Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84380
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉緒宗(Shiuh-Tzung Liu)
dc.contributor.authorShu-Hao Wanen
dc.contributor.author萬書豪zh_TW
dc.date.accessioned2023-03-19T22:09:52Z-
dc.date.copyright2022-04-26
dc.date.issued2022
dc.date.submitted2022-03-24
dc.identifier.citation[1] De, N.; Yoo, E. J. ACS Catal. 2017, 8, 48-58. [2] Allen, B. D. W.; Lakeland, C. P.; Harrity, J. P. A. Chem. Eur. J. 2017, 23, 13830-13857. [3] Li, T. R.; Tan, F.; Lu, L. Q.; Wei, Y.; Wang, Y. N.; Liu, Y. Y.; Yang, Q. Q.; Chen, J. R.; Shi, D. Q.; Xiao, W. J. Nat. Commun. 2014, 5, 5500. [4] Wang, Q.; Qi, X.; Lu, L. Q.; Li, T. R.; Yuan, Z. G.; Zhang, K.; Li, B. J.; Lan, Y.; Xiao, W. J. Angew. Chem. Int. Ed. 2016, 55, 2840-2844. [5] Tucker, Z. D.; Hill, H. M.; Smith, A. L.; Ashfeld, B. L. Org. Lett. 2020, 22, 6605-6609. [6] Wang, Y. N.; Wang, B. C.; Zhang, M. M.; Gao, X. W.; Li, T. R.; Lu, L. Q.; Xiao, W. J. Org. Lett. 2017, 19, 4094-4097. [7] Guo, C.; Fleige, M.; Janssen-Muller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840-7843. [8] Guo, C.; Janssen-Muller, D.; Fleige, M.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 4443-4451. [9] Wang, Y.; Jia, S.; Li, E. Q.; Duan, Z. J. Org. Chem. 2019, 84, 15323-15330. [10] Gao, Y.; Zhang, X.; Zhang, X.; Miao, Z. Org. Lett. 2021, 23, 2415-2420. [11] Zhao, H. W.; Ding, W. Q.; Guo, J. M.; Wang, L. R.; Song, X. Q.; Fan, X. Z.; Tang, Z.; Wu, H. H.; Bi, X. F. Adv. Synth. Catal. 2019, 361, 4111-4116. [12] Sun, M.; Wan, X.; Zhou, S. J.; Mei, G. J.; Shi, F. Chem. Commun. 2019, 55, 1283-1286. [13] Wang, Y. N.; Xiong, Q.; Lu, L. Q.; Zhang, Q. L.; Wang, Y.; Lan, Y.; Xiao, W. J. Angew. Chem. Int. Ed. 2019, 58, 11013-11017. [14] Mei, G. J.; Bian, C. Y.; Li, G. H.; Xu, S. L.; Zheng, W. Q.; Shi, F. Org. Lett. 2017, 19, 3219-3222. [15] Li, M. M.; Wei, Y.; Liu, J.; Chen, H. W.; Lu, L. Q.; Xiao, W. J. J. Am. Chem. Soc. 2017, 139, 14707-14713. [16] Jin, J. H.; Wang, H.; Yang, Z. T.; Yang, W. L.; Tang, W.; Deng, W. P. Org. Lett. 2018, 20, 104-107. [17] Lu, Y. N.; Lan, J. P.; Mao, Y. J.; Wang, Y. X.; Mei, G. J.; Shi, F. Chem. Commun. 2018, 54, 13527-13530. [18] Mun, D.; Kim, E.; Kim, S.-G. Synthesis 2019, 51, 2359-2370. [19] Wang, C.; Li, Y.; Wu, Y.; Wang, Q.; Shi, W.; Yuan, C.; Zhou, L.; Xiao, Y.; Guo, H. Org. Lett. 2018, 20, 2880-2883. [20] Wang, C.; Tunge, J. A. J. Am. Chem. Soc. 2008, 130, 8118-8119. [21] Wang, C.; Pahadi, N.; Tunge, J. A. Tetrahedron 2009, 65, 5102-5109. [22] Wei, Y.; Lu, L. Q.; Li, T. R.; Feng, B.; Wang, Q.; Xiao, W. J.; Alper, H. Angew. Chem. Int. Ed. 2016, 55, 2200-2204. [23] Leth, L. A.; Glaus, F.; Meazza, M.; Fu, L.; Thøgersen, M. K.; Bitsch, E. A.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2016, 55, 15272-15276. [24] Suo, J.-J.; Du, J.; Jiang, Y.-J.; Chen, D.; Ding, C.-H.; Hou, X.-L. Chin. Chem. Lett. 2019, 30, 1512-1514. [25] Mei, G. J.; Li, D.; Zhou, G. X.; Shi, Q.; Cao, Z.; Shi, F. Chem. Commun. 2017, 53, 10030-10033. [26] Hao, H. W.; Feng, N. N.; Guo, J. M.; Du, J.; Ding, W. Q.; Wang, L. R.; Song, X. Q. J. Org. Chem. 2018, 83, 9291-9299. [27] Jiang, X. L.; Wu, S. F.; Wang, J. R.; Lu, H.; Mei, G. J.; Shi, F. Org. Biomol. Chem. 2018, 16, 8395-8402. [28] Fairuz Binte Sheikh Ismail, S. N.; Yang, B.; Zhao, Y. Org. Lett. 2021, 23, 2884-2889. [29] Qi, Z.; Kong, L.; Li, X. Org. Lett. 2016, 18, 4392-4395. [30] Tian, H.; Zhang, P.; Peng, F.; Yang, H.; Fu, H. Org. Lett. 2017, 19, 3775-3778. [31] Duan, S.; Cheng, B.; Duan, X.; Bao, B.; Li, Y.; Zhai, H. Org. Lett. 2018, 20, 1417-1420. [32] Hao, J.; Xu, Y.; Xu, Z.; Zhang, Z.; Yang, W. Org. Lett. 2018, 20, 7888-7892. [33] Liu, Q.; Liu, T. X.; Ru, Y.; Zhu, X.; Zhang, G. Chem. Commun. 2019, 55, 14498-14501. [34] Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C. G.; Glorius, F. Nat. Catal. 2019, 3, 48-54. [35] Song, B.; Xie, P.; Li, Y.; Hao, J.; Wang, L.; Chen, X.; Xu, Z.; Quan, H.; Lou, L.; Xia, Y.; Houk, K. N.; Yang, W. J. Am. Chem. Soc. 2020, 142, 9982-9992. [36] Zhang, J.; Wang, J. Y.; Huang, M. H.; Hao, W. J.; Tu, X. C.; Tu, S. J.; Jiang, B. J. Org. Chem. 2020, 85, 7036-7044. [37] Wang, K.; Wang, B.; Liu, X.; Fan, H.; Liu, Y.; Li, C. Chin. J. Catal. 2021, 42, 1227-1237. [38] Qin, X.-Y.; Meng, F.-T.; Wang, M.; Tu, S.-J.; Hao, W.-J.; Wang, J.; Jiang, B. ACS Catal. 2021, 11, 6951-6959. [39] Li, T. R.; Cheng, B. Y.; Wang, Y. N.; Zhang, M. M.; Lu, L. Q.; Xiao, W. J. Angew. Chem. Int. Ed. 2016, 55, 12422-12426. [40] Wang, Q.; Li, T. R.; Lu, L. Q.; Li, M. M.; Zhang, K.; Xiao, W. J. J. Am. Chem. Soc. 2016, 138, 8360-8363. [41] Li, T. R.; Lu, L. Q.; Wang, Y. N.; Wang, B. C.; Xiao, W. J. Org. Lett. 2017, 19, 4098-4101. [42] Lu, X.; Ge, L.; Cheng, C.; Chen, J.; Cao, W.; Wu, X. Chem. Eur. J. 2017, 23, 7689-7693. [43] Shao, W.; You, S. L. Chem. Eur. J. 2017, 23, 12489-12493. [44] Song, J.; Zhang, Z. J.; Gong, L. Z. Angew. Chem. Int. Ed. 2017, 56, 5212-5216. [45] Chen, H.; Lu, X.; Xia, X.; Zhu, Q.; Song, Y.; Chen, J.; Cao, W.; Wu, X. Org. Lett. 2018, 20, 1760-1763. [46] Ji, D.; Wang, C.; Sun, J. Org. Lett. 2018, 20, 3710-3713. [47] Jiang, F.; Feng, X.; Wang, R.; Gao, X.; Jia, H.; Xiao, Y.; Zhang, C.; Guo, H. Org. Lett. 2018, 20, 5278-5281. [48] Li, T. R.; Zhang, M. M.; Wang, B. C.; Lu, L. Q.; Xiao, W. J. Org. Lett. 2018, 20, 3237-3240. [49] Lu, Q.; Cembellin, S.; Gressies, S.; Singha, S.; Daniliuc, C. G.; Glorius, F. Angew. Chem. Int. Ed. 2018, 57, 1399-1403. [50] Lu, S.; Ong, J. Y.; Poh, S. B.; Tsang, T.; Zhao, Y. Angew. Chem. Int. Ed. 2018, 57, 5714-5719. [51] Wang, B. C.; Wang, Y. N.; Zhang, M. M.; Xiao, W. J.; Lu, L. Q. Chem. Commun. 2018, 54, 3154-3157. [52] Wang, S.; Liu, M.; Chen, X.; Wang, H.; Zhai, H. Chem. Commun. 2018, 54, 8375-8378. [53] Wang, Y.; Zhu, L.; Wang, M.; Xiong, J.; Chen, N.; Feng, X.; Xu, Z.; Jiang, X. Org. Lett. 2018, 20, 6506-6510. [54] Zhang, Y. C.; Zhang, Z. J.; Fan, L. F.; Song, J. Org. Lett. 2018, 20, 2792-2795. [55] Simlandy, A. K.; Ghosh, B.; Mukherjee, S. Org. Lett. 2019, 21, 3361-3366. [56] Sun, B.-B.; Hu, Q.-X.; Hu, J.-M.; Yu, J.-Q.; Jia, J.; Wang, X.-W. Tetrahedron Lett. 2019, 60, 1967-1970. [57] Yuan, W.-K.; Sun, S.-Z.; Zhang, L.-B.; Wen, L.-R.; Li, M. Org. Chem. Front. 2019, 6, 2892-2896. [58] Zhang, Z. J.; Zhang, L.; Geng, R. L.; Song, J.; Chen, X. H.; Gong, L. Z. Angew. Chem. Int. Ed. 2019, 58, 12190-12194. [59] Shao, W.; Xu-Xu, Q. F.; You, S. L. Chem. Asian. J. 2020, 15, 2462-2466. [60] Wang, S.; Song, M.; Li, X.; Huang, Y.; Zhao, T.; Wei, Z.; Lan, Y.; Tan, H. Org. Lett. 2020, 22, 8752-8757. [61] Zhong, D.; Jiang, F.; Shen, S.; Wang, L.; Wang, W.; Wu, Y.; Xiao, Y.; Guo, H. Adv. Synth. Catal. 2020, 362, 5026-5030. [62] Wang, L.; Jiang, F.; Gao, X.; Wang, W.; Wu, Y.; Guo, H.; Zheng, B. Adv. Synth. Catal. 2021, 363, 2066-2070. [63] Das, P.; Gondo, S.; Nagender, P.; Uno, H.; Tokunaga, E.; Shibata, N. Chem. Sci. 2018, 9, 3276-3281. [64] Punna, N.; Das, P.; Gouverneur, V.; Shibata, N. Org. Lett. 2018, 20, 1526-1529. [65] Uno, H.; Imai, T.; Harada, K.; Shibata, N. ACS Catal. 2020, 10, 1454-1459. [66] Uno, H.; Punna, N.; Tokunaga, E.; Shiro, M.; Shibata, N. Angew. Chem. Int. Ed. 2020, 59, 8187-8194. [67] Kawai, K.; Uno, H.; Fujimoto, D.; Shibata, N. Helv. Chim. Acta 2021, 104, e2000217. [68] Sadlej-Sosnowska, N. J. Phys. Org. Chem. 2004, 17, 303-311. [69] Pandey, S. K.; Manogaran, D.; Manogaran, S.; Schaefer, H. F., III J. Phys. Chem. A 2016, 120, 2894-901. [70] Dey, S.; Manogaran, D.; Manogaran, S.; Schaefer, H. F., III J. Phys. Chem. A 2018, 122, 6953-6960. [71] Rieckhoff, S.; Meisner, J.; Kastner, J.; Frey, W.; Peters, R. Angew. Chem. Int. Ed. 2018, 57, 1404-1408. [72] Ilardi, E. A.; Njardarson, J. T. J. Org. Chem. 2013, 78, 9533-9540. [73] He, J.; Ling, J.; Chiu, P. Chem. Rev. 2014, 114, 8037-8128. [74] Allen, B. D. W.; Lakeland, C. P.; Harrity, J. P. A. Chem. Eur. J. 2017, 23, 13830-13857. [75] Guo, W.; Gomez, J. E.; Cristofol, A.; Xie, J.; Kleij, A. W. Angew. Chem. Int. Ed. 2018, 57, 13735-13747. [76] Li, Q. Z.; Liu, Y.; Li, M. Z.; Zhang, X.; Qi, T.; Li, J. L. Org. Biomol. Chem. 2020, 18, 3638-3648. [77] Niu, B.; Wei, Y.; Shi, M. Org. Chem. Front. 2021, 8, 3475-3501. [78] Yang, L. C.; Rong, Z. Q.; Wang, Y. N.; Tan, Z. Y.; Wang, M.; Zhao, Y. Angew. Chem. Int. Ed. 2017, 56, 2927-2931. [79] Rong, Z. Q.; Yang, L. C.; Liu, S.; Yu, Z.; Wang, Y. N.; Tan, Z. Y.; Huang, R. Z.; Lan, Y.; Zhao, Y. J. Am. Chem. Soc. 2017, 139, 15304-15307. [80] Wang, Y. N.; Yang, L. C.; Rong, Z. Q.; Liu, T. L.; Liu, R.; Zhao, Y. Angew. Chem. Int. Ed. 2018, 57, 1596-1600. [81] Khan, A.; Zheng, R.; Kan, Y.; Ye, J.; Xing, J.; Zhang, Y. J. Angew. Chem. Int. Ed. 2014, 53, 6439-6442. [82] Khan, A.; Xing, J.; Zhao, J.; Kan, Y.; Zhang, W.; Zhang, Y. J. Chem. Eur. J. 2015, 21, 120-124. [83] Yang, L.; Khan, A.; Zheng, R.; Jin, L. Y.; Zhang, Y. J. Org. Lett. 2015, 17, 6230-6233. [84] Zhang, Y.; Khan, A. Synlett 2015, 26, 853-860. [85] Khan, I.; Zhao, C.; Zhang, Y. J. Chem. Commun. 2018, 54, 4708-4711. [86] Liu, K.; Khan, I.; Cheng, J.; Hsueh, Y. J.; Zhang, Y. J. ACS Catal. 2018, 8, 11600-11604. [87] Liu, Q.; Liu, T. X.; Ru, Y.; Zhu, X.; Zhang, G. Chem. Commun. 2019, 55, 14498-14501. [88] Liu, Y.; Huang, Q. W.; Li, Q. Z.; Leng, H. J.; Dai, Q. S.; Zeng, R.; Liu, Y. Q.; Zhang, X.; Han, B.; Li, J. L. Org. Lett. 2019, 21, 7478-7483. [89] Park, J. U.; Ahn, H. I.; Cho, H. J.; Xuan, Z.; Kim, J. H. Adv. Synth. Catal. 2020, 362, 1836-1840. [90] Wang, J.; Zhao, L.; Rong, Q.; Lv, C.; Lu, Y.; Pan, X.; Zhao, L.; Hu, L. Org. Lett. 2020, 22, 5833-5838. [91] Xiong, W.; Zhang, S.; Li, H.; Zhang, Z.; Xu, T. J. Org. Chem. 2020, 85, 8773-8779. [92] Zhang, H.; Gao, X.; Jiang, F.; Shi, W.; Wang, W.; Wu, Y.; Zhang, C.; Shi, X.; Guo, H. Eur. J. Org. Chem. 2020, 4801-4804. [93] Zhao, C.; Khan, I.; Zhang, Y. J. Chem. Commun. 2020, 56, 12431-12434. [94] Trost, B. M.; Zuo, Z. Angew. Chem. Int. Ed. 2021, 60, 5806-5810. [95] Zhao, C.; Shah, B. H.; Li, H.; Wu, X.; Zhang, Y. J. Asian J. Org. Chem. 2021, 10, 545-548. [96] Gao, X.; Zhu, D.; Jiang, F.; Liao, J.; Wang, W.; Wu, Y.; Zheng, L.; Guo, H. Org. Biomol. Chem. 2021, 19, 4877-4881. [97] Lv, H. P.; Yang, X. P.; Wang, B. L.; Yang, H. D.; Wang, X. W.; Wang, Z. Org. Lett. 2021, 23, 4715-4720. [98] Gao, X.; Xia, M.; Yuan, C.; Zhou, L.; Sun, W.; Li, C.; Wu, B.; Zhu, D.; Zhang, C.; Zheng, B.; Wang, D.; Guo, H. ACS Catal. 2019, 9, 1645-1654. [99] Yuan, C.; Wu, Y.; Wang, D.; Zhang, Z.; Wang, C.; Zhou, L.; Zhang, C.; Song, B.; Guo, H. Adv. Synth. Catal. 2018, 360, 652-658. [100] Yang, Y.; Yang, W. Chem. Commun. 2018, 54, 12182-12185. [101] Zhao, H. W.; Du, J.; Guo, J. M.; Feng, N. N.; Wang, L. R.; Ding, W. Q.; Song, X. Q. Chem. Commun. 2018, 54, 9178-9181. [102] Wei, Y.; Liu, S.; Li, M. M.; Li, Y.; Lan, Y.; Lu, L. Q.; Xiao, W. J. J. Am. Chem. Soc. 2019, 141, 133-137. [103] Xu, Y.; Chen, L.; Yang, Y. W.; Zhang, Z.; Yang, W. Org. Lett. 2019, 21, 6674-6678. [104] Ahn, H. I.; Park, J. U.; Xuan, Z.; Kim, J. H. Org. Biomol. Chem. 2020, 18, 9826-9830. [105] An, X. T.; Du, J. Y.; Jia, Z. L.; Zhang, Q.; Yu, K. Y.; Zhang, Y. Z.; Zhao, X. H.; Fang, R.; Fan, C. A. Chem. Eur. J. 2020, 26, 3803-3809. [106] Gao, X.; Zhu, D.; Chen, Y.; Deng, H.; Jiang, F.; Wang, W.; Wu, Y.; Guo, H. Org. Lett. 2020, 22, 7158-7163. [107] Xia, C.; Wang, D.-C.; Qu, G.-R.; Guo, H.-M. Org. Chem. Front. 2020, 7, 1474-1480. [108] Zhao, H. W.; Ding, W. Q.; Wang, L. R.; Guo, J. M.; Song, X. Q.; Wu, H. H.; Tang, Z.; Fan, X. Z.; Bi, X. F. Eur. J. Org. Chem. 2020, 5557-5562. [109] Xia, C.; Wang, D.-C.; Qu, G.-R.; Guo, H.-M. Org. Chem. Front. 2020, 7, 1474-1480. [110] Yang, G.; Ke, Y. M.; Zhao, Y. Angew. Chem. Int. Ed. 2021, 60, 12775-12780. [111] Uno, H.; Kawai, K.; Shiro, M.; Shibata, N. ACS Catal. 2020, 10, 14117-14126. [112] Dai, Q. S.; Tao, Y. M.; Zhang, X.; Leng, H. J.; Huang, H.; Xiang, P.; Li, Q. Z.; Wang, Q. W.; Li, J. L. Chem. Commun. 2020, 56, 12439-12442. [113] Wu, H. H.; Fan, X. Z.; Tang, Z.; Zhang, H.; Cai, L. Y.; Bi, X. F.; Zhao, H. W. Org. Lett. 2021, 23, 2802-2806. [114] Das, P.; Gondo, S.; Nagender, P.; Uno, H.; Tokunaga, E.; Shibata, N. Chem. Sci. 2018, 9, 3276-3281. [115] Uno, H.; Punna, N.; Tokunaga, E.; Shiro, M.; Shibata, N. Angew. Chem. Int. Ed. 2020, 59, 8187-8194. [116] Uno, H.; Imai, T.; Harada, K.; Shibata, N. ACS Catal. 2020, 10, 1454-1459. [117] Zhang, X.; Li, X.; Li, J. L.; Wang, Q. W.; Zou, W. L.; Liu, Y. Q.; Jia, Z. Q.; Peng, F.; Han, B. Chem. Sci. 2020, 11, 2888-2894. [118] Gomez, J. E.; Guo, W.; Kleij, A. W. Org. Lett. 2016, 18, 6042-6045. [119] Guo, W.; Martinez-Rodriguez, L.; Kuniyil, R.; Martin, E.; Escudero-Adan, E. C.; Maseras, F.; Kleij, A. W. J. Am. Chem. Soc. 2016, 138, 11970-11978. [120] Guo, W.; Martinez-Rodriguez, L.; Martin, E.; Escudero-Adan, E. C.; Kleij, A. W. Angew. Chem. Int. Ed. 2016, 55, 11037-11040. [121] Mao, Y.; Zhai, X.; Khan, A.; Cheng, J.; Wu, X.; Zhang, Y. J. Tetrahedron Lett. 2016, 57, 3268-3271. [122] Miralles, N.; Gomez, J. E.; Kleij, A. W.; Fernandez, E. Org. Lett. 2017, 19, 6096-6099. [123] Xie, J.; Guo, W.; Cai, A.; Escudero-Adan, E. C.; Kleij, A. W. Org. Lett. 2017, 19, 6388-6391. [124] Cristofol, A.; Escudero-Adan, E. C.; Kleij, A. W. J. Org. Chem. 2018, 83, 9978-9990. [125] Deng, L.; Kleij, A. W.; Yang, W. Chem. Eur. J. 2018, 24, 19156-19161. [126] Guo, W.; Kuniyil, R.; Gomez, J. E.; Maseras, F.; Kleij, A. W. J. Am. Chem. Soc. 2018, 140, 3981-3987. [127] Ke, M.; Huang, G.; Ding, L.; Fang, J.; Chen, F. ChemCatChem 2019, 11, 4720-4724. [128] Zhao, C.; Shah, B. H.; Khan, I.; Kan, Y.; Zhang, Y. J. Org. Lett. 2019, 21, 9045-9049. [129] Shi, L.; He, Y.; Gong, J.; Yang, Z. Asian J. Org. Chem. 2019, 8, 823-827. [130] Chen, L.; Quan, H.; Xu, Z.; Wang, H.; Xia, Y.; Lou, L.; Yang, W. Nat. Commun. 2020, 11, 2151. [131] Feng, W.; Xu, L.; Li, D. Y.; Liu, P. N. Org. Lett. 2020, 22, 5094-5098. [132] Ke, M.; Liu, Z.; Huang, G.; Wang, J.; Tao, Y.; Chen, F. Org. Lett. 2020, 22, 4135-4140. [133] Khan, A.; Zhang, J.; Khan, S. Green Chem. 2020, 22, 4116-4120. [134] Song, B.; Xie, P.; Li, Y.; Hao, J.; Wang, L.; Chen, X.; Xu, Z.; Quan, H.; Lou, L.; Xia, Y.; Houk, K. N.; Yang, W. J. Am. Chem. Soc. 2020, 142, 9982-9992. [135] Taily, I. M.; Saha, D.; Banerjee, P. Org. Biomol. Chem. 2020, 18, 6564-6570. [136] Wang, Y.; Chai, J.; You, C.; Zhang, J.; Mi, X.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2020, 142, 3184-3195. [137] Zhang, J.; Wang, J. Y.; Huang, M. H.; Hao, W. J.; Tu, X. C.; Tu, S. J.; Jiang, B. J. Org. Chem. 2020, 85, 7036-7044. [138] Zhang, M.-N.; Khan, S.; Zhang, J.; Khan, A. RSC Adv. 2020, 10, 31022-31026. [139] Liu, Z.; Ke, M.; Zhang, K.; Zuo, S.; Jiang, M.; Chen, F. Asian J. Org. Chem. 2021, 10, 757-761. [140] Liu, Z.; Ke, M.; Zhang, K.; Wang, Z.; Ye, B.; Chen, F. ChemCatChem 2021, 13, 1753-1762. [141] Niu, B.; Wu, X. Y.; Wei, Y.; Shi, M. Org. Lett. 2019, 21, 4859-4863. [142] Zhao, H. W.; Wang, L. R.; Guo, J. M.; Ding, W. Q.; Song, X. Q.; Wu, H. H.; Tang, Z.; Fan, X. Z.; Bi, X. F. Adv. Synth. Catal. 2019, 361, 4761-4771. [143] Singha, S.; Patra, T.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551-3554. [144] Zeng, R.; Li, J.-L.; Zhang, X.; Liu, Y.-Q.; Jia, Z.-Q.; Leng, H.-J.; Huang, Q.-W.; Liu, Y.; Li, Q.-Z. ACS Catal. 2019, 9, 8256-8262. [145] Yang, L. C.; Tan, Z. Y.; Rong, Z. Q.; Liu, R.; Wang, Y. N.; Zhao, Y. Angew. Chem. Int. Ed. 2018, 57, 7860-7864. [146] Wang, H.; Qiu, S.; Wang, S.; Zhai, H. ACS Catal. 2018, 8, 11960-11965. [147] Cai, A.; Guo, W.; Martinez-Rodriguez, L.; Kleij, A. W. J. Am. Chem. Soc. 2016, 138, 14194-14197. [148] Khan, A.; Khan, S.; Khan, I.; Zhao, C.; Mao, Y.; Chen, Y.; Zhang, Y. J. J. Am. Chem. Soc. 2017, 139, 10733-10741. [149] Hu, L.; Cai, A.; Wu, Z.; Kleij, A. W.; Huang, G. Angew. Chem. Int. Ed. 2019, 58, 14694-14702. [150] Khan, S.; Li, H.; Zhao, C.; Wu, X.; Zhang, Y. J. Org. Lett. 2019, 21, 9457-9462. [151] Xia, Y.; Bao, Q. F.; Li, Y.; Wang, L. J.; Zhang, B. S.; Liu, H. C.; Liang, Y. M. Chem. Commun. 2019, 55, 4675-4678. [152] Khan, A.; Zhao, H.; Zhang, M.; Khan, S.; Zhao, D. Angew. Chem. Int. Ed. 2020, 59, 1340-1345. [153] Xia, C.; Wang, D.-C.; Qu, G.-R.; Guo, H.-M. Org. Chem. Front. 2021, 8, 2569-2575. [154] Huang, Y.; Ma, C.; Liu, S.; Yang, L.-C.; Lan, Y.; Zhao, Y. Chem 2021, 7, 812-826. [155] Trost, B. M.; Hurnaus, R. Tetrahedron Lett. 1989, 30, 3893-3896. [156] Larksarp, C.; Alper, H. J. Am. Chem. Soc. 1997, 119, 3709-3715. [157] Li, Z.; Mayer, R. J.; Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2020, 142, 8383-8402. [158] Trost, B. M.; Bunt, R. C. Angew. Chem. Int. Ed. 1996, 35, 99-102. [159] Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1988, 110, 7933-7935. [160] Khan, A.; Xing, J.; Zhao, J.; Kan, Y.; Zhang, W.; Zhang, Y. J. Chem. Eur. J. 2015, 21, 120-124. [161] Kosaka, Y.; Kawauchi, S.; Goseki, R.; Ishizone, T. Macromolecules 2015, 48, 4421-4430. [162] Tanner, D. Angew. Chem. Int. Ed. 1994, 33, 599-619. [163] Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247-258. [164] Cardoso, A. L.; Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2012, 6479-6501. [165] Ha, H.-J.; Jung, J.-H.; Lee, W. K. Asian J. Org. Chem. 2014, 3, 1020-1035. [166] Pellissier, H. Adv. Synth. Catal. 2014, 356, 1899-1935. [167] Feng, J.-J.; Zhang, J. ACS Catal. 2016, 6, 6651-6661. [168] Sabir, S.; Kumar, G.; Jat, J. L. Asian J. Org. Chem. 2017, 6, 782-793. [169] Akhtar, R.; Naqvi, S. A. R.; Zahoor, A. F.; Saleem, S. Mol. Divers. 2018, 22, 447-501. [170] Roma, E.; Tosi, E.; Miceli, M.; Gasperi, T. Asian J. Org. Chem. 2018, 7, 2357-2367. [171] Sabir, S.; Kumar, G.; Verma, V. P.; Jat, J. L. ChemistrySelect 2018, 3, 3702-3711. [172] Padwa, A.; Murphree, S. S. Arkivoc 2006, 3, 6-33. [173] Mack, D. J.; Njardarson, J. T. ACS Catal. 2013, 3, 272-286. [174] Ilardi, E. A.; Njardarson, J. T. J. Org. Chem. 2013, 78, 9533-9540. [175] Ohno, H. Chem. Rev. 2014, 114, 7784-814. [176] Cunha, R. L. O. R.; Diego, D. G.; Simonelli, F.; Comasseto, J. V. Tetrahedron Lett. 2005, 46, 2539-2542. [177] Brichacek, M.; Lee, D.; Njardarson, J. T. Org. Lett. 2008, 10, 5023-5026. [178] Fantauzzi, S.; Gallo, E.; Caselli, A.; Piangiolino, C.; Ragaini, F.; Re, N.; Cenini, S. Chem. Eur. J. 2009, 15, 1241-51. [179] Mack, D. J.; Njardarson, J. T. Chem. Sci. 2012, 3, 3321-3325. [180] Kanno, E.; Yamanoi, K.; Koya, S.; Azumaya, I.; Masu, H.; Yamasaki, R.; Saito, S. J. Org. Chem. 2012, 77, 2142-2148. [181] Pineschi, M.; Berti, F.; Crotti, P.; Cassano, G. Synlett 2012, 23, 2463-2468. [182] Sanz, X.; Lee, G. M.; Pubill-Ulldemolins, C.; Bonet, A.; Gulyas, H.; Westcott, S. A.; Bo, C.; Fernandez, E. Org. Biomol. Chem. 2013, 11, 7004-7010. [183] Yin, J.; Mekelburg, T.; Hyland, C. Org. Biomol. Chem. 2014, 12, 9113-9115. [184] Hashimoto, T.; Takino, K.; Hato, K.; Maruoka, K. Angew. Chem. Int. Ed. 2016, 55, 8081-8085. [185] Kang, D.; Kim, T.; Lee, H.; Hong, S. Org. Lett. 2018, 20, 7571-7575. [186] Kong, L.; Biletskyi, B.; Nuel, D.; Clavier, H. Org. Chem. Front. 2018, 5, 1600-1603. [187] Salvado, O.; Gava, R.; Fernandez, E. Org. Lett. 2019, 21, 9247-9250. [188] Kaldas, S. J.; Kran, E.; Muck-Lichtenfeld, C.; Yudin, A. K.; Studer, A. Chem. Eur. J. 2020, 26, 1501-1505. [189] Zhao, Q. Q.; Zhou, X. S.; Xu, S. H.; Wu, Y. L.; Xiao, W. J.; Chen, J. R. Org. Lett. 2020, 22, 2470-2475. [190] Trost, B. M.; Fandrick, D. R.; Brodmann, T.; Stiles, D. T. Angew. Chem. Int. Ed. 2007, 46, 6123-6125. [191] Trost, B. M.; Dong, G. Org. Lett. 2007, 9, 2357-2359. [192] Trost, B. M.; Osipov, M.; Dong, G. J. Am. Chem. Soc. 2010, 132, 15800-15807. [193] Glarner, F.; Thornton, S. R.; Schärer, D.; Bernardinelli, G.; Burger, U. Helv. Chim. Acta 1997, 80, 121-127. [194] Ley, S. V.; Middleton, B. Chem. Commun. 1998, 1995-1996. [195] Spears, G. W.; Nakanishi, K.; Ohfune, Y. Synlett 1991, 2, 91-92. [196] Tanner, D.; Somfai, P. Bioorg. Med. Chem. Lett. 1993, 3, 2415-2418. [197] Fontana, F.; Tron, G. C.; Barbero, N.; Ferrini, S.; Thomas, S. P.; Aggarwal, V. K. Chem. Commun. 2010, 46, 267-269. [198] Fontana, F.; Chen, C. C.; Aggarwal, V. K. Org. Lett. 2011, 13, 3454-3457. [199] Butler, D. C. D.; Inman, G. A.; Alper, H. J. Org. Chem. 2000, 65, 5887-5890. [200] Trost, B. M.; Fandrick, D. R. J. Am. Chem. Soc. 2003, 125, 11836-11837. [201] Dong, C.; Alper, H. Tetrahedron Asymmetry 2004, 15, 1537-1540. [202] Spielmann, K.; Lee, A. V.; Figueiredo, R. M.; Campagne, J. M. Org. Lett. 2018, 20, 1444-1447. [203] Spielmann, K.; Tosi, E.; Lebrun, A.; Niel, G.; van der Lee, A.; Figueiredo, R. M.; Campagne, J.-M. Tetrahedron 2018, 74, 6497-6511. [204] Aoyagi, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 2002, 67, 5977-5980. [205] Xu, C. F.; Zheng, B. H.; Suo, J. J.; Ding, C. H.; Hou, X. L. Angew. Chem. Int. Ed. 2015, 54, 1604-1607. [206] Drew, M. A.; Tague, A. J.; Richardson, C.; Pyne, S. G.; Hyland, C. J. T. Org. Lett. 2021, 23, 4635-4639. [207] Rivinoja, D. J.; Gee, Y. S.; Gardiner, M. G.; Ryan, J. H.; Hyland, C. J. T. ACS Catal. 2017, 7, 1053-1056. [208] Suo, J. J.; Liu, W.; Du, J.; Ding, C. H.; Hou, X. L. Chem. Asian J. 2018, 13, 959-963. [209] Zhang, J. Q.; Tong, F.; Sun, B. B.; Fan, W. T.; Chen, J. B.; Hu, D.; Wang, X. W. J. Org. Chem. 2018, 83, 2882-2891. [210] Næsborg, L.; Tur, F.; Meazza, M.; Blom, J.; Halskov, K. S.; Jørgensen, K. A. Chem. Eur. J. 2017, 23, 268-272. [211] Li, T. R.; Cheng, B. Y.; Fan, S. Q.; Wang, Y. N.; Lu, L. Q.; Xiao, W. J. Chem. Eur. J. 2016, 22, 6243-6247. [212] Yuan, Z.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3370-3373. [213] Vetica, F.; Bailey, S. J.; Kumar, M.; Mahajan, S.; von Essen, C.; Rissanen, K.; Enders, D. Synthesis 2020, 52, 2038-2044. [214] Lin, T. Y.; Wu, H. H.; Feng, J. J.; Zhang, J. Org. Lett. 2017, 19, 6526-6529. [215] Shi, F.; Mei, G.-J.; Yu, L.; Zhu, Z.-Q.; Sun, M. Synthesis 2018, 51, 1655-1661. [216] Jiang, F.; Yuan, F.-R.; Jin, L.-W.; Mei, G.-J.; Shi, F. ACS Catal. 2018, 8, 10234-10240. [217] Chen, Z. C.; Chen, Z.; Yang, Z. H.; Guo, L.; Du, W.; Chen, Y. C. Angew. Chem. Int. Ed. 2019, 58, 15021-15025. [218] Lin, T.-Y.; Wu, H.-H.; Feng, J.-J.; Zhang, J. ACS Catal. 2017, 7, 4047-4052. [219] Lin, T. Y.; Wu, H. H.; Feng, J. J.; Zhang, J. Org. Lett. 2017, 19, 2897-2900. [220] Zhu, C. Z.; Feng, J. J.; Zhang, J. Chem. Commun. 2017, 53, 4688-4691. [221] Zhu, C. Z.; Feng, J. J.; Zhang, J. Angew. Chem. Int. Ed. 2017, 56, 1351-1355. [222] Lin, T. Y.; Wu, H. H.; Feng, J. J.; Zhang, J. Org. Lett. 2018, 20, 3587-3590. [223] Zhu, C. Z.; Feng, J. J.; Zhang, J. Chem. Commun. 2018, 54, 2401-2404. [224] Feng, J. J.; Lin, T. Y.; Zhu, C. Z.; Wang, H.; Wu, H. H.; Zhang, J. J. Am. Chem. Soc. 2016, 138, 2178-2181. [225] Lin, T. Y.; Zhu, C. Z.; Zhang, P.; Wang, Y.; Wu, H. H.; Feng, J. J.; Zhang, J. Angew. Chem. Int. Ed. 2016, 55, 10844-10848. [226] Zhang, K.; Chopade, P. R.; Louie, J. Tetrahedron Lett. 2008, 49, 4306-4309. [227] Zuo, G.; Zhang, K.; Louie, J. Tetrahedron Lett. 2008, 49, 6797-6799. [228] Hirner, J. J.; Roth, K. E.; Shi, Y.; Blum, S. A. Organometallics 2012, 31, 6843-6850. [229] Arena, G.; Chen, C. C.; Leonori, D.; Aggarwal, V. K. Org. Lett. 2013, 15, 4250-4253. [230] Lam, S. K.; Lam, S.; Wong, W. T.; Chiu, P. Chem. Commun. 2014, 50, 1738-1741. [231] Rivero, A. R.; Fernandez, I.; Sierra, M. A. Chem. Eur. J. 2014, 20, 1359-66. [232] Wang, Y. N.; Li, T. R.; Zhang, M. M.; Cheng, B. Y.; Lu, L. Q.; Xiao, W. J. J. Org. Chem. 2016, 81, 10491-10498. [233] Yadav, N. N.; Jeong, H.; Ha, H. J. ACS Omega 2017, 2, 7525-7531. [234] Rounds, H. R.; Zeller, M.; Uyeda, C. Organometallics 2018, 37, 545-550. [235] Gao, J.; Zhang, J.; Fang, S.; Feng, J.; Lu, T.; Du, D. Org. Lett. 2020, 22, 7725-7729. [236] Doohan, R. A.; Hannan, J. J.; Geraghty, N. W. Org. Biomol. Chem. 2006, 4, 942-952.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84380-
dc.description.abstract雜環廣泛存在於自然中,其自身與在有機化學的價值吸引了相當大之關注。就這些迷人結構之合成而言,偶極環化加成提供了有效的策略,並且得以控制其化學、區域與立體選擇性。於眾多合成單元之中,兩性離子結合了以碳、氮或氧中心為親核試劑,與親電烯丙基金屬基團,以展現出多樣的反應性。其中乙烯基衍生物為最實用的前驅物。本論文闡述含螺環在內的催化環加成之進展。 首先,我們合成乙烯基苯並惡嗪酮,此為環狀烯丙基氨基甲酸酯,與亞芳基異噁唑酮及二氫吡唑啉酮作為環外活性烯烴,且經由鈀催化脫羧環加成得到螺狀四氫喹啉。其過渡態包含關鍵的六元環氫鍵模型。此外,結合與協作者的研究,環狀與非環狀烯丙基氨基甲酸酯建構了選擇性之分子內及分子間碳、氮烯丙基化步驟。 其次,合成兩種由六元或五元環外烯烴構成之乙烯基環氧乙烷,且於鈀催化下展現發散的反應性。其中具有色烷或四氫化萘骨架之起始物經由環化加成得到螺狀氨基甲酸酯與螺狀氨基甲酰亞胺酯,且具有螺位組態之保留或反轉的現象。此外,建構於茚滿骨架的化合物可有效地轉化為包含高反應性亞乙烯基官能團之苯並富烯。且經由連續的氧化、腙環化加成與自發脫氫合成噠嗪衍生物。 最終,合成具有缺電子烯烴的乙烯基氮丙啶,且於銠催化下與炔類進行環化加成。依據水氣的存在與否,可選擇性地生成氨基酮及吡咯啉產物。對於吡咯啉而言,藉由有機鹼誘導烯烴遷移與最終之三氟乙酸促進芳香化可轉化為吡咯,並進而優化為簡便的一鍋化操作。zh_TW
dc.description.abstractHeterocycles are ubiquitous in nature which attract considerable attention as itself and the valuable scaffolds in organic chemistry. In terms of its synthesis, dipolar cycloadditions provide efficient protocols to these fascinating architectures with control of chemo-, regio- and stereo-selectivity. Amongst numerous 1,n-synthons, vinyl motifs are the most practical precursors of zwitterions which combine both electrophilic π-allyl metal fragments and C-, N- or O-centered nucleophiles to exhibit versatile reactivities. In this thesis, achievements in catalytic annulations inclusive of spirocyclic frameworks are addressed. First, vinyl benzoxazinanones, the cyclic allyl carbamates, and the exocyclic active olefins arylidene- isoxazolones or dihydropyrazolones were synthesized and subjected to accomplish spirocyclic tetrahydroquinolines via a palladium-catalyzed decarboxylative cycloaddition. An unprecedented divergence on configurations is controllable from the substrates with or without protecting group. Representative models inclusive of a vital six-membered hydrogen bonding interaction were suggested. Accumulated with collaborator’s study, a fascinating regiodivergent decarboxylative assembly was established. A selective C-/N-allylation process via intra-/inter-molecular manner was demonstrated by starting substrates on a cyclic or acyclic backbone. Second, two kinds of vinyl oxiranes consisting an exocyclic olefin on six or five membered skeletons were synthesized and performed divergently under palladium catalysis. Substrates on chromane or tetralin successfully achieve spiro carbamates and carbamimidates via a [3+2] cycloaddition, and racemization on spiro center was discovered. Descriptive models on rapidity of heterocumulenes interception and outer-sphere annulation were recommended for interpreting the retentive versus inversive cyclization. Parallelly, compounds on an indane skeleton were effectively transformed into the 2-carbinol substituted benzofulvenes containing a highly reactive vinylidene functionality. Pyridazine derivatives could be synthesized through the consecutive oxidation, hydrazine-mediated dehydrative cycloaddition and spontaneous dehydrogenation. The last, vinyl aziridines with an electron deficient C=C were synthesized and subjected to rhodium catalysis with acetylenes. Two series of products, γ-amidoketones or pyrrolines were selectively constructed according to the presence or absence of moisture. For [3+2] cycloadduct pyrrolines, acidity of bisallylic methine is enhanced by introduction of a terminal ester or ketone functionality. The subsequent DABCO promoted C=C migration and the ultimate TFA assisted aromatization were disclosed and further modified to one-pot manipulations for delivering the substituted pyrroles.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:09:52Z (GMT). No. of bitstreams: 1
U0001-2103202216553400.pdf: 18260047 bytes, checksum: 68c5f84c7bee3e67bf4313b87e179744 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 # 摘要 i ABSTRACT ii CONTENTS iv Chapter 1 - Vinyl Benzoxazinanones 1 1.1 Introductions 1 1.2 Results and Discussion 7 1.2.1 Preparation of Substrates 7 1.2.2 Preliminary Investigation 9 1.2.3 Divergent Spiroconfigurations 11 1.2.4 Scope of Arylideneisoxazolones 14 1.2.5 Scope of Arylidenedihydropyrazolones 14 1.2.6 Reactions of Substituted Vinyl Benzoxazinanones 18 1.2.7 Catalytic Cycle 20 1.2.8 C- versus N-Allylation 21 1.2.9 Unsuccessful Attempts 23 1.3 Conclusions 24 1.4 Experimental Section 24 1.4.1 Preparation of Vinyl Benzoxazinanones 1 and 1’ 24 1.4.2 Preparation of Arylideneisoxazolones 2 26 1.4.3 Preparation of Arylidenedihydropyrazolones 3 27 1.4.4 Synthesis of Spirotetrahydroquinolines 4 27 1.4.5 Synthesis of Spirotetrahydroquinolines 5 34 1.4.6 Other Starting Substrates and Products 38 Chapter 2 - Vinyl Oxiranes 41 2.1 Introductions 41 2.2 Results and Discussion 46 2.2.1 Preparation of Substrates 46 2.2.2 Preliminary Investigation 47 2.2.3 Synthesis of Isocyanates and Carbodiimides 51 2.2.4 Scope of Spirocarbamates 51 2.2.5 Scope of Spirocarbamimidates 53 2.2.6 Retentive versus Inversive Cyclization 55 2.2.7 Benzofulvenes 58 2.3 Conclusions 62 2.4 Experimental Section 62 2.4.1 Preparation of Vinyl Oxiranes 1 and 2 62 2.4.2 Preliminary Investigation on Reactivities 66 2.4.3 Preparation of Isocyanates 5 67 2.4.4 Synthesis of Spirocarbamates 6 68 2.4.5 Preparation of Carbodiimides 7 71 2.4.6 Synthesis of Spirocarbamimidates 8 71 2.4.7 Modifications on Benzofulvenes 82 Chapter 3 - Vinyl Aziridines 87 3.1 Introductions 87 3.2 Results and Discussion 93 3.2.1 Preparation of Substrates 93 3.2.2 Preliminary Investigation 94 3.2.3 Consecutive Isomerization 95 3.2.4 Optimization 97 3.2.5 Scope of Products 98 3.2.6 Catalytic Mechanism 99 3.2.7 Additional Observations 100 3.3 Conclusions 101 3.4 Experimental Section 101 3.4.1 Preparation of Vinyl Aziridines 1 and 1’ 101 3.4.2 Synthesis of Dihydropyrrole 3a and γ-Amidoketone 4a 104 3.4.3 Transformation of 3a into 5a 105 3.4.4 Optimization on Consecutive C=C Isomerization 106 3.4.5 General Procedure for Synthesis of Pyrroles 6 106 References 114 Appendices 126 Chapter 1 Crystallographic Data 126 NMR Spectra 132 Chapter 2 Crystallographic Data 168 NMR Spectra 172 Chapter 3 NMR Spectra 222
dc.language.isoen
dc.subject催化偶極環加成zh_TW
dc.subject乙烯基苯並惡嗪酮zh_TW
dc.subject乙烯基氮丙啶zh_TW
dc.subject乙烯基環氧乙烷zh_TW
dc.subject螺環zh_TW
dc.subjectvinyl benzoxazinanoneen
dc.subjectspirocycleen
dc.subjectvinyl aziridineen
dc.subjectvinyl oxiraneen
dc.subjectcatalytic dipolar cycloadditionen
dc.title乙烯基取代苯並惡嗪酮、環氧乙烷與氮丙啶經由過渡金屬烯丙基兩性離子之催化環加成zh_TW
dc.titleHeterocycles Synthesis from Vinyl Benzoxazinanones, Oxiranes and Aziridines: Catalytic Cycloadditions via Transition Metal π-Allyl Zwitterionsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡蘊明(Yeun-Min Tsai),陳竹亭(Jwu-Ting Chen),詹益慈(Yi-Tsu Chan),吳學亮(Hsyueh-Liang Wu)
dc.subject.keyword催化偶極環加成,乙烯基苯並惡嗪酮,乙烯基環氧乙烷,乙烯基氮丙啶,螺環,zh_TW
dc.subject.keywordcatalytic dipolar cycloaddition,vinyl benzoxazinanone,vinyl oxirane,vinyl aziridine,spirocycle,en
dc.relation.page243
dc.identifier.doi10.6342/NTU202200648
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-03-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
dc.date.embargo-lift2022-04-26-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-2103202216553400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
17.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved