Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84406
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張芳嘉(Fang-Chia Chang)
dc.contributor.authorYu-Ju Chouen
dc.contributor.author周于茹zh_TW
dc.date.accessioned2023-03-19T22:10:37Z-
dc.date.copyright2022-07-15
dc.date.issued2017
dc.date.submitted2021-11-08
dc.identifier.citation1. Fisher, R.S., et al., Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 2005. 46(4): p. 470-472. 2. Avoli, M., et al., Cellular and molecular mechanisms of epilepsy in the human brain. Progress in neurobiology, 2005. 77(3): p. 166-200. 3. Goldenberg, M.M., Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. Pharmacy and Therapeutics, 2010. 35(7): p. 392. 4. Zwimpfer, T.J., et al., Head injuries due to falls caused by seizures: a group at high risk for traumatic intracranial hematomas. Journal of neurosurgery, 1997. 86(3): p. 433-437. 5. Lowenstein, D.H., Epilepsy after head injury: an overview. Epilepsia, 2009. 50(s2): p. 4-9. 6. Fisher, R.S., The New Classification of Seizures by the International League Against Epilepsy 2017. Current neurology and neuroscience reports, 2017. 6(17): p. 1-6. 7. Banerjee, P.N., D. Filippi, and W.A. Hauser, The descriptive epidemiology of epilepsy—a review. Epilepsy research, 2009. 85(1): p. 31-45. 8. Fisher, R.S., et al., Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017. 58(4): p. 522-530. 9. Barkley, G.L. and C. Baumgartner, MEG and EEG in epilepsy. Journal of clinical neurophysiology, 2003. 20(3): p. 163-178. 10. Noachtar, S. and J. Rémi, The role of EEG in epilepsy: a critical review. Epilepsy & Behavior, 2009. 15(1): p. 22-33. 11. Seneviratne, U., et al., Focal seizure symptoms in idiopathic generalized epilepsies. Neurology, 2015. 85(7): p. 589-595. 12. Deng, J., et al., Electroclinical features of myoclonic-atonic epilepsy. Zhonghua er ke za zhi. Chinese journal of pediatrics, 2011. 49(8): p. 577-582. 13. Kojovic, M., C. Cordivari, and K. Bhatia, Myoclonic disorders: a practical approach for diagnosis and treatment. Therapeutic advances in neurological disorders, 2011. 4(1): p. 47-62. 14. Blumenfeld, H., Consciousness and epilepsy: why are patients with absence seizures absent? Progress in brain research, 2005. 150: p. 271-603. 15. Dragoumi, P., et al., Epilepsy with myoclonic–atonic seizures (Doose syndrome): When video-EEG polygraphy holds the key to syndrome diagnosis. Epilepsy & behavior case reports, 2016. 5: p. 31-33. 16. Caraballo, R.H., et al., Epilepsy with myoclonic atonic seizures: an electroclinical study of 69 patients. Pediatric neurology, 2013. 48(5): p. 355-362. 17. Schmidt, D., J.J. Tsai, and D. Janz, Generalized Tonic‐Clonic Seizures in Patients with Complex‐Partial Seizures: Natural History and Prognostic Relevance. Epilepsia, 1983. 24(1): p. 43-48. 18. Koh, S., et al., Status epilepticus and frequent seizures: incidence and clinical characteristics in pediatric epilepsy surgery patients. Epilepsia, 2005. 46(12): p. 1950-1954. 19. Shorvon, S. and M. Walker, Status epilepticus in idiopathic generalized epilepsy. Epilepsia, 2005. 46(s9): p. 73-79. 20. Meldrum, B.S., The role of glutamate in epilepsy and other CNS disorders. Neurology, 1994. 21. Bazhenov, M., et al., Cellular and network mechanisms of electrographic seizures. Drug Discovery Today: Disease Models, 2008. 5(1): p. 45-57. 22. Mody, I. and R.A. Pearce, Diversity of inhibitory neurotransmission through GABA A receptors. Trends in neurosciences, 2004. 27(9): p. 569-575. 23. Watkins, J. and R. Evans, Excitatory amino acid transmitters. Annual review of pharmacology and toxicology, 1981. 21(1): p. 165-204. 24. Lujan, R., R. Shigemoto, and G. Lopez-Bendito, Glutamate and GABA receptor signalling in the developing brain. Neuroscience, 2005. 130(3): p. 567-580. 25. Bradford, H., Glutamate, GABA and epilepsy. Progress in neurobiology, 1995. 47(6): p. 477-511. 26. Cho, C.-H., New mechanism for glutamate hypothesis in epilepsy. Frontiers in cellular neuroscience, 2013. 7. 27. Peltola, J., et al., Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology, 2000. 55(1): p. 46-50. 28. Chapman, A.G., Glutamate and epilepsy. The Journal of nutrition, 2000. 130(4): p. 1043S-1045S. 29. Johnston, D. and T.H. Brown, The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons. Annals of neurology, 1984. 16(S1). 30. Löscher, W., et al., New avenues for anti-epileptic drug discovery and development. Nature reviews drug discovery, 2013. 12(10): p. 757-776. 31. Manni, R. and M. Terzaghi, Comorbidity between epilepsy and sleep disorders. Epilepsy research, 2010. 90(3): p. 171-177. 32. Kotagal, P. and N. Yardi. The relationship between sleep and epilepsy. in Seminars in pediatric neurology. 2008. Elsevier. 33. Rechtschaffen, A., et al., Physiological correlates of prolonged sleep deprivation in rats. Science, 1983. 221(4606): p. 182-184. 34. Lawn, N., et al., Are seizures in the setting of sleep deprivation provoked? Epilepsy & Behavior, 2014. 33: p. 122-125. 35. Vendrame, M., et al., Insomnia and epilepsy: a questionnaire-based study. Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine, 2013. 9(2): p. 141. 36. Vignatelli, L., et al., Excessive daytime sleepiness and subjective sleep quality in patients with nocturnal frontal lobe epilepsy: a case‐control study. Epilepsia, 2006. 47(s5): p. 73-77. 37. Manni, R. and A. Tartara, Evaluation of sleepiness in epilepsy. Clinical Neurophysiology, 2000. 111: p. S111-S114. 38. Miller, L.A., et al., Determining the relationship between sleep architecture, seizure variables and memory in patients with focal epilepsy. Behavioral neuroscience, 2016. 130(3): p. 316. 39. Derry, C.P. and S. Duncan, Sleep and epilepsy. Epilepsy & Behavior, 2013. 26(3): p. 394-404. 40. Sinha, S.R., Basic mechanisms of sleep and epilepsy. Journal of Clinical Neurophysiology, 2011. 28(2): p. 103-110. 41. Minecan, D., et al., Relationship of epileptic seizures to sleep stage and sleep depth. Sleep, 2002. 25(8): p. 56-61. 42. Kandratavicius, L., et al., Animal models of epilepsy: use and limitations. Neuropsychiatric disease and treatment, 2014. 10: p. 1693-1705. 43. Vyklicky, V., et al., Structure, function, and pharmacology of NMDA receptor channels. Physiological Research, 2014. 63: p. S191. 44. Cull-Candy, S., S. Brickley, and M. Farrant, NMDA receptor subunits: diversity, development and disease. Current opinion in neurobiology, 2001. 11(3): p. 327-335. 45. Furukawa, H. and E. Gouaux, Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand‐binding core. The EMBO journal, 2003. 22(12): p. 2873-2885. 46. Ghasemi, M. and S.C. Schachter, The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy & Behavior, 2011. 22(4): p. 617-640. 47. Chapman, A.G., Glutamate receptors in epilepsy. Progress in brain research, 1998. 116: p. 371-383. 48. Addis, L., et al., Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency–molecular profiling and functional rescue. Scientific Reports, 2017. 7(1): p. 66. 49. Rogawski, M.A., The NMDA receptor, NMDA antagonists and epilepsy therapy. Drugs, 1992. 44: p. 279-292. 50. Mathern, G.W., et al., Increased hippocampal AMPA and NMDA receptor subunit immunoreactivity in temporal lobe epilepsy patients. Journal of Neuropathology & Experimental Neurology, 1998. 57(6): p. 615-634. 51. Levite, M., GLUTAMATE RECEPTOR ANTIBODIES IN NEUROLOGICAL DISEASES: Anti-AMPA-GluR3 antibodies, Anti-NMDA-NR1 antibodies, Anti-NMDA-NR2A/B antibodies, Anti-mGluR1 antibodies or Anti-mGluR5 antibodies are present in subpopulations of patients with either. Journal of neural transmission, 2014. 121(8). 52. Chen, B.-S. and K.W. Roche, Regulation of NMDA receptors by phosphorylation. Neuropharmacology, 2007. 53(3): p. 362-368. 53. Garlanda, C., C.A. Dinarello, and A. Mantovani, The interleukin-1 family: back to the future. Immunity, 2013. 39(6): p. 1003-1018. 54. Burns, K., et al., Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. Journal of Experimental Medicine, 2003. 197(2): p. 263-268. 55. Weber, A., P. Wasiliew, and M. Kracht, Interleukin-1 (IL-1) pathway. Sci. Signal., 2010. 3(105): p. cm1-cm1. 56. Cearley, C., L. Churchill, and J.M. Krueger, Time of day differences in IL1β and TNFα mRNA levels in specific regions of the rat brain. Neuroscience letters, 2003. 352(1): p. 61-63. 57. Baracchi, F. and M.R. Opp, Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1β receptor 1 and tumor necrosis factor-α receptor 1. Brain, behavior, and immunity, 2008. 22(6): p. 982-993. 58. Imeri, L. and M.R. Opp, How (and why) the immune system makes us sleep. Nature Reviews Neuroscience, 2009. 10(3): p. 199-210. 59. Besedovsky, L., T. Lange, and J. Born, Sleep and immune function. Pflügers Archiv European Journal of Physiology, 2012. 463(1): p. 121-137. 60. Vezzani, A. and T.Z. Baram, New Roles for Interleukin‐1 Beta in the Mechanisms of Epilepsy. Epilepsy currents, 2007. 7(2): p. 45-50. 61. Huang, T.-R., et al., Interleukin-1 receptor (IL-1R) mediates epilepsy-induced sleep disruption. BMC neuroscience, 2016. 17(1): p. 74. 62. Vezzani, A., et al., The role of inflammation in epilepsy. Nature Reviews Neurology, 2011. 7(1): p. 31-40. 63. Maroso, M., et al., Interleukin‐1 type 1 receptor/Toll‐like receptor signalling in epilepsy: the importance of IL‐1beta and high‐mobility group box 1. Journal of internal medicine, 2011. 270(4): p. 319-326. 64. Viviani, B., et al., Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. The journal of neuroscience, 2003. 23(25): p. 8692-8700. 65. Salter, M.W. and L.V. Kalia, Src kinases: a hub for NMDA receptor regulation. Nature Reviews Neuroscience, 2004. 5(4): p. 317-328. 66. Rijkers, K., et al., The role of interleukin-1 in seizures and epilepsy: a critical review. Experimental neurology, 2009. 216(2): p. 258-271. 67. Dhir, A., Pentylenetetrazol (PTZ) kindling model of epilepsy. Current Protocols in Neuroscience, 2012: p. 9.37. 1-9.37. 12. 68. Morales, J.C., et al., A new rapid kindling variant for induction of cortical epileptogenesis in freely moving rats. Frontiers in cellular neuroscience, 2014. 8. 69. Hoffman, G.E., M.S. Smith, and J.G. Verbalis, c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Frontiers in neuroendocrinology, 1993. 14(3): p. 173-213. 70. Bossis, G., et al., Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Molecular and cellular biology, 2005. 25(16): p. 6964-6979. 71. Adler, J., et al., c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD (P) H: quinone oxidoreductase 1 determines c-Fos serum response kinetics. Molecular and cellular biology, 2010. 30(15): p. 3767-3778. 72. Legros, B. and C.W. Bazil, Effects of antiepileptic drugs on sleep architecture: a pilot study. Sleep medicine, 2003. 4(1): p. 51-55. 73. Yi, P.-L., et al., Occurrence of epilepsy at different zeitgeber times alters sleep homeostasis differently in rats. Sleep, 2012. 35(12): p. 1651-1665. 74. Oldani, A., et al., Nocturnal frontal lobe epilepsy misdiagnosed as sleep apnea syndrome. Acta neurologica scandinavica, 1998. 98(1): p. 67-71. 75. Mostacci, B., et al., Incidence of sudden unexpected death in nocturnal frontal lobe epilepsy: a cohort study. Sleep medicine, 2015. 16(2): p. 232-236. 76. Yi, P.-L., et al., Low-frequency electroacupuncture suppresses focal epilepsy and improves epilepsy-induced sleep disruptions. Journal of biomedical science, 2015. 22(1): p. 49. 77. NOMENCLATURE, C.C., et al., Voltage-gated calcium channels in epilepsy. Jasper's Basic Mechanisms of the Epilepsies, 2012: p. 66. 78. Malow, B.A., Sleep deprivation and epilepsy. Epilepsy currents, 2004. 4(5): p. 193-195. 79. Sutula, T.P., Experimental models of temporal lobe epilepsy: new insights from the study of kindling and synaptic reorganization. Epilepsia, 1990. 31(s3). 80. Kälviäinen, R., et al., Recurrent seizures may cause hippocambal damage in temporal lobe epilepsy. Neurology, 1998. 50(5): p. 1377-1382. 81. Berkovic, S.F., et al., Hypothalamic hamartoma and seizures: a treatable epileptic encephalopathy. Epilepsia, 2003. 44(7): p. 969-973. 82. Iori, V., F. Frigerio, and A. Vezzani, Modulation of neuronal excitability by immune mediators in epilepsy. Current opinion in pharmacology, 2016. 26: p. 118-123. 83. Balosso, S., et al., A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1β. Brain, 2008. 131(12): p. 3256-3265. 84. Florian, C., et al., Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. Journal of Neuroscience, 2011. 31(19): p. 6956-6962. 85. Deng, Q., et al., Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia, 2011. 59(7): p. 1084-1093.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84406-
dc.description.abstract  癲癇為一常見的神經疾病之一,此疾病常伴隨著睡眠障礙並影響所有年齡層,然而,睡眠及癲癇之交互作用,如今仍然尚未釐清。第一介白素 (interleukin-1 beta; IL-1β) 為一睡眠調節物質,並參與許多病理機制,包括癲癇及帕金森氏症。在先前的研究,指出於不同之光照時間 (zeitgeber times; ZTs) 下,癲癇發作對於睡眠的改變也有所不同,且發現第一介白素於ZT13癲癇導致的睡眠變化中具有一定重要性。NMDA受體 (N-methyl-D-aspartate receptors; NMDARs) 已被證實在癲癇形成之過程中,扮演著重要的角色。因此,本研究探討第一介白素與癲癇誘發睡眠障礙之相關性。 本研究分別於野生型 (Wildtype) 小鼠組別及第一介白素第一型受體基因剔除 (IL-1 receptor type I knockout; IL-1RI KO) 小鼠組別採腹腔注射環戊四氮(pentylenetetrazol; PTZ) 以誘發自發性全身性癲癇發作,並分析兩組別之睡眠醒覺之變化與其癲癇發作之閾值。在腹腔注射PTZ後,wildtype小鼠組別產生之自發性癲癇高於IL-1RI KO小鼠組別;在睡眠層次上之變化,wildtype小鼠組別減少了非快速動眼期睡眠 (non-rapid eye movement; NREM) 睡眠,IL-1RI KO小鼠組別則沒有顯著改變,此結果顯示第一介白素訊號於癲癇及睡眠失調上扮演著一定的角色。另一方面,於海馬迴及下視丘中,經 PTZ注射後,發現IL-1RI KO小鼠中NR1亞單位之表現和NR2B亞單位Tyr1472位點之磷酸化,皆顯著低於wildtype小鼠。相較之下,於前腦中經PTZ注射之wildtype小鼠中NR1亞單位表現與NR2B亞單位Tyr1472位點之磷酸化皆顯著高於IL-1RI KO小鼠。初步研究結果顯示,癲癇的發生受到NMDA受體之向上調節,且第一介白素之訊號參與其中。NR1蛋白表現與 NR2B 蛋白之磷酸化的增加可能介由 NF-κB 或 Src之路徑傳導。 經由給予Src 抑制劑注射於腦室中,wildtype小鼠組別相比未注射之wildtype小鼠組別,於 ZT1-ZT6 顯著增加了NREM 及REM睡眠,而 NR2B亞單位Tyr1472位點之磷酸化於wildtype小鼠之海馬迴及下視丘中,在 ZT24 顯著減少表現量;而給予 Src 活化劑注射於腦室中之IL-1RI KO小鼠組別相比未注射之IL-1RI KO小鼠組別,於 ZT1-ZT6 顯著減少NREM 睡眠,而 NR2B亞單位Tyr1472位點之磷酸化於IL-1RI KO小鼠之海馬迴及下視丘中,顯著增加了表現量;進一步相比注射Src 抑制劑之 wildtype小鼠組別與注射Src 活化劑之IL-1RI KO小鼠組別 wildtype小鼠組別之癲癇發作比例則顯著降低。 總結以上,此研究結果顯示,於PTZ誘發之癲癇發生及癲癇誘導之睡眠障礙中,第一介白素訊號的增加有助於NMDA受體之活化,並可能經由 Src 酪氨酸激酶之路徑直接磷酸化 NR2B (Tyr1472) 引起癲癇發生而導致睡眠障礙。zh_TW
dc.description.abstract  Epilepsy is one of the common neurological disorders that affect people of all ages and is often associated with sleep disorders, but the interaction between sleep and epilepsy is still not clear. Interleukin-1 beta (IL-1β) is a sleep regulatory substance (SRS) and participates in many pathological disorders, such as epilepsy and Parkinson’s disease. Previous studies have demonstrated that seizure occurred at different zeitgeber times (ZTs) alter sleep differently and IL-1 mediates the sleep alteration induced by the ZT13 epilepsy. There is evidence that N-methyl-D-aspartate receptors (NMDARs) play a key role in epileptogenesis. Therefore, we study the relationship between IL-1 and NMDA receptors in epileptogenesis and epilepsy-induced sleep disruption. In this study, the spontaneously generalized seizures were induced by intraperitoneal injection of pentylenetetrazol (PTZ), the sleep-wake activity was analyzed, and the seizure threshold was determined in both the wildtype and IL-1R1 knockout (KO) mice. We found that the occurrence of spontaneous seizure was higher in the wildtype treated with PTZ than that in the IL-1R1 KO mice treated with PTZ. Furthermore, the non-rapid eye movement (NREM) sleep decreased in wildtype mice treated with PTZ, but it was not altered in IL-1R1 KO mice. These results indicate the role of IL-1 signal in both epileptogenesis and sleep disturbance. The expression of NR1 subunit protein and the tyrosine phosphorylation of NR2B (at Tyr1472) in the hippocampus and the hypothalamus were significantly lower in the IL-1R1 KO mice when comparing to those in the wildtype mice. In contrast, the expression of NR1 and the phosphorylated-NR2B in the forebrain were significantly higher in the IL-1R1 KO mice treated with PTZ when comparing to those wildtype mice. These findings suggested that the epileptogenesis is attributed to the up-regulation of NMDA receptors, which is mediated by the IL-1 signal. The increase of NR1 expression and phosphorylated-NR2B maybe mediated by the NF-κB or Src signal cascades. We further investigated whether if the Src signal has been involved in IL-1 signal and epilepsy-induced sleep disruption. Our preliminary data showed that the percentage of seizure was significantly lower in the wildtype mice treated with PTZ and src inhibitor than IL-1R1 KO mice treated with PTZ and src activator. In addition, PTZ-induced seizure of IL-1R1 KO mice was treated with src family activator has increased the NREM sleep and the tyrosine phosphorylation of NR2B protein expression in the hippocampus and hypothalamus of the light period at ZT24. On the contrary, PTZ-induced seizure of wildtype mice was treated with src inhibitor has significantly decreased both in NREM and REM sleep; the tyrosine phosphorylation of NR2B protein expression was also significantly decreased at ZT24. In conclusion, our results indicated that the increase of NMDA receptor activity by the IL-1 signal contributes to the PTZ-induced epileptogenesis and the epilepsy-induced sleep disruption.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:10:37Z (GMT). No. of bitstreams: 1
U0001-1210202114503300.pdf: 7961379 bytes, checksum: 65e26bc4b8ac551b8d48f2b9a5626350 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v 圖目 xii 表目 xvii 壹、 前言 1 一、 癲癇 (Epilepsy) 1 1. 簡介 1 2. 影響癲癇生成之神經傳遞物質及離子通道系統 3 3. 癲癇與睡眠障礙之關聯 5 4. 癲癇之動物模式 6 二、 NMDA受體 (N-methyl-D-aspartate receptors) 8 1. 簡介 8 2. NMDA受體與癲癇生成之關聯 9 三、 第一介白素 (Interleukin-1) 10 1. 簡介 10 2. 第一介白素於睡眠所扮演的角色 11 3. 第一介白素於癲癇生成所扮演的角色 12 四、 環戊四氮 (Pentylenetetrazol) 14 1. 簡介 14 2. PTZ誘發癲癇之動物模式 14 五、 偵測腦部神經活化 16 1. 簡介 16 2. c-Fos之表現 16 六、 研究目的 18 貳、 材料與方法 19 一、 實驗動物 19 1. 簡介 19 2. 基因型鑑定 19 3. 飼養條件 21 二、 實驗方法-睡眠測試 22 1. 手術 22 2. 實驗流程 23 3. 藥物 23 三、 實驗方法-蛋白表現測試 24 1. 實驗流程 24 2. 蛋白質濃度分析 25 3. SDS-聚丙烯醯胺膠體電泳 25 四、 實驗方法-免疫螢光染色 28 1. 實驗流程 28 2. 腦組織切片 22 3. 免疫螢光染色 28 五、 實驗方法-活化及抑制Src酪氨酸激酶之睡眠測試 31 1. 手術 31 2. 實驗流程 31 3. 藥物 33 六、 實驗方法-活化及抑制Src酪氨酸激酶之蛋白測試 34 1. 實驗流程 34 七、 EEG (Electroencephalography) 紀錄與分析 35 1. 紀錄 35 2. 分析 35 3. 癲癇閾值之分析 35 八、 數據統計 38 參、 結果 31 一、 IL-1 R1 KO小鼠睡眠之變化 31 1. 非快速動眼期 (NREM) 睡眠 31 2. 快速動眼期 (REM) 睡眠 31 二、 誘發癲癇後IL-1 R1 KO小鼠睡眠之變化 42 1. 非快速動眼期 (NREM) 睡眠 42 2. 快速動眼期 (REM) 睡眠 42 三、 癲癇閾值之比較 45 1. 癲癇發生之比例 45 2. 振幅與頻率之差異 45 四、 IL-1 R1 KO小鼠蛋白表現之變化 47 1. 額葉皮質 (frontal cortex) 之蛋白表現 47 2. 海馬迴 (hippocampus) 之蛋白表現 47 3. 下視丘 (hypothalamus) 之蛋白表現 47 五、 誘發癲癇後IL-1 R1 KO小鼠蛋白表現之變化 51 1. 比較誘發癲癇前後各蛋白表現之變化 51 2. 誘發癲癇後於額葉皮質 (frontal cortex) 之蛋白表現 51 3. 誘發癲癇後於海馬迴 (hippocampus) 之蛋白表現 51 4. 誘發癲癇後於下視丘 (hippocampus) 之蛋白表現 52 六、 免疫螢光染色 57 1. 比較癲癇前後於額葉皮質 (frontal cortex) c-Fos之活化情形 57 2. 比較癲癇前後於海馬迴 (hippocampus) c-Fos之活化情形 57 3. 比較癲癇前後於下視丘 (hypothalamus) c-Fos之活化情形 58 七、 活化及抑制Src酪氨酸激酶之睡眠變化 60 1. 非快速動眼 (NREM) 睡眠於誘發店賢 60 2. 快速動眼 (REM) 睡眠 60 八、 活化及抑制Src酪氨酸激酶之癲癇閾值比較 65 1. 癲癇發生之比例 65 九、 活化及抑制Src酪氨酸激酶之誘發癲癇後IL-1 R1 KO與wildtype 小鼠蛋白表現之變化 66 1. 誘發癲癇後給予酪氨酸活化或抑制劑於額葉皮質 (frontal cortex) 之蛋白表現 66 2. 誘發癲癇後給予酪氨酸活化或抑制劑於海馬迴 (hippocampus) 之蛋白表現 67 3. 誘發癲癇後給予酪氨酸活化或抑制劑於下視丘 (hypothalamus) 之蛋白表現 67 肆、 討論 71 一、 分析IL-1訊號於癲癇誘導之睡眠障礙 73 1. IL-1訊號於睡眠之影響 73 2. IL-1訊號於自發性癲癇之睡眠障礙 75 3. IL-1訊號於癲癇發生之影響 77 4. 探討IL-1訊號於癲癇誘導之睡眠障礙所扮演的角色 80 二、 分析Src酪氨酸激酶於癲癇誘導之睡眠障礙 82 1. Src酪氨酸激酶於促癲癇發生之作用 82 2. 探討Src酪氨酸激酶於癲癇誘導之睡眠障礙 83 伍、 結論 86 陸、 附錄 87 柒、 參考文獻 91
dc.language.isozh-TW
dc.subject第一介白素zh_TW
dc.subject癲癇zh_TW
dc.subjectNMDA受體zh_TW
dc.subject睡眠障礙zh_TW
dc.subjectEpilepsyen
dc.subjectIL-1en
dc.subjectSleep disorderen
dc.subjectNMDA receptorsen
dc.title探討第一介白素訊號與NMDA受體於PTZ誘發癲癇與睡眠障礙中所扮演的角色zh_TW
dc.titleThe Role of IL-1 Signal and NMDA Receptor in PTZ-induced Epilepsy and Sleep Disruptionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee尹珮璐(Pei-Lu Yi),周碩彬(Shuo-Bin Jou),徐崇堯(Chung-Yao Hsu)
dc.subject.keyword癲癇,NMDA受體,睡眠障礙,第一介白素,zh_TW
dc.subject.keywordEpilepsy,NMDA receptors,Sleep disorder,IL-1,en
dc.relation.page96
dc.identifier.doi10.6342/NTU202103662
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-11-08
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
dc.date.embargo-lift2022-07-15-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
U0001-1210202114503300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved