [36] J. -H. Chen, H. -S. Yang, H. -C. Lin, and Y. -J. E. Chen, “A polar-transmitter architecture using multiphase pulsewidth modulation,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 58, no. 2, pp. 244-252, Feb. 2011. [37] K. Hausmair, P. Singerl, and C. Vogel, “Multiplierless implementation of an aliasing-free digital pulsewidth modulator,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 60, no. 9, pp. 592-596, Sep. 2013. [38] J. J. McCue et al., “A time-interleaved multimode ΔΣ RF-DAC for direct digital-to-RF synthesis,” IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1109-1124, May 2016. [39] Y. -H. Chen, T. -H. Wang, S. -C. Lin, J. -H. Chen, and Y. -J. E. Chen, “A 40-MHz bandwidth pulse-modulated polar transmitter for mobile applications,” in 2019 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), 20-23 Jan. 2019, pp. 1-3. [40] Y. -H. Chen, T. -H. Wang, S. -C. Lin, J. -H. Chen, and Y. -J. E. Chen, “A pulse-modulated polar transmitter using direct digital synthesis for 5G NR mobile Aaplications,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 10, pp. 1894-1898, Oct. 2020. [41] A. Van den Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 315-324, Mar. 2001. [42] W. R. Bennett, “Spectra of quantized signals,” Bell System Technical Journal, vol. 27, no. 3, pp. 446-472, 1948. [43] D. Gruber et al., “A 12-b 16-GS/s RF-sampling capacitive DAC for multi-band soft radio base-station applications with on-chip transmission-line matching network in 16-nm FinFET,” IEEE J. Solid-State Circuits, vol. 56, no. 12, pp. 3655-3667, 2021. [44] R. A. Wannamaker, S. P. Lipshitz, J. Vanderkooy, and J. N. Wright, “A theory of nonsubtractive dither,” IEEE Trans. Signal Process., vol. 48, no. 2, pp. 499-516, Feb. 2000. [45] L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Trans. Commun., vol. Co12, no. 4, pp. 162-165, 1964. [46] M. Parvizi, S. Aouini, M. S. Mahani, N. Ben-Hamida, J. F. Bousquet, and C. Kurowski, “An under sampling scope for characterization of 42-Gs/s DAC in 28-nm FD-SOI,” IEEE Microwave Wireless Compon. Lett., vol. 28, no. 7, pp. 621-623, Jul. 2018. [47] S. -C. Lin, Y. -C. Hsieh, S. -H. Xu and J. -H. Chen, “A highly efficient pulse-modulation polar transmitter using broadband class E power amplifier for femtocell base stations,” in 2018 Asia-Pacific Microwave Conference (APMC), 6-9 Nov. 2018, pp. 64-66. [48] Y. -H. Chen, S. -C. Lin, J. -H. Hung, H. -S. Yang, J. -H. Chen, and Y. -J. E. Chen, “A low-resolution direct digital synthesis transmitter architecture using dithering for Mmltiband 5G NR mobile applications,” IEEE Microwave Wireless Compon. Lett., early access, Jun. 2022. [49] M. S. Alavi, R. B. Staszewski, L. C. N. d. Vreede, and J. R. Long, “A wideband 2x 13-bit all-digital I/Q RF-DAC,” IEEE Trans. Microwave Theory Tech., vol. 62, no. 4, pp. 732-752, 2014. [50] S. -C. Lin, S. -H. Xu, Y. -H. Chen, C. -W. Chang, Y. -J. E. Chen, and J. -H. Chen, “Gibbs-phenomenon-reduced digital PWM for power amplifiers using pulse modulation,” IEEE Access, vol. 7, pp. 178788-178797, Dec. 2019. [51] T. -H. Wang, Y. -H. Chen, C. -W. Chang, K. -M. Li, J. -H. Chen, and J. Staudinger, “On the thermal memory effect reduction of power amplifiers using pulse modulation,” IEEE Microwave Wireless Compon. Lett., vol. 29, no. 4, pp. 285-287, Apr. 2019. [52] K. -F. Liang, H. -S. Yang, C. -W. Chang, and J. -H. Chen, “A wideband pulse-modulated polar transmitter using envelope correction for LTE applications,” IEEE Trans. Microwave Theory Tech., vol. 63, no. 8, pp. 2603-2608, Aug. 2015. [53] M. S. Kao, J. M. Wu, C. H. Lin, F. T. Chen, C. T. Chiu, and S. S. H. Hsu, “A 10-Gb/s CML I/O circuit for backplane interconnection in 0.18-μm CMOS technology,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 17, no. 5, pp. 688-696, May 2009. [54] “3GPP TS 38.101 - 1, 5G NR user equipment (UE) radio transmission and reception,” 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84431 | - |
| dc.description.abstract | 此論文展示了一基於過取樣高速數位類比轉換器之手機射頻發射機設計、實踐和驗證於第四代及第五代行動通訊技術。隨著通訊信號的進步,其所支援的傳輸頻寛亦發增加,並產生更高的峰均功率比。此一趨勢使得發射機效率和線性度下降、且增加設計難度與硬體成本。因此在無線射頻發射機上便有了研究的空間,並使其符合現代第四代及第五代行動通訊技術 。 在首次的研究上,本論文提出了一個應用於第四代寛頻手機通訊之低解析度雙相位脈衝調變極座標發射機。藉由極座標發射機於信號上的特性,配合雙相位的設計以消除奇次諧波並有效的降低極座標發射機所需要的解析度,其在不需要額外的數位預失真技術下得以通過第四代無線通訊的線性度要求。基於此架構下,接著驗證與現行第五代無線通訊的相容性。第五代無線通訊相較於第四代無線通訊有著較高的峰均功率比與更為嚴格的線性度規範,故此論文深度探討了設計雙相位脈衝調變極座標發射機所需要的過取樣率、切換頻率及數位類比轉換器的解析度。其中亦探討了極座標發射機與傳統發射機於線性度與解析度上的差異。此架構得以通過第五代無線通訊的線性度要求,其於低解析度設計下與無其它線性化技術時,誤差向量幅度可達-29.89 dB。 本論文接續提出一使用抖動技術之直接數字合成射頻發射機,其大幅改善傳統I/Q調變發射機於低解析度時的非線性現象。傳統射頻發射機中的數位類比轉換器操作於低解度時會產生嚴重的量化誤差,進而使基頻通訊信號產生互調失真而導致射頻發射機的線性度下降。基於直接數字合成與演算法之特性,此架構同時支援多個5G頻段。本論文提出之架構使用一低解析度射頻數位類比轉換器做為射頻發射機的核心、數字合成系統來推動一寛頻功率放大器完成驗證。相較於傳統I/Q調變發射機,此架構無需任何的數位校正技術,且具有較小面積、低功耗及低複雜度之特性,並同時符合第五代無線通訊系統於多個頻段的線性度要求。 本論文最後提出一基於直接數字合成抖動技術之極低解析度雙相位脈衝調變極座標發射機。相比於先前提出之雙相位脈衝調變極座標發射機,此架構使用一低漣波脈衝調變技術使得調變後的基頻訊號具有一較窄的頻寛,並降低使用非寛帶功率放大器其窄頻匹配網路產生的雜訊。從模擬和實際頻譜分析儀得知,此架構在使用一對二位元數位類比轉換器情況下可通過5G手持式行動裝置嚴格的線性度要求。 最後,本論文所提出之架構將有益於低成本射頻發射機的開發,其特點相當符合物聯網之應用與建置。 | zh_TW |
| dc.description.abstract | This thesis presents several new transmitter architectures based on oversampling high-speed digital-analog converters (DACs). With the advancement of the communication signal, both the transmission bandwidth and peak average power ratio have increased. This trend has reduced the efficiency and linearity of the transmitters significantly and increased design difficulty and hardware cost. Therefore, new transmitter architectures that meet the linearity requirements of new communication standard are in great demand, which has led to this thesis. The first part of the thesis proposes a low-resolution dual-phase pulse-modulated polar transmitter (PMPT) using a wideband orthogonal frequency-division multiplexing (OFDM) signal, which is compatible with 4G/5G mobile applications. Combined with the characteristics of the pulse-modulated signal and the dual-phase design, this work can eliminate odd harmonics and effectively reduce the DACs’ resolution in the PMPT architecture. The pulse switching frequency, oversampling ratio (OSR), and the resolution of the DACs are further discussed in this section. The difference between the PMPT and the conventional transmitter in linearity and resolution is also explained and examined on the testbed. This architecture can meet the linearity requirements of the 5G standard without additional linearization techniques. The second part of the thesis proposes a direct digital synthetic (DDS) RF transmitter using dithering technique, which dramatically improves the non-linear behavior of low-resolution conventional transmitters. The resolution of baseband I/Q DACs mainly determines the conventional RF transmitters' linearity. The severe quantization errors introduce intermodulation distortion to low-resolution DACs and decrease the RF transmitter's linearity. The intermodulation error can be effectively suppressed by using the dithering technique and improving signal quality. The architecture utilizes a low-resolution RF DAC in addition to a wideband power amplifier (PA) to achieve multiband application. Compared with the conventional I/Q transmitter, this architecture does not require digital pre-distortion (DPD) technology. It has the advantages of a small area, lower power consumption, and low complexity while supporting multiple 5G frequency bands. The third part of the thesis proposes an ultra-low-resolution DDS PMPT using dithering technology. Compared with the previous dual-phase PMPT, this architecture uses a Gibbs-reduction digital pulse-width modulation (GRDPWM) signal to achieve a smaller frequency bandwidth requirement. It reduces the noise caused by a narrow-band input matching network. This architecture utilizes a pair of 2-bit RF DACs for the verification testbed and meets the rigorous linearity requirements in 5G mobile applications. The architectures presented in this thesis will benefit the development of low-cost RF transmitters, whose characteristics are especially suitable for Internet of Things (IoTs) applications where cost and power consumption are the main interests. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:11:22Z (GMT). No. of bitstreams: 1 U0001-2909202201083700.pdf: 16703394 bytes, checksum: 411a5c90ab9d291a262778c21248abf0 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xiii LIST OF ABBREVIATIONS xiv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 4 1.2.1 Conventional I/Q Transmitter 4 1.2.2 Polar Transmitter 6 1.2.3 DDS-Based Transmitter 7 1.3 Quantization Error and Dithering Technique 9 1.4 Research Objectives and Organization of the Dissertation 12 Chapter 2 A PMPT Using DDS for 5G Wireless Applications 14 2.1 Introduction 14 2.2 DDS-based PMPT with Low Resolution DACs 16 2.3 Simulation Verification of DDS-based PMPT 20 2.4 Transmitter Implementation and Measurement 27 2.5 Summary 33 Chapter 3 A Low-Resolution Dithering DDS-based Transmitter for Multiband 5G NR System 35 3.1 Introduction 35 3.2 Dithering Methods and Theory 37 3.3 Validation of a Dithering DDS-Based Transmitter 44 3.4 Measurement Results 46 3.5 Summary 49 Chapter 4 An Ultra-Low Resolution DDS Transmitter for 5G Applications 51 4.1 Introduction 51 4.2 Non-Ideal Characteristics of DDS-based PMPT Under Low Resolution Conditions 54 4.3 Characteristics and Simulation of PMPT 57 4.4 Validation of PMPT for 5G NR Applications 64 4.5 Summary 70 Chapter 5 Conclusions 71 Reference 74 | |
| dc.language.iso | en | |
| dc.subject | 極座標發射機 | zh_TW |
| dc.subject | 抖動技術 | zh_TW |
| dc.subject | 量化誤差 | zh_TW |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 數位脈寬調變技術 | zh_TW |
| dc.subject | dithering technique | en |
| dc.subject | power amplifiers | en |
| dc.subject | polar transmitters | en |
| dc.subject | quantization error | en |
| dc.subject | digital pulse-width modulation | en |
| dc.title | 使用過取樣低解析度數位類比轉換器之手機發射機 | zh_TW |
| dc.title | Mobile Transmitters Using Oversampled Low-Resolution DACs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 陳怡然(Yi-Jan Emery Chen) | |
| dc.contributor.oralexamcommittee | 張恆華(Herng-Hua Chang),楊濠瞬(HAO-SHUN YANG),郭建宏(Chien-Hung Kuo),陳信樹(Hsin-Shu Chen) | |
| dc.subject.keyword | 功率放大器,極座標發射機,量化誤差,抖動技術,數位脈寬調變技術, | zh_TW |
| dc.subject.keyword | power amplifiers,polar transmitters,quantization error,dithering technique,digital pulse-width modulation, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202204217 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-30 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2909202201083700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
