Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84399
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良鴻(Liang-Hung Lu)
dc.contributor.authorShao-Che Chiuen
dc.contributor.author邱紹哲zh_TW
dc.date.accessioned2023-03-19T22:10:24Z-
dc.date.copyright2022-03-07
dc.date.issued2022
dc.date.submitted2022-02-25
dc.identifier.citation[1] B. Fan, “High Screen-to-Body Ratio to Become Mainstream, Penetration Rate of Smartphones Based on COF Packaging Would Reach 35% in 2019, Says TrendForce,” 2018, WitsView.com, <https://www.witsview.com/2018/11/08/high-screen-to-body-ratio-to-become-mainstream-penetration-rate-of-smartphones-based-on-cof-packaging-would-reach-35-in-2019-says-trendforce>. [2] Add Value and Improve User Experience with Better Haptics, Boreas Tech-nologies, Released 2020, available from < https://www.boreas.ca/pages/piezo-haptic-technologies-guides >. [3] How Piezoelectric Haptics Can Help you Improve Your Device, Boreas Technologies, Released 2020, available from < https://www.boreas.ca/pages/piezo-haptic-technologies-guides >. [4] T. Dhuyvetter and N. Rossetti, “Piezo Haptic Driver Extends Portables’ Bat-tery Life”, Maxim Integrated, available from < https://www.maximintegrated.com/cn/design/technical-documents/design-solutions/7/7124.html >. [5] P. Nuzzo, F. D. Bernardinis, P. Terreni, “Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures,” in IEEE Transactions on Circuits and Systems I, vol. 55, July 2008. [6] Shivam Singh Baghel, D. K. Mishra. 'Design and Analysis of Double-Tail Dynamic Comparator for Flash ADCs', 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), 2018. [7] A. Abidi and H. Xu, “Understanding the regenerative comparator circuit,” in Proc. IEEE Custom Integrated Circuits Conference, Sept 2014, pp. 1– 8. [8] I. D. Mosely, P. H. Mellor, and C.M. Bingham, “Effect of Dead Time on Harmonic Distortion in Class-D Audio Power Amplifiers,” Electron. Lett., vol. 35, no. 5, pp. 950-952, Jun. 1999. [9] J. Honda and J. Adams, “Class D Audio Amplifier Basics”, Appl. Note AN-1071, International Rectifier [10] E. Gaalaas, 'Class D audio amplifiers: What, why, and how,'Analog Dia-logue, vol. 40, pp. 1-7, 2006. [11] D. Liu et al., “A new circuit topology for floating high voltage level shifters,” Ph.D. Research in Microelectronics and Electronics (PRIME), 2014 10th Conference on Ph.D. Research in, June 2014 [12] D. O. Larsen et al., “High-voltage pulse-triggered SR latch level-shifter de-sign considerations” , in 32nd Norchip Conference 2014 [13] H. Ma, R. van der Zee, and B. Nauta, “Design and Analysis of a High-Efficiency High-Voltage Class-D Power Output Stage,” Solid-State Circuits, IEEE Journal of, vol. 49, no. 7, July 2014 [14] M. T. Tan, J. S. Chang, H. C. Chua, and B. H. Gwee, “An investigation into the parameters affecting total harmonic distortion in low-voltage low-power Class-D amplifiers,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 10, pp. 1304-1315, Oct. 2003. [15] F. Koeslag, H. du T. Mouton, H. J. Beukes, and P. Midya, “A detailed analy-sis of the effect of dead time on harmonic distortion in a class D audio power amplifier,” in Proc. IEEE AFRICON 2007, Oct., pp. 1–7. [16] J. Cerezo, “Class D audio amplifier performance relationship to MOSFET parameters,” Application Note AN-1070, International Rectifier. [17] Richard Palmer, “ Guidelines for Measuring Audio Power Amplifier Perfor-mance”, Appl. Report, Texas Instruments, Sep 2019 [18] J. S. Chang, B. H. Gwee, Y. S. Lon, and M. T. Tan, “A novel low-power low-voltage Class D amplifier with feedback for improving THD, power ef-ficiency and gain linearity,” IEEE International Symposium on Circuits and Systems (ISCAS), vol. 1, pp. 635-638, 2001. [19] W. Shu and J. S. Chang, “THD of Closed-loop Analog PWM Class-D Am-plifiers,” IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 55, pp. 1769-1777, 2008. [20] E. Roza, “Analog-to-Digital Conversion via Duty-Cycle Modulation,” IEEE Transactions on Circuits and Systems II, Analog and Digital Signal Pro-cessing, vol. 44, pp. 907-914, 1997. [21] P. van der Hulst, A. Veltman, and R. Groenenberg, “An asynchronous switching high-end power amplifier,” in Audio Engineering Society Con-vention 112, Apr. 2002. Power Electron., vol. 24, no. 3, pp. 714–729, 2009. [22] Adrian I. et al., “A High-Efficiency Self-Oscillating Class-D Amplifier for Piezoelectric Speakers” Solid-State Circuits, IEEE Journal of, vol. 30, no. 9, September 2015 [23] M. Hoyerby and M. Andersen, “Carrier distortion in hysteretic self-oscillating class-D audio power amplifiers: Analysis and optimiza-tion,”IEEE Trans. [24] W. Huang, “A new control for multiphase buck converter with fast transient response,” in Proc. IEEE Appl. Power Electron. Conf., 2001, pp. 273–279. [25] K. D. T. Ngo, S. Kirachaiwanich, and M.Walters, “Buck modulator with improved large power bandwidth,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, pp. 1335–1343, Oct. 2002. [26] P. Midya, P. T. Krein, and M. F. Greuel, “Sensorless current mode control- an observer-based technique for DC-DC converters,” IEEE Trans. Power Electron., vol. 16, no. 4, pp. 522–526, Jul. 2001. [27] S.-C. Tan, Y.-M. Lai, and C. K. Tse, “General design issues of sliding mode controllers in dc-dc converters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1160–1174, 2008. [28] M. Bensaada, A. B. Stambouli, M. Bekhti, S. Della Krachai, L. Boukhris, A. Bellar, M. A. Mebrek, and B. Nasri, “Sliding mode controller for buck dc-dc converter,” in Systems, Signals and Devices (SSD), 2012 9th International Multi-Conference on. IEEE, 2012, pp. 1–6. [29] B. Forejt, V. Rentala, J. D. Arteaga, and G. Burra, “A 700+ -mW class D design with direct battery hookup in a 90-nm process,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 9, pp. 1880–1887, Sep. 2005. [30] Jia-Ming Liu, Shih-Hsiung Chien et al., “A 100W 5.1-Channel Digital Class-D Audio Amplifier with Single-Chip Design,” Solid-State Circuits, IEEE Journal of, vol. 47, no. 6, June 2012 [31] S. Nanda, A. S. Panda, and G. L. K. Moganti, “A novel design of a high speed hysteresis-based comparator in 90-nm CMOS technology,” in Proc. IEEE Int. Conf. Inf. Process. (ICIP), Dec. 2015, pp. 388–391. [32] H.Y. Darweesh, F.A. Farag and Y.A. Khalaf, “New active capacitance multi-plier for low cutoff frequency filter design,” In Proc 19th Int. Conf. on Mi-croelectronics ICM’07, pp. 381–384, 2007. [33] K. M. Abdelmoneim and S. A. Mahmoud, “3V CMOS Rail to Rail OpAmp,” IEEE ICM, Dec. 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84399-
dc.description.abstract在現今生活中,觸控螢幕裝置已廣泛的出現在我們身邊的許多裝置中,並且由近年各大手機廠的旗艦機種可發現,消費者對於具備大螢幕裝置的需求愈漸提升,因此如何在螢幕使用上改善使用者的操作體驗便成為一個值得開發的研究領域。本論文提出以壓電陶瓷致動器來提供觸控螢幕所需的觸覺回饋,並針對其特性加以研究,設計了一個能提供高電壓、低失真以及高效率的驅動電路用以在適當的操作條件下驅動壓電陶瓷致動器。 上述驅動電路以TSMC 180 nm BCD 製程 (T18HVG2) 實現一個操作在60 V、200 Hz的高壓磁滯控制調變D類功率放大器。此D類功率放大器能達到穩定的70%高能量轉換效率,並產生最低失真為0.0045% THD的輸出訊號,以此作為壓電陶瓷致動器之驅動訊號源。zh_TW
dc.description.abstractIn today’s life, touch screen technology has widely appeared in many devices around us, observe the flagship models of major mobile phone manufacturers released in recent years and it’s obvious to find that consumers’ demand for large-screen devices has been in-creased year by year. Therefore, the issue of how to improve the user experience of the touchscreen operation becomes a research field worthy of development. In this thesis, pi-ezoelectric actuators are proposed to provide the tactile vibration feedback required for touchscreens, their characteristics are studied and compared with their counterparts. A high efficiency driving circuit that can provide high output voltage and low distortion output signal is designed to provide a proper operating condition for the piezoelectric ac-tuators. This driver circuit implements a proposed high voltage hysteresis control modulation class-D power amplifier operating at 60 V, 200 Hz and is realized with TSMC 180 nm BCD process (T18HVG2). This class-D power amplifier can achieve a stable high pow-er-efficiency performance of 70% and generate an output signal with a minimum distor-tion of 0.0045% THD, which is used as the driving signal source for the piezoelectric ac-tuators.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:10:24Z (GMT). No. of bitstreams: 1
U0001-2502202215502000.pdf: 6538172 bytes, checksum: 81dab887ea66f1fd9c872c317030a1e7 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 iii 摘要 ix Abstract xi Contents xiii List of Figures xvii List of Tables xxi Chapter 1 Introduction 1 1.1 Haptic Feedback 1 1.1.1 User Experience on Touchscreen 1 1.1.2 Application Apart from Touchscreen 2 1.1.3 High Definition Haptic Feedback 3 1.1.4 System Architecture of Haptic Technology 4 1.2 Thesis Organization 6 Chapter 2 Background and Motivation 7 2.1 Haptic Actuators in Current Device 7 2.1.1 Operation Range 9 2.1.2 Low Latency 9 2.1.3 Acceleration 10 2.1.4 Acoustic Noise 11 2.1.5 Design Flexibility 11 2.2 Motivation 13 2.3 Circuit Proposed to be Designed 14 Chapter 3 Open-Loop Carrier-Based Class-D Power Amplifier 17 3.1 Chapter Guides 18 3.2 Circuit Architecture 19 3.3 Circuit Implementation 21 3.3.1 Dynamic Comparator for Pulse-Width Modulation 21 3.3.2 Dead-Time Controller 26 3.3.3 Level-Shifter and Low-Side Delay 29 3.3.4 Power Stage and Gate Driver 36 3.4 Experimental Results 40 3.4.1 The Printed-Circuit-Board (PCB) Design 40 3.4.2 The Efficiency Measurement 41 3.4.3 The Distortion Measurement 43 3.5 Remarks 46 Chapter 4 Closed-Loop Hysteresis Control Modulation Class-D Amplifier 47 4.1 Chapter Guides 48 4.2 Fundamentals of Class-D Amplifiers Feedback Topologies 49 4.2.1 Closed-Loop Pulse-Width Modulation 49 4.2.2 Delta-Sigma (∆Σ) Modulation 52 4.2.3 Self-Oscillating Modulation 55 4.2.4 Proposed Hysteresis Control Modulation 57 4.3 Circuit Implementation 62 4.3.1 Hysteresis Comparator 62 4.3.2 On-Chip Feedback Integrator with Capacitor Multiplier Technique 67 4.4 Experimental Results 70 4.4.1 The Printed Circuit Board (PCB) Design 70 4.4.2 The Efficiency Measurement 71 4.4.3 The Distortion Measurement 73 4.5 Remarks 77 Chapter 5 System Implementation of Haptic Feedback System 78 5.1 System Architecture 79 5.2 Arduino Software Program 80 5.2.1 The Touch-Sensing Program 80 5.2.2 The Sinewave Generating Program 82 5.2.3 The Accelerometer Program 86 5.3 Remarks 89 Chapter 6 Conclusion 91 Reference 92
dc.language.isozh-TW
dc.subject切換式功率放大器zh_TW
dc.subjectD類功率放大器zh_TW
dc.subject互補式金屬氧化物半導體zh_TW
dc.subject驅動晶片zh_TW
dc.subject觸覺回饋系統zh_TW
dc.subject音頻放大器zh_TW
dc.subjectClass-D power amplifieren
dc.subjecthaptic feedback systemen
dc.subjectdriver ICen
dc.subjectswitching-type power amplifieren
dc.subjectaudio amplifieren
dc.subjectCMOSen
dc.title一個應用於驅動新型觸控回饋系統之壓電材料致動器的高壓磁滯控制調變D類功率放大器zh_TW
dc.titleA High Voltage Hysteresis Control Modulation Class-D Power Amplifier for Piezoelectric Actuator of a Novel Haptic Feedback Systemen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林宗賢(Tsung-Hsien Lin),陳巍仁(Wei-Zen Chen)
dc.subject.keyword互補式金屬氧化物半導體,D類功率放大器,音頻放大器,切換式功率放大器,驅動晶片,觸覺回饋系統,zh_TW
dc.subject.keywordCMOS,Class-D power amplifier,audio amplifier,switching-type power amplifier,driver IC,haptic feedback system,en
dc.relation.page95
dc.identifier.doi10.6342/NTU202200604
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-03-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
dc.date.embargo-lift2027-02-25-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2502202215502000.pdf
  未授權公開取用
6.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved