請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84412
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王儷穎(Li-Ying Wang) | |
dc.contributor.author | Tsung-Hsien Wang | en |
dc.contributor.author | 王琮賢 | zh_TW |
dc.date.accessioned | 2023-03-19T22:10:47Z | - |
dc.date.copyright | 2022-10-17 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-26 | |
dc.identifier.citation | 1. Esteban A, Frutos-Vivar F, Muriel A, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188:220-230. 2. Ambrosino N, Vitacca M. The patient needing prolonged mechanical ventilation: a narrative review. Multidiscip Respir Med. 2018;13:6. 3. Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591-1600. 4. Saccheri C, Morawiec E, Delemazure J, et al. ICU-acquired weakness, diaphragm dysfunction and long-term outcomes of critically ill patients. Ann Intensive Care. 2020;10:1. 5. Bercker S, Weber-Carstens S, Deja M, et al. Critical illness polyneuropathy and myopathy in patients with acute respiratory distress syndrome. Crit Care Med. 2005;33:711-715. 6. Hough CL, Steinberg KP, Taylor Thompson B, Rubenfeld GD, Hudson LD. Intensive care unit-acquired neuromyopathy and corticosteroids in survivors of persistent ARDS. Intensive Care Med. 2009;35:63-68. 7. Bednarik J, Lukas Z, Vondracek P. Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Intensive Care Med. 2003;29:1505-1514. 8. Bednarik J, Vondracek P, Dusek L, Moravcova E, Cundrle I. Risk factors for critical illness polyneuromyopathy. J Neurol. 2005;252:343-351. 9. Tennila A, Salmi T, Pettila V, Roine RO, Varpula T, Takkunen O. Early signs of critical illness polyneuropathy in ICU patients with systemic inflammatory response syndrome or sepsis. Intensive Care Med. 2000;26:1360-1363. 10. Latronico N, Fenzi F, Recupero D, et al. Critical illness myopathy and neuropathy. Lancet. 1996;347:1579-1582. 11. Fan E, Cheek F, Chlan L, et al. An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014;190:1437-1446. 12. Piva S, Fagoni N, Latronico N. Intensive care unit-acquired weakness: unanswered questions and targets for future research. F1000Res. 2019;8. 13. Shepherd S, Batra A, Lerner DP. Review of Critical Illness Myopathy and neuropathy. Neurohospitalist. 2017;7:41-48. 14. Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10:931-941. 15. Hashem MD, Parker AM, Needham DM. Early mobilization and rehabilitation of patients who are critically ill. Chest. 2016;150:722-731. 16. De Jonghe B, Sharshar T, Lefaucheur JP, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859-2867. 17. Kelmenson DA, Held N, Allen RR, et al. Outcomes of ICU patients with a discharge diagnosis of critical illness polyneuromyopathy: a propensity-matched Analysis. Crit Care Med. 2017;45:2055-2060. 18. Dres M, Dube BP, Mayaux J, et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195:57-66. 19. Schreiber A, Bertoni M, Goligher EC. Avoiding respiratory and peripheral muscle injury during mechanical ventilation: diaphragm-protective ventilation and early mobilization. Crit Care Clin. 2018;34:357-381. 20. Oikonomou E, Paraskevas T, Velissaris D. Sepsis and the muscle tissue. A narrative review. Rom J Intern Med. 2021;59:218-226. 21. Victor VM, Espulgues JV, Hernandez-Mijares A, Rocha M. Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants. Infect Disord Drug Targets. 2009;9:376-389. 22. Mofarrahi M, Sigala I, Guo Y, et al. Autophagy and skeletal muscles in sepsis. PLoS One. 2012;7:e47265. 23. Supinski GS, Callahan LA. Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. J Appl Physiol. 2007;102:2056-2063. 24. Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 2007;14:44-55. 25. Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J. 1998;12:871-880. 26. Lang CH, Frost RA, Vary TC. Regulation of muscle protein synthesis during sepsis and inflammation. Am J Physiol Endocrinol Metab. 2007;293:E453-459. 27. Singer M. Cellular dysfunction in sepsis. Clin Chest Med. 2008;29:655-660. 28. Vanasco V, Cimolai MC, Evelson P, Alvarez S. The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by alpha-lipoic acid. Free Radic Res. 2008;42:815-823. 29. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243-1276. 30. Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc. 2001;33:371-376. 31. Demoule A, Divangahi M, Yahiaoui L, et al. Endotoxin triggers nuclear factor-kappaB-dependent up-regulation of multiple proinflammatory genes in the diaphragm. Am J Respir Crit Care Med. 2006;174:646-653. 32. van Gassel RJJ, Baggerman MR, van de Poll MCG. Metabolic aspects of muscle wasting during critical illness. Curr Opin Clin Nutr Metab Care. 2020;23:96-101. 33. Pandharipande PP, Ely EW, Arora RC, et al. The intensive care delirium research agenda: A multinational, interprofessional perspective. Intensive Care Med. 2017;43:1329-1339. 34. Salluh JI, Latronico N. Does this critically ill patient with delirium require any drug treatment? Intensive Care Med. 2019;45:501-504. 35. Peterson JF, Pun BT, Dittus RS, et al. Delirium and its motoric subtypes: a study of 614 critically ill patients. J Am Geriatr Soc. 2006;54:479-484. 36. Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369:1306-1316. 37. Smith CD, Grami P. Feasibility and Effectiveness of a Delirium Prevention Bundle in Critically Ill Patients. Am J Crit Care. 2016;26:19-27. 38. Vasilevskis EE, Ely EW, Speroff T, Pun BT, Boehm L, Dittus RS. Reducing iatrogenic risks: ICU-acquired delirium and weakness--crossing the quality chasm. Chest. 2010;138:1224-1233. 39. Arvin B, Neville LF, Barone FC, Feuerstein GZ. Brain injury and inflammation. A putative role of TNF alpha. Ann N Y Acad Sci. 1995;765:62-71. 40. Fenzi F, Latronico N, Refatti N, Rizzuto N. Enhanced expression of E-selectin on the vascular endothelium of peripheral nerve in critically ill patients with neuromuscular disorders. Acta Neuropathol. 2003;106:75-82. 41. Z'Graggen WJ, Lin CS, Howard RS, Beale RJ, Bostock H. Nerve excitability changes in critical illness polyneuropathy. Brain. 2006;129:2461-2470. 42. Etgen T, Sander D, Huntgeburth U, Poppert H, Forstl H, Bickel H. Physical activity and incident cognitive impairment in elderly persons: the INVADE study. Arch Intern Med. 2010;170:186-193. 43. Batt J, Herridge MS, Dos Santos CC. From skeletal muscle weakness to functional outcomes following critical illness: a translational biology perspective. Thorax. 2019;74:1091-1098. 44. Van den Berghe G. On the neuroendocrinopathy of critical illness. perspectives for feeding and novel treatments. Am J Respir Crit Care Med. 2016;194:1337-1348. 45. Preiser JC, van Zanten AR, Berger MM, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19:35. 46. Ackermann KA, Bostock H, Brander L, et al. Early changes of muscle membrane properties in porcine faecal peritonitis. Crit Care. 2014;18:484. 47. Friedrich O, Reid MB, Van den Berghe G, et al. The sick and the weak: neuropathies/myopathies in the critically ill. Physiol Rev. 2015;95:1025-1109. 48. Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009;10:507-515. 49. Hermans G, Casaer MP, Clerckx B, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013;1:621-629. 50. Batt J, dos Santos CC, Cameron JI, Herridge MS. Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am J Respir Crit Care Med. 2013;187:238-246. 51. Pandit L, Agrawal A. Neuromuscular disorders in critical illness. Clin Neurol Neurosurg. 2006;108:621-627. 52. De Jonghe B, Cook D, Sharshar T, Lefaucheur JP, Carlet J, Outin H. Acquired neuromuscular disorders in critically ill patients: a systematic review. Groupe de Reflexion et d'Etude sur les Neuromyopathies En Reanimation. Intensive Care Med. 1998;24:1242-1250. 53. Latronico N, Friedrich O. Electrophysiological investigations of peripheral nerves and muscles: a method for looking at cell dysfunction in the critically ill patients. Crit Care. 2019;23:33. 54. Suetta C, Hvid LG, Justesen L, et al. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol (1985). 2009;107:1172-1180. 55. Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA. 2007;297:1772-1774. 56. Tesch PA, Lundberg TR, Fernandez-Gonzalo R. Unilateral lower limb suspension: From subject selection to 'omic' responses. J Appl Physiol (1985). 2016;120:1207-1214. 57. Castro-Avila AC, Seron P, Fan E, Gaete M, Mickan S. Effect of early rehabilitation during intensive care unit stay on functional status: systematic review and meta-analysis. PLoS One. 2015;10:e0130722. 58. Needham DM. Mobilizing patients in the intensive care unit: improving neuromuscular weakness and physical function. JAMA. 2008;300:1685-1690. 59. Deem S, Lee CM, Curtis JR. Acquired neuromuscular disorders in the intensive care unit. Am J Respir Crit Care Med. 2003;168:735-739. 60. Carson SS, Kress JP, Rodgers JE, et al. A randomized trial of intermittent lorazepam versus propofol with daily interruption in mechanically ventilated patients. Crit Care Med. 2006;34:1326-1332. 61. Wischmeyer PE. Tailoring nutrition therapy to illness and recovery. Crit Care. 2017;21:316. 62. Osooli F, Abbas S, Farsaei S, Adibi P. Identifying critically ill patients at risk of malnutrition and underfeeding: a prospective study at an academic hospital. Adv Pharm Bull. 2019;9:314-320. 63. Schetz M, Casaer MP, Van den Berghe G. Does artificial nutrition improve outcome of critical illness? Crit Care. 2013;17:302. 64. Seres DS, Valcarcel M, Guillaume A. Advantages of enteral nutrition over parenteral nutrition. Therap Adv Gastroenterol. 2013;6:157-167. 65. Reber E, Gomes F, Vasiloglou MF, Schuetz P, Stanga Z. Nutritional risk screening and assessment. J Clin Med. 2019;8. 66. Medrinal C, Combret Y, Hilfiker R, et al. ICU outcomes can be predicted by noninvasive muscle evaluation: a meta-analysis. Eur Respir J. 2020;56. 67. Fan E, Dowdy DW, Colantuoni E, et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med. 2014;42:849-859. 68. Herridge MS, Cheung AM, Tansey CM, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003;348:683-693. 69. Dinglas VD, Aronson Friedman L, Colantuoni E, et al. Muscle weakness and 5-year survival in acute respiratory distress syndrome survivors. Crit Care Med. 2017;45:446-453. 70. Piriyapatsom A, Williams EC, Waak K, Ladha KS, Eikermann M, Schmidt UH. Prospective observational study of predictors of re-intubation following extubation in the surgical ICU. Respir Care. 2016;61:306-315. 71. Lee JJ, Waak K, Grosse-Sundrup M, et al. Global muscle strength but not grip strength predicts mortality and length of stay in a general population in a surgical intensive care unit. Phys Ther. 2012;92:1546-1555. 72. Semsar-Kazerooni K, Dima D, Valiquette J, Berube-Dufour J, Goldfarb M. Early mobilization in people with acute cardiovascular disease. Can J Cardiol. 2021;37:232-240. 73. Esteban A, Anzueto A, Frutos F, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287:345-355. 74. Stevens RD, Marshall SA, Cornblath DR, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009;37:S299-308. 75. Latronico N, Herridge M, Hopkins RO, et al. The ICM research agenda on intensive care unit-acquired weakness. Intensive Care Med. 2017;43:1270-1281. 76. Baldwin CE, Paratz JD, Bersten AD. Muscle strength assessment in critically ill patients with handheld dynamometry: an investigation of reliability, minimal detectable change, and time to peak force generation. J Crit Care. 2013;28:77-86. 77. Bandinelli S, Benvenuti E, Del Lungo I, et al. Measuring muscular strength of the lower limbs by hand-held dynamometer: a standard protocol. Aging (Milano). 1999;11:287-293. 78. Saygin D, Oddis CV, Moghadam-Kia S, et al. Hand-held dynamometry for assessment of muscle strength in patients with inflammatory myopathies. Rheumatology (Oxford). 2021;60:2146-2156. 79. Denehy L, Berney S. Physiotherapy in the intensive care unit. Phys Ther Rev. 2006;11:49-56. 80. Ciesla ND. Chest physical therapy for patients in the intensive care unit. Phys Ther. 1996;76:609-625. 81. Ntoumenopoulos G, Presneill JJ, McElholum M, Cade JF. Chest physiotherapy for the prevention of ventilator‐associated pneumonia. Intensive Care Med. 2002;28:850‐856. 82. Manzano RM, Carvalho CR, Saraiva-Romanholo BM, Vieira JE. Chest physiotherapy during immediate postoperative period among patients undergoing upper abdominal surgery: randomized clinical trial. Sao Paulo Med J. 2008;126:269-273. 83. Hanekom S, Louw QA, Coetzee AR. Implementation of a protocol facilitates evidence-based physiotherapy practice in intensive care units. Physiotherapy. 2013;99:139-145. 84. Hodgson C, Bellomo R, Berney S, et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care.2015;19:81. 85. Hodgson CL, Tipping CJ. Physiotherapy management of intensive care unit-acquired weakness. J Physiother. 2017;63:4-10. 86. Alaparthi GK, Gatty A, Samuel SR, Amaravadi SK. Effectiveness, safety, and barriers to early mobilization in the intensive care unit. Crit Care Res Pract. 2020;2020:7840743. 87. Chiang LL, Chen CN, Tsauo JY, Wu YT. Investigation of physical therapy utilization in integrated delivery system among patients with long‐term mechanical ventilation. FJPT. 2006;31:39-45. 88. Gosselink R, Bott J, Johnson M, et al. Physiotherapy for adult patients with critical illness: recommendations of the european respiratory society and european society of intensive care medicine task force on physiotherapy for critically ill patients. Intensive Care Med. 2008; 34:1188-1199. 89. Burtin C, Clerckx B, Robbeets C, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37:2499-2505. 90. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874-1882. 91. Davis J, Crawford K, Wierman H, et al. Mobilization of ventilated older adults. J Geriatr Phys Ther. 2013;36:162-168. 92. Harrold ME, Salisbury LG, Webb SA, Allison GT, Australia, Scotland ICUPC. Early mobilisation in intensive care units in Australia and Scotland: a prospective, observational cohort study examining mobilisation practises and barriers. Crit Care. 2015;19:336. 93. Holdsworth C, Haines KJ, Francis JJ, Marshall A, O'Connor D, Skinner EH. Mobilization of ventilated patients in the intensive care unit: An elicitation study using the theory of planned behavior. J Crit Care. 2015;30:1243-1250. 94. Taito S, Shime N, Ota K, Yasuda H. Early mobilization of mechanically ventilated patients in the intensive care unit. J Intensive Care. 2016;4:50. 95. Hodgson CL, Berney S, Harrold M, Saxena M, Bellomo R. Clinical review: early patient mobilization in the ICU. Crit Care. 2013;17:207. 96. Saiphoklang N, Tepwimonpetkun C. Interest of hand grip strength to predict outcome in mechanically ventilated patients. Heart Lung. 2020;49:637-640. 97. Andreychenko SA, Bychinin MV, Clypa TV, Yeremenko AA. Effect of rehabilitation initiation timing in the intensive care unit on outcomes in patients with pneumonia. Vopr Kurortol Fizioter Lech Fiz Kult. 2021;98:11-16. 98. Castro AA, Calil SR, Freitas SA, Oliveira AB, Porto EF. Chest physiotherapy effectiveness to reduce hospitalization and mechanical ventilation length of stay, pulmonary infection rate and mortality in ICU patients. Respir Med. 2013;107:68‐74. 99. Dean E, Butcher S. (2014). Mobilization physiological assessment, evaluation, and basis exercise. Cardiovascular and pulmonary physical therapy: evidence to practice (pp. 244-272). Elsevier Health Sciences. 100. Dean E. (2014). Body positioning. cardiovascular and pulmonary physical therapy: evidence to practice (pp. 293-308). Elsevier Health Sciences. 101. Lee SM, Bennett BS, Hargens AR, et al. Upright exercise or supine lower body negative pressure exercise maintains exercise responses after bed rest. Med Sci Sports Exerc. 1997;29:892-900. 102. West JB. (2012). Respiratory system under stress. Respiratory physiology: the essentials (pp. 141-158). Lippincott Williams & Wilkins. 103. Genc A, Ozyurek S, Koca U, Gunerli A. Respiratory and hemodynamic responses to mobilization of critically ill obese patients. Cardiopulm Phys Ther J. 2012;23:14-18. 104. Bygdeman S, Wahren J. Influence of body position on the anginal threshold during leg exercise. Eur J Clin Invest. 1974;4:201-206. 105. Aldrich D, Hunt DP. When can the patient with deep venous thrombosis begin to ambulate? Phys Ther. 2004;84:268-273. 106. Browse NL. The physiology and pathology of bed rest. Charles C. Thomas; 1965. 107. Nieman DC. Current perspective on exercise immunology. Curr Sports Med Rep. 2003;2:239-242. 108. Mackinnon LT. Chronic exercise training effects on immune function. Med Sci Sports Exerc. 2000;32:S369-376. 109. Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2292-2301. 110. Pahkala K, Heinonen OJ, Lagstrom H, et al. Vascular endothelial function and leisure-time physical activity in adolescents. Circulation. 2008;118:2353-2359. 111. Abd El-Kader SM, Al-Shreef FM, Al-Jiffri OH. Impact of aerobic exercise versus resisted exercise on endothelial activation markers and inflammatory cytokines among elderly. Afr Health Sci. 2019;19:2874-2880. 112. Ploeger HE, Takken T, de Greef MH, Timmons BW. The effects of acute and chronic exercise on inflammatory markers in children and adults with a chronic inflammatory disease: a systematic review. Exerc Immunol Rev. 2009;15:6-41. 113. Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008;2008:109502. 114. Wang J, Song H, Tang X, et al. Effect of exercise training intensity on murine T-regulatory cells and vaccination response. Scand J Med Sci Sports. 2012;22:643-652. 115. Timmerman KL, Flynn MG, Coen PM, Markofski MM, Pence BD. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise? J Leukoc Biol. 2008;84:1271-1278. 116. Gleeson M, Bishop NC. The T cell and NK cell immune response to exercise. Ann Transplant. 2005;10:43-48. 117. Nader GA, Lundberg IE. Exercise as an anti-inflammatory intervention to combat inflammatory diseases of muscle. Curr Opin Rheumatol. 2009;21:599-603. 118. Mendez-Tellez PA, Nusr R, Feldman D, Needham DM. Early physical rehabilitation in the ICU: a review for the neurohospitalist. Neurohospitalist. 2012;2:96-105. 119. Roberson AR, Starkweather A, Grossman C, Acevedo E, Salyer J. Influence of muscle strength on early mobility in critically ill adult patients: Systematic literature review. Heart Lung. 2018;47:1-9. 120. Dantas CM, Silva PF, Siqueira FH, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012;24:173-178. 121. Richtrmoc MK, Souza Leite W, Martins Azevedo A, et al. Effect of early mobilization on respiratory and limb muscle strength and functionality of nonintubated patients in critical care: a feasibility trial. Crit Care Res Pract. 2020;2020:1-9. 122. Sricharoenchai T, Parker AM, Zanni JM, Nelliot A, Dinglas VD, Needham DM. Safety of physical therapy interventions in critically ill patients: a single-center prospective evaluation of 1110 intensive care unit admissions. J Crit Care. 2014;29:395-400. 123. Schaller SJ, Anstey M, Blobner M, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388:1377-1388. 124. Nydahl P, Sricharoenchai T, Chandra S, et al. Safety of patient mobilization and rehabilitation in the intensive care unit. systematic review with meta-analysis. Ann Am Thorac Soc. 2017;14:766-777. 125. Katsukawa H, Ota K, Liu K, et al. Risk factors of patient-related safety events during cctive mobilization for intubated patients in intensive care units-a multi-center retrospective observational study. J Clin Med. 2021;10:2607. 126. Moss M, Nordon-Craft A, Malone D, et al. A randomized trial of an intensive physical therapy program for patients with acute respiratory failure. Am J Respir Crit Care Med. 2016;193:1101-1110. 127. Klein K, Mulkey M, Bena JF, Albert NM. Clinical and psychological effects of early mobilization in patients treated in a neurologic ICU: a comparative study. Crit Care Med. 2015;43:865-873. 128. Damluji A, Zanni JM, Mantheiy E, Colantuoni E, Kho ME, Needham DM. Safety and feasibility of femoral catheters during physical rehabilitation in the intensive care unit. J Crit Care. 2013;28:535.e9-535.e15. 129. Morris PE, Goad A, Thompson C, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36:2238-2243. 130. Chatburn RL, El-Khatib M, Mireles-Cabodevila E. A taxonomy for mechanical ventilation: 10 fundamental maxims. Respir Care. 2014;59:1747-1763. 131. Ely EW, Baker AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996;335:1864-1869. 132. Cork G, Camporota L, Osman L, Shannon H. Physiotherapist prediction of extubation outcome in the adult intensive care unit. Physiother Res Int. 2019;24:e1793. 133. Qiao Q. Inspiratory muscle training may improve extubation outcome in critically ill patients in the intensive care units. Eur Respir J. 2020;56:580. 134. Chiscano-Camón L, Ballesteros-Reviriego G, Ruiz-Rodríguez A, et al. Impact of early mobilization added to respiratory physiotherapy postextubation on weaning success. Arch Bronconeumol. 2022;58:523. 135. Lai CC, Chou W, Chan KS, et al. Early mobilization reduces duration of mechanical ventilation and intensive care unit stay in patients with acute respiratory failure. Arch Phys Med Rehabil. 2017;98:931-939. 136. Ronnebaum JA, Weir JP, Hilsabeck TA. Earlier mobilization decreases the length of stay in the intensive care unit. J Acute Care Phys Ther. 2012;3:204-210. 137. Zhang G, Zhang K, Cui W, Hong Y, Zhang Z. The effect of early mobilization for critical ill patients requiring mechanical ventilation: a systematic review and meta-analysis. J Emerg Crit Care Med. 2018;2:9. 138. Worraphan S, Thammata A, Chittawatanarat K, Saokaew S, Kengkla K, Prasannarong M. Effects of inspiratory muscle training and early mobilization on weaning of mechanical ventilation: a systematic review and network meta-analysis. Arch Phys Med Rehabil. 2020;101:2002-2014. 139. Wang TH, Wang SF, Wu CP, Wang LY, Early mobilization and weaning outcome on patients with mechanical ventilation in the Intensive Care Unit: a systematic review and meta-analysis. FJ PT. 2022;47:87-98. 140. Zafiropoulos B, Alison JA, McCarren B. Physiological responses to the early mobilisation of the intubated, ventilated abdominal surgery patient. Aust J Physiother. 2004;50:95-100. 141. Gigliotti F, Coli C, Bianchi R, et al. Exercise training improves exertional dyspnea in patients with COPD: evidence of the role of mechanical factors. Chest. 2003;123:1794-1802. 142. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788-800. 143. Herridge MS, Tansey CM, Matte A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293-1304. 144. Ali NA, O'Brien JM, Jr., Hoffmann SP, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med. 2008;178:261-268. 145. Watanabe S, Morita Y, Suzuki S, et al. Effects of the intensity and activity time of early rehabilitation on activities of daily living dependence in mechanically ventilated patients. Prog Rehabil Med. 2021;6:20210054. 146. Kayambu G, Boots R, Paratz J. Physical therapy for the critically ill in the ICU: a systematic review and meta-analysis. Crit Care Med. 2013;41:1543-1554. 147. Zhang L, Hu W, Cai Z, et al. Early mobilization of critically ill patients in the intensive care unit: A systematic review and meta-analysis. PLoS One. 2019;14:e0223185. 148. Perme C, Chandrashekar R. Early mobility and walking program for patients in intensive care units: creating a standard of care. Am J Crit Care. 2009;18:212-221. 149. Muscular weakness assessment: use of normal isometric strength data. The National Isometric Muscle Strength (NIMS) database consortium. Arch Phys Med Rehabil. 1996;77:1251-1255. 150. Laboratories ATSCoPSfCPF. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111-117. 151. Thille AW, Richard JC, Brochard L. The decision to extubate in the intensive care unit. Am J Respir Crit Care Med. 2013;187:1294-1302. 152. Thille AW, Harrois A, Schortgen F, Brun-Buisson C, Brochard L. Outcomes of extubation failure in medical intensive care unit patients. Crit Care Med. 2011;39:2612-2618. 153. Thille AW, Boissier F, Ben Ghezala H, Razazi K, Mekontso-Dessap A, Brun-Buisson C. Risk factors for and prediction by caregivers of extubation failure in ICU patients: a prospective study. Crit Care Med. 2015;43:613-620. 154. dos Santos RS, Donadio MV, da Silva GV, et al. Immediate effects of chest physiotherapy on hemodynamic, metabolic, and oxidative stress parameters in subjects with septic shock. Respir Care. 2014;59:1398‐1403. 155. Alamri MS, Waked IS, Amin FM, Al-Quliti KW, Manzar MD. Effectiveness of an early mobility protocol for stroke patients in intensive care unit. Neurosciences (Riyadh). 2019;24:81-88. 156. Cader SA, Vale RG, Castro JC, et al. Inspiratory muscle training improves maximal inspiratory pressure and may assist weaning in older intubated patients: a randomised trial. J Physiother. 2010;56:171-177. 157. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324:1445-1450. 158. Segal LN, Oei E, Oppenheimer BW, et al. Evolution of pattern of breathing during a spontaneous breathing trial predicts successful extubation. Intensive Care Med. 2010;36:487-495. 159. Condessa RL, Brauner JS, Saul AL, Baptista M, Silva AC, Vieira SR. Inspiratory muscle training did not accelerate weaning from mechanical ventilation but did improve tidal volume and maximal respiratory pressures: a randomised trial. J Physiother. 2013;59:101-107. 160. Yosef-Brauner O, Adi N, Ben Shahar T, Yehezkel E, Carmeli E. Effect of physical therapy on muscle strength, respiratory muscles and functional parameters in patients with intensive care unit-acquired weakness. Clin Respir J. 2015;9:1-6. 161. Leelarungrayub D, Pothongsunun P, Yankai A, Pratanaphon S. Acute clinical benefits of chest wall-stretching exercise on expired tidal volume, dyspnea and chest expansion in a patient with chronic obstructive pulmonary disease: a single case study. J Bodyw Mov Ther. 2009;13:338-343. 162. Selman JP, de Camargo AA, Santos J, Lanza FC, Dal Corso S. Reference equation for the 2-minute walk test in adults and the elderly. Respir Care. 2014;59:525-530. 163. Butland RJ, Pang J, Gross ER, Woodcock AA, Geddes DM. Two-, six-, and 12-minute walking tests in respiratory disease. Br Med J (Clin Res Ed). 1982;284:1607-1608. 164. Scalzitti DA, Harwood KJ, Maring JR, Leach SJ, Ruckert EA, Costello E. Validation of the 2-minute walk test with the 6-minute walk test and other functional measures in persons with multiple sclerosis. Int J MS Care. 2018;20:158-163. 165. Martin AD, Smith BK, Davenport PD, et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care. 2011;15:R84. 166. Chang AT, Boots RJ, Brown MG, Paratz J, Hodges PW. Reduced inspiratory muscle endurance following successful weaning from prolonged mechanical ventilation. Chest. 2005;128:553-559. 167. Jeong BH, Nam J, Ko MG, Chung CR, Suh GY, Jeon K. Impact of limb weakness on extubation failure after planned extubation in medical patients. Respirology. 2018;23:842-850. 168. Saiphoklang N, Mokkongphai N. Handgrip strength cutoff value predicting successful extubation in mechanically ventilated patients. PLoS One. 2021;16:e0258971. 169. Thille AW, Boissier F, Muller M, et al. Role of ICU-acquired weakness on extubation outcome among patients at high risk of reintubation. Crit Care. 2020;24:86. 170. Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci. 1973;18:111-129. 171. Jung B, Moury PH, Mahul M, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med. 2016;42:853-861. 172. De Jonghe B, Bastuji-Garin S, Sharshar T, Outin H, Brochard L. Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med. 2004;30:1117-1121. 173. Garnacho-Montero J, Amaya-Villar R, Garcia-Garmendia JL, Madrazo-Osuna J, Ortiz-Leyba C. Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med. 2005;33:349-354. 174. Dres M, Similowski T, Goligher EC, et al. Dyspnoea and respiratory muscle ultrasound to predict extubation failure. Eur Respir J. 2021;58:2100002. 175. Nakanishi N, Oto J, Tsutsumi R, Akimoto Y, Nakano Y, Nishimura M. Upper limb muscle atrophy associated with in-hospital mortality and physical function impairments in mechanically ventilated critically ill adults: a two-center prospective observational study. J Intensive Care. 2020;8:87. 176. Dres M, Jung B, Molinari N, et al. Respective contribution of intensive care unit-acquired limb muscle and severe diaphragm weakness on weaning outcome and mortality: a post hoc analysis of two cohorts. Crit Care. 2019;23:370. 177. Grigoriadis K, Efstathiou I, Dimitriadis Z, et al. Handgrip force and maximum inspiratory and expiratory pressures in critically ill patients with a tracheostomy. Am J Crit Care. 2021;30:e48-e53. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84412 | - |
dc.description.abstract | 患者因為有生命威脅的疾病,通常必須住進加護病房接受治療。但時常有很高的風險會併發嚴重的後遺症,像是加護病房後症候群(post intensive care syndrome;PICS)、重症後虛弱症(intensive care unit–acquired weakness;ICU-AW)、身體衰落、精神疾病與生活品質下降。胸腔物理治療是治療重症疾病中的一環,主要可協助像是提升肺功能、減少呼吸器相關肺炎的發生率、促進脫離呼吸器與幫助盡早離開加護病房。此外,早期活動是可以改善重大疾病造成的肌無力情形,本論文的目的為探討胸腔物理治療與早期活動對於使用呼吸器患者的預後影響,並探討周邊肌力對於重症患者後續預後的影響。 本論文主要包含兩個部分。第一個研究為探討胸腔物理治療加上早期活動是否可以降低加護病房患者拔管失敗率。介入組患者接受包括吸氣肌訓練、手壓式過度充氣法、胸廓鬆動術、痰液清除、咳嗽訓練與早期活動。控制組則接受一般護理照護。研究結果發現相較於控制組,介入組患者重插管率顯著較低(8% vs. 16% ; p = 0.01)。本研究結果提供了胸腔物理治療在加護病房所能帶來益處的證據,對於使用呼吸器的患者,胸腔物理治療加上早期活動確實可降低其拔管失敗的風險。第二個研究為探討周邊肌肉力量與加護病房呼吸器使用患者拔管結果的相關性,並追蹤患者後續之功能性行走能力。患者在進行拔管前進行周邊肌力二頭肌(biceps)與股四頭肌(quadriceps)的肌力測量,並分析肌力與拔管結果之相關性。並於患者轉入一般病房後,進行兩分鐘行走測試。結果顯示重插管患者股四頭肌肌力顯著低於未重插管的患者(p = 0.02),患者轉入一般病房後有48%可恢復行走能力,整體死亡率為11%,肱二頭肌肌力與死亡率有顯著相關(r =-0.28, p = 0.04)。 患者從加護病房轉出後,功能上的限制導致活動能力受限及生活品質下降,除了醫療相關方面的支出,往往造成患者與家屬日後需要花費更多後續復原或是臥床照護的成本。因此,本論文提供加護病房介入早期活動及胸腔物理治療效益的相關證據,希望在患者的整合照護上與照護團隊一起安排適當的物理治療介入策略,改善患者因治療或臥床缺乏活動所造成的肌肉無力症狀,進而改善患者預後使其能盡快回復到原來的生活。 | zh_TW |
dc.description.abstract | Patients with critical illnesses being cared for in ICU often have a life-threatening diseases. However, there is often a high risk of serious sequelae, such as post intensive care syndrome (PICS), intensive care unit-acquired weakness (ICU-AW), physical and cognitive function decline, and reduced quality of life. Chest physiotherapy intervention as part of a multidisciplinary approach to patients with critical illness is integral in promoting lung function, reducing the incidence of ventilator-associated pneumonia, facilitating weaning, and promoting safe and early discharge from ICU. Besides, early mobilization could be an ideal treatment to improve critical illness-related muscle weakness in ICU patients. This dissertation aimed to investigate the effect of chest physiotherapy on patients with ventilator support and explore whether peripheral muscle strength was correlated with functional outcomes in ICU survivors. This dissertation included a series of two studies. The first study investigated whether chest physiotherapy with early mobilization could reduce the extubation failure rate in ICU patients with ventilators. The intervention group was prospectively taken into the chest physiotherapy program. Chest physiotherapy treatment protocol consisted of inspiratory muscle training, manual hyperinflation, chest wall mobilization, secretion removal, cough function training, and early mobilization. The control group received routine nursing chest care and was selected from a retrospective chart review. The results revealed that patients in the intervention group had a significantly lower reintubation rate compared to the control group (8% vs. 16%; p = 0.01). This study indicated that intensive chest physiotherapy with early mobilization could decrease extubation failure in mechanically ventilated patients in ICU. The second study investigated the correlation between peripheral muscle strength and extubation outcome in patients with mechanical ventilation (MV) in ICU and following their prognosis of walking ability. A hand-held dynamometer was used to evaluate the muscle strength of the biceps and quadriceps right before extubation. Besides, after the patients had been transferred from ICU to the general ward, a 2-minute walk test was performed. The results showed that muscle strength of the quadriceps was significantly lower in the extubation failure group compared with the successfully extubated group (p = 0.02). After ICU discharge, ambulation recovery rate in this study was 48%. The overall mortality rate was 11%, with a significant correlation between biceps muscle strength and in-hospital mortality (r =-0.28, p = 0.04). Peripheral muscle strengths may aid predictions of a patient’s prognosis after extubation. In summary, functional limitations after ICU discharge may cause physical activity impairment and a decline in quality of life. Patients who develop these complications may also need more healthcare-related costs, such as extra rehabilitation or long-term medical and nursing care. Therefore, the findings from this dissertation provide evidence for beneficial effects of early mobilization and chest physiotherapy in ICU settings. In the future, appropriate physiotherapy intervention strategies can be arranged in the integrated care of patients in ICU to improve the muscle weakness caused by treatment or prolonged bed rest, which can help patients return to their normal life as soon as possible. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:10:47Z (GMT). No. of bitstreams: 1 U0001-2409202219353800.pdf: 775250 bytes, checksum: bbab7421ea1783ce08da1ad42f623d55 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 中文摘要..........................................................................iii Abstract............................................................................v Chapter 1. Literature Review........................................................1 1.1 ICU-acquired weakness...........................................................2 1.2 Impacts of ICU-acquired weakness on ICU survivors..............................12 1.3 Physical therapy in ICU: chest physiotherapy and early mobilization............15 1.4 Effects of physical therapy in ICU on extubation outcome.......................24 1.5 Effects of physical therapy in ICU on functional outcomes......................27 1.6 Purposes.......................................................................29 Chapter 2. Methods.................................................................30 2.1 Study one......................................................................31 2.1.1 Study design................................................................31 2.1.2 Outcome measures............................................................33 2.1.3 Statistical analysis........................................................34 2.2 Study two......................................................................34 2.2.1 Study design................................................................34 2.2.2 Outcome measures............................................................36 2.2.3 Statistical analysis........................................................37 Chapter 3. Results.................................................................38 3.1 Study one......................................................................39 3.1.1 Study population and clinical outcomes......................................39 3.1.2 Extubation outcome..........................................................40 3.2 Study two......................................................................40 3.2.1 Study population and clinical outcomes......................................40 3.2.2 Factors associated with extubation outcome..................................41 3.2.3 Factors associated with functional outcomes.................................42 3.2.4 Factors associated with mortality...........................................42 Chapter 4. Discussion..............................................................44 4.1 Major findings.................................................................45 4.2 Physical therapy reduces the rate of reintubation..............................45 4.3 Physical therapy improves the RSBI in ICU patients.............................47 4.4 Association between muscle strength and functional outcome.....................49 4.5 Muscle weakness on extubation and mortality outcomes...........................51 4.6 Study limitations..............................................................52 Chapter 5. Summary and conclusions.................................................54 References.........................................................................59 | |
dc.language.iso | en | |
dc.title | 加護病房使用呼吸器患者接受胸腔物理治療與早期活動之效益探討 | zh_TW |
dc.title | Effects of Chest Physiotherapy And Early Mobilization For Patients With Mechanical Ventilator In Intensive Care Unit | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.author-orcid | 0000-0001-5096-1131 | |
dc.contributor.oralexamcommittee | 吳惠東(Huey-Dong Wu),吳清平(Chin-Pyng Wu),許妙如(Miao-Ju Hsu),鄭宇容(Yu-Jung Cheng) | |
dc.subject.keyword | 早期活動,胸腔物理治療,重症後虛弱症,拔管預後,周邊肌力,功能性預後, | zh_TW |
dc.subject.keyword | Early mobilization,Chest physiotherapy,ICU-acquired weakness,Extubation outcome,Peripheral muscle strength,Functional outcome, | en |
dc.relation.page | 95 | |
dc.identifier.doi | 10.6342/NTU202203981 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-27 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 物理治療學研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-17 | - |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2409202219353800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 757.08 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。