Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8440
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鈞棣(Chun-Ti Chang)
dc.contributor.authorYu-Cheng Leeen
dc.contributor.author李侑澄zh_TW
dc.date.accessioned2021-05-20T00:54:30Z-
dc.date.available2025-08-03
dc.date.available2021-05-20T00:54:30Z-
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-08-03
dc.identifier.citationDanielle A. Fong, Stephen E. Crane, and Jr. Berlin, Edwin P. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange, July 2016.
NIST. mini-REFPROP. Accessed 18 October 2019. https://trc.nist.gov/refprop/MINIREF/MINIREF.HTM.
Manual on the use of thermocouples in temperature measurement. Philadelphia, PA, fourth edition, 1993.
Haisheng Chen, Yulong Ding, Yongliang Li, Xinjing Zhang, and Chunqing Tan. Air fuelled zero emission road transportation: a comparative study. Appl. Energy, 88(1):337–342, January 2011.
Xinjing Zhang, Yujie Xu, Xuezhi Zhou, Yi Zhang, Wen Li, Zhitao Zuo, Huan Guo, Ye Huang, and Haisheng Chen. A near-isothermal expander for isothermal compressed air energy storage system. Appl. Energy, 225:955–964, September 2018.
Mark Z. Jacobson and Mark A. Delucchi. Providing all global energy with wind, water, and solar power, part i: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, 39(3):1154–1169, March 2011.
Hao Peng, Xuekun Shan, Yu Yang, and Xiang Ling. A study on performance of a liquid air energy storage system with packed bed units. Appl. Energy, 211:126–135, February 2018.
F. R. Kalhammer and T. R. Schneider. Energy Storage. Annual Review of Energy, 1(1):311–343, November 1976.
Stanley W. Angrist. Direct energy conversion. Allyn and Bacon, 1982.
Gilbert M. Masters. Renewable and efficient electric power systems. Wiley­IEEE Press, 2004.
F. R. McLarnon and E. J. Cairns. Energy Storage. Annual Review of Energy, 14(1):241–271, November 1989.
B. Sorensen. Energy Storage. Annual Review of Energy, 9(1):1–29, November 1984.
Alejandro Franco. Rechargeable lithium batteries : from fundamentals to applications. Woodhead Publishing, Cambridge, UK, 2015.
Mohammad Omar Abdullah. Applied Energy. Taylor Francis Inc, 2012.
Donald Bender. Recommended practices for the safe design and operation of flywheels. techreport SAND2015-10759, Sandia National Laboratories, December 2015.
Annette Evans, Vladimir Strezov, and Tim J. Evans. Assessment of utility energy storage options for increased renewable energy penetration. Renewable Sustainable Energy Rev., 16(6):4141–4147, August 2012.
Marcus Budt, Daniel Wolf, Roland Span, and Jinyue Yan. Compressed Air Energy Storage – An Option for Medium to Large Scale Electrical-energy Storage. Energy Procedia, 88:698–702, June 2016.
Cord Kaldemeyer, Cynthia Boysen, and Ilja Tuschy. Compressed Air Energy Storage in the German Energy System – Status Quo Perspectives. Energy Procedia, 99:298–313, November 2016.
Trevor M. Letcher. Storing Energy with Special Reference to Renewable Energy Sources. Elsevier Science Publishing Co. Inc., 2016.
Yulong Ding, Lige Tong, Peikuan Zhang, Yongliang Li, Jonathan Radcliffe, and Li Wang. Liquid air energy storage. In Storing Energy, pages 167–181. Elsevier,2016.
E. M. Smith. Storage of electrical energy using supercritical liquid air. Proc. Inst. Mech. Eng., 191(1):289–298, June 1977.
Jidai Wang, Kunpeng Lu, Lan Ma, Jihong Wang, Mark Dooner, Shihong Miao, Jian Li, and Dan Wang. Overview of compressed air energy storage and technology development. Energies, 10(7):991, July 2017.
Highview Power. Highview power storage: liquid air energy storage site visit. Accessed 2 March 2019. https://youtu.be/Bj2jTm0PtWw?t=182.
Highview Power. 2018 Brochure. Accessed 18 October 2019. https://www.highviewpower.com/wp-content/uploads/2018/06/Highview-Power-Brochure-2018-Online-.pdf, 2018.
Highview Power. Benefits. Accessed 7 June 2020. https://www.highviewpower.com/benefits/.
Robert Morgan, Stuart Nelmes, Emma Gibson, and Gareth Brett. Liquid air energy storage - analysis and first results from a pilot scale demonstration plant. Appl. Energy, 137:845–853, January 2015.
Robert Morgan, Stuart Nelmes, Emma Gibson, and Gareth Brett. An analysis of a large-scale liquid air energy storage system. Proceedings of the Institution of Civil Engineers - Energy, 168(2):135–144, May 2015.
Opubo N. Igobo and Philip A. Davies. Review of low-temperature vapour power cycle engines with quasi-isothermal expansion. Energy, 70:22–34, June 2014.
Xinjing Zhang, Yujie Xu, Xuezhi Zhou, Yi Zhang, Wen Li, Zhitao Zuo, Huan Guo, Ye Huang, and Haisheng Chen. Numerical Study of a Quasi-isothermal Expander by Spraying Water. Energy Procedia, 142:3388–3393, December 2017.
C. Knowlen, J. Williams, A. T. Mattick, H. Deparis, and A. Hertzberg. Quasi-Isothermal Expansion Engines for Liquid Nitrogen Automotive Propulsion. In SAE Technical Paper Series. SAE International, August 1997.
Benjamin R. Bollinger. System and method for rapid isothermal gas expansion and compression for energy storage, December 2009.
Wei He and Jihong Wang. Optimal selection of air expansion machine in compressed air energy storage: a review. Renewable Sustainable Energy Rev., 87:77–95, May 2018.
Brian J. Leege. Thermodynamic modeling and mechanical design of a liquid nitrogen vaporization and pressure building device. Master's thesis, University of Washington, 2017.
Private communication between advisor Dr. Chang and Linde Lienhwa Industrial Gases Co., Ltd.
Bernd Ameel, Christophe T'Joen, Kathleen De Kerpel, Peter De Jaeger, Henk Huisseune, Marnix Van Belleghem, and Michel De Paepe. Thermodynamic analysis of energy storage with a liquid air Rankine cycle. Appl. Therm. Eng., 52(1):130–140, April 2013.
Urith Archakositt, Sunchai Nilsuwankosit, and Tatchai Sumitra. Effect of volumetric ratio and injection pressure on water-liquid nitrogen interaction. J. Nucl. Sci. Technol., 41(4):432–439, April 2004.
Georges Berthoud. Vapor explosions. Annu. Rev. Fluid Mech., 32(1):573–611, January 2000.
H. Clarke, A. Martinez-Herasme, R. Crookes, and D. S. Wen. Experimental study of jet structure and pressurisation upon liquid nitrogen injection into water. Int. J. Multiphase Flow, 36(11-12):940–949, November 2010.
D. S. Wen, H. S. Chen, Y. L. Ding, and P. Dearman. Liquid nitrogen injection into water: pressure build-up and heat transfer. Cryogenics., 46(10):740–748, October 2006.
V. E. Nakoryakov, A. N. Tsoy, I. V. Mezentsev, and A. V. Meleshkin. Explosive boiling of liquid nitrogen. Therm. Eng., 61(13):919–923, December 2014.
V. E. Nakoryakov, A. N. Tsoi, I. V. Mezentsev, and A. V. Meleshkin. Boiling-up of liquid nitrogen jet in water. Thermophys. Aeromech., 21(3):279–284, June 2014.
V. E. Nakoryakov, A. N. Tsoi, I. V. Mezentsev, and A. V. Meleshkin. Explosive boiling of liquid nitrogen jet in water. J. Eng. Thermophys., 23(1):1–8, January 2014.
V. E. Nakoryakov, I. V. Mezentsev, A. V. Meleshkin, and D. S. Elistratov. Visualization of physical processes occurring on liquid nitrogen injection into water. J. Eng. Thermophys., 24(4):322–329, October 2015.
Herbert B. Callen. Thermodynamics and an introduction to thermostatistics. John Wiley Sons, second edition, 1985.
J. D. Grace and G. C. Kennedy. The melting curve of five gases to 30 kb. J. Phys. Chem. Solids, 28(6):977–982, June 1967.
S. R. de Groot and P. Mazur. Non-equilibrium thermodynamics. NY: Interscience Publishers, 1962.
L. D. Landau and E. M. Lifshitz. Statistical physics. Oxford: Clarendon Press, 1938.
J. D. Stachiw, G. M. Dunn, and K. O. Gray. Windows for external or internal hydrostatic pressure vessels part ii - flat acrylic windows under short-term pressure application. techreport R527, Naval facilities engineering command, U. S. naval civil engineering laboratory, May 1967.
S. W. Churchill. Friction-factor equation spans all fluid-flow regimes. Chemical Engineering, pages 91–92, 1977.
Philip J. Pritchard. Fluid mechanics. John Wiley, Hoboken, NJ, 2012.
R. Wiebe, V. L. Gaddy, and Jr. Heinss, C. Solubility of nitrogen in water at 25°C from 25 to 1000 atmospheres. Industrial Engineering Chemistry, 24(8):927–927, August 1932.
R. Wiebe, V. L. Gaddy, and Conrad Heins. The Solubility of Nitrogen in Water at 50, 75 and 100° from 25 to 1000 Atmospheres. J. Am. Chem. Soc., 55(3):947–953, March 1933.
R. Sander. Compilation of Henry's law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 15(8):4399–4981, April 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8440-
dc.description.abstract本研究開發了一種利用液態氮發電的技術並架設一套液態氮可用能(exergy)的回收系統。此系統能將液態氮噴入裝有不同水量的鍋爐中。液態氮與水接觸時會吸熱並加壓水,開啟鍋爐即可釋放高壓水柱作功。實驗得到的功是透過壓力與體積量測而得。本文提出兩種模型以探討上述程序: 等容-等壓-等溫程序(constant v-P-T process)與準力學平衡程序(quasi-mechanical equilibrium process)。前者的計算簡單,不過需要猜中最大壓力;後者需要迭代並預測系統最大壓力約為14 MPa。兩程序模型預測每公斤氮的熱、功傳輸量相差小於4%。本研究中進行了45組實驗並改變液態氮噴射時間(0.25、0.50、0.75、1秒)與鍋爐內的初始水量(0、1062、1931、2124 mL)。液態噴射時間對可用功、噴入鍋爐的液態氮量、可用能效率都沒有顯著影響。一開始鍋爐內的水量影響較明顯。若將鍋爐內的自由空間納入考慮,準力學平衡程序與實驗得到的可用能效率會落在相同數量級。此系統最大效率為17.6%,因為鍋爐內的自由空間會讓氮沿著低壓的路徑膨脹,造成可用功大幅減少。然而鍋爐內仍需保留自由空間,液態氮才噴得進去。zh_TW
dc.description.abstractThis study develops a technology to utilize liquid nitrogen as a fuel for power generation. A liquid nitrogen (LN2) exergy recovery system has been constructed. In this system, LN2 is injected into a boiler filled with different amounts of water. LN2 absorbs heat when it is in contact with water, thus producing pressurized water. Then the boiler is opened to release pressure water jets for power generation. In experiments, the energy produced by the compressed water/LN2 is obtained from pressure and volume measurement. Two models are proposed to simulate the processes: a constant v-P-T process, and a quasi-mechanical equilibrium process. The former is simple for analysis but requires an adequate guess for the maximum pressure. The latter requires iteration and predicts a maximum pressure of 14 MPa for the system in this study. The energy transferred between LN2 and water (heat, work, and useful work) are predicted by the two models. The error between the two models are less than 4%. In this study, 45 experiments were conducted with 4 different duration of LN2 injection (0.25, 0.50, 0.75, 1 second) and 4 different initial volume of water in the boiler (0, 1062, 1931, 2124 mL). The injection duration had no significant effect on the useful work output, the mass of LN2 injected into the boiler, or the exergy efficiency. In contrast, the effect of the initial volume of water in the boiler is more obvious. When the free space in the boiler is explicitly considered, the exergy efficiency predicted by quasi-mechanical equilibrium model and that from the experiments are of the same order of magnitude. The maximum exergy efficiency achieved is 17.6% since the free space in the boiler makes N2(g)/LN2 expand along low pressure paths, thereby reducing the work output. However, the free space in the boiler is still needed to admit the injected LN2.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:54:30Z (GMT). No. of bitstreams: 1
U0001-1707202013425200.pdf: 7204502 bytes, checksum: 198ccff1a8c33ad0f3c0e6249bb1bbc0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
摘要 ii
Abstract iii
Nomenclature xvi
1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Why energy storage . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Why Liquid Air Energy Storage (LAES) . . . . . . . . . . . . . 2
1.1.3 Direct mixing heat transfer . . . . . . . . . . . . . . . . . . . . . 3
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 LAES round trip efficiency . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Cryogen injection experiments . . . . . . . . . . . . . . . . . . . 8
1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Theoretical Analysis 12
2.1 Thermodynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1 Conceptual process ­ constant v­P­T process . . . . . . . . . . . 13
2.1.2 Quasi­mechanical equilibrium process . . . . . . . . . . . . . . . 19
2.2 Minimum Heat Transfer Time . . . . . . . . . . . . . . . . . . . . . . . 23
3 Experimental Method 29
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Details of Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 LN2 cartridge assembly . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Aluminum bottle . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Water tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 Valves and flow control . . . . . . . . . . . . . . . . . . . . . . 34
3.2.6 Needle valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.7 Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.8 Data acquisition (DAQ) systems . . . . . . . . . . . . . . . . . . 41
3.2.9 High­speed camera and lighting . . . . . . . . . . . . . . . . . . 41
3.3 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Automated steps . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 After running the LabVIEW program . . . . . . . . . . . . . . . 45
3.4 Setup for Determining Pressure Drop through the Pipeline . . . . . . . . 46
4 Results and Discussions 48
4.1 Pressure, Water Level, and Temperature Profiles . . . . . . . . . . . . . . 50
4.2 Definitions of Key Physical Parameters . . . . . . . . . . . . . . . . . . 53
4.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 The Pressurization Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Useful Work, Mass of Injected LN2, and Exergy Efficiency . . . . . . . . 57
4.6 Solubility of Nitrogen in Water . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 How Closely LN2 Followed the Isotherm . . . . . . . . . . . . . . . . . 65
4.8 Pressure Drop through the Pipeline . . . . . . . . . . . . . . . . . . . . . 71
4.9 The Captured Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 Conclusions and Future Works 77
A Engineering Graphics 81
A.1 The Body of the Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2 The Cap of the Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.3 The LN2 Cartridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Bibliography 85
dc.language.isoen
dc.title液態氮與水批次於鍋爐內混合以獲得液態氮的可用能zh_TW
dc.titleBatch Mixing of LN2 and Water in a Boiler to Exploit LN2 Exergyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊馥菱(Fu-Ling Yang),蔡協澄(Hsieh-Chen Tsai)
dc.subject.keyword低溫釋能,準等溫膨脹,直接接觸熱傳,快速相轉變,zh_TW
dc.subject.keywordCryogenic Energy Recovery,Quasi-Isothermal Expansion,Direct-Contact Heat Transfer,Rapid Phase Transition,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202001599
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2025-08-03-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-1707202013425200.pdf7.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved