Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84376
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧虎生zh_TW
dc.contributor.advisorHuu-Sheng Luren
dc.contributor.author陳彥伯zh_TW
dc.contributor.authorYen-Po Chenen
dc.date.accessioned2023-03-19T22:09:46Z-
dc.date.available2023-12-26-
dc.date.copyright2022-07-07-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation水稻品種試驗檢定方法 (2011)。行政院農業委員會。取自: https://law.coa.gov.tw/glrsnewsout/LawContent.aspx?id=FL040326#lawmenu.
行政院農業委員會 (2021)。109年農業統計年報。台北。行政院農業委員會。
王黎明,楊楠及陳穎 (2008)。 應用回歸分析 王黎明,陳穎及楊楠編著 (第1版 ed.)。 上海: 復旦大學出版社。
沈明來 (2007)。 實用多變數分析 Applied Multivariate Analysis 沈明來編著(第二版 ed.)。 台北市: 九州。
翁佩詒,吳治達及蘇慧貞 (2021)。 結合土地利用迴歸與極限梯度提升演算法發展高雄都會區二氧化氮之推估模型。26 (1),1-12. doi:10.6574/jprs.202103_26 (1).0001
謝惠紅 (2015)。 地理資訊系統 : Quantum Gis實作範例 Application of Geographic Information Systems : Using Quantum Gis 。謝惠紅編著 (一版 ed.) 。臺北市: 華都文化。
Baret, F., & Guyot, G. (1991). Potentials and Limits of Vegetation Indices for Lai and Apar Assessment. Remote Sensing of Environment, 35 (2), 161-173. doi:https://doi.org/10.1016/0034-4257 (91)90009-U
Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors (Basel, Switzerland), 21 (11), 3758. doi:10.3390/s21113758
Berni, J. A. J., Zarco-Tejada, P. J., Suarez, L., & Fereres, E. (2009). Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47 (3), 722-738. doi:10.1109/TGRS.2008.2010457
Birth, G. S., & McVey, G. R. (1968). Measuring the Color of Growing Turf with a Reflectance Spectrophotometer1. Agronomy Journal, 60 (6), 640-643. doi:https://doi.org/10.2134/agronj1968.00021962006000060016x
Brichet, N., Fournier, C., Turc, O., Strauss, O., Artzet, S., Pradal, C., Welcker, C., Tardieu, F., & Cabrera-Bosquet, L. (2017). A Robot-Assisted Imaging Pipeline for Tracking the Growths of Maize Ear and Silks in a High-Throughput Phenotyping Platform. Plant Methods, 13 (1), 96. doi:10.1186/s13007-017-0246-7
Cao, Y., Jiang, K., Wu, J., Yu, F., Du, W., & Xu, T. (2020). Inversion Modeling of Japonica Rice Canopy Chlorophyll Content with Uav Hyperspectral Remote Sensing. PloS one, 15 (9), e0238530-e0238530. doi:10.1371/journal.pone.0238530
Chandra, A. L., Desai, S. V., Balasubramanian, V. N., Ninomiya, S., & Guo, W. (2020). Active Learning with Point Supervision for Cost-Effective Panicle Detection in Cereal Crops. Plant Methods, 16 (1), 34. doi:10.1186/s13007-020-00575-8
Chen, T., & Guestrin, C. (2016). Xgboost: A Scalable Tree Boosting System. Paper presented at the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA. https://doi.org/10.1145/2939672.2939785
Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., & Campbell, J. P. (2020). Introduction to Machine Learning, Neural Networks, and Deep Learning. Translational Vision Science & Technology, 9 (2), 14-14. doi:10.1167/tvst.9.2.14
Cointault, F., Journaux, L., Rabatel, G., Germain, C., Ooms, D., Destain, M.-F., Gorretta, N., Grenier, G., Lavialle, O., & Marin, A. (2012). Texture, Color and Frequential Proxy-Detection Image Processing for Crop Characterization in a Context of Precision Agriculture: InTech.
Crowell, S., Korniliev, P., Falcão, A., Ismail, A., Gregorio, G., Mezey, J., & McCouch, S. (2016). Genome-Wide Association and High-Resolution Phenotyping Link Oryza Sativa Panicle Traits to Numerous Trait-Specific Qtl Clusters. Nature Communications, 7, 10527-10527. doi:10.1038/ncomms10527
Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., & Cho, M. (2008). Lai and Chlorophyll Estimation for a Heterogeneous Grassland Using Hyperspectral Measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63 (4), 409-426. doi:https://doi.org/10.1016/j.isprsjprs.2008.01.001
Desai, S. V., Balasubramanian, V. N., Fukatsu, T., Ninomiya, S., & Guo, W. (2019). Automatic Estimation of Heading Date of Paddy Rice Using Deep Learning. Plant Methods, 15 (1), 76. doi:10.1186/s13007-019-0457-1
Duan, L., Huang, C., Chen, G., Xiong, L., Liu, Q., & Yang, W. (2015). Determination of Rice Panicle Numbers During Heading by Multi-Angle Imaging. The Crop Journal, 3 (3), 211-219. doi:https://doi.org/10.1016/j.cj.2015.03.002
Elliott, A. C., & Woodward, W. A. (2007). Statistical Analysis Quick Reference Guidebook. Sage Publications, Inc. doi:10.4135/9781412985949
Feng, W., Wu, Y., He, L., Ren, X., Wang, Y., Hou, G., Wang, Y., Liu, W., & Guo, T. (2019). An Optimized Non-Linear Vegetation Index for Estimating Leaf Area Index in Winter Wheat. Precision Agriculture, 20 (6), 1157-1176. doi:10.1007/s11119-019-09648-8
Fernandez-Gallego, J. A., Kefauver, S. C., Gutiérrez, N. A., Nieto-Taladriz, M. T., & Araus, J. L. (2018). Wheat Ear Counting in-Field Conditions: High Throughput and Low-Cost Approach Using Rgb Images. Plant Methods, 14, 22-22. doi:10.1186/s13007-018-0289-4
Fisher, R. A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7 (2), 179-188. doi : https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29 (5), 1189-1232.
Gamon, J. A., & Surfus, J. S. (1999). Assessing Leaf Pigment Content and Activity with a Reflectometer. New Phytologist, 143 (1), 105-117. doi:https://doi.org/10.1046/j.1469-8137.1999.00424.x
Ghosal, S., Zheng, B., Chapman, S. C., Potgieter, A. B., Jordan, D. R., Wang, X., Singh, A. K., Singh, A., Hirafuji, M., Ninomiya, S., Ganapathysubramanian, B., Sarkar, S., & Guo, W. (2019). A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting. Plant Phenomics, 2019, 1525874. doi:10.34133/2019/1525874
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a Green Channel in Remote Sensing of Global Vegetation from Eos-Modis. Remote Sensing of Environment, 58 (3), 289-298. doi:https://doi.org/10.1016/S0034-4257 (96)00072-7
Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sensing of Environment, 80 (1), 76-87. doi:https://doi.org/10.1016/S0034-4257 (01)00289-9
Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. 30 (5). doi:https://doi.org/10.1029/2002GL016450
Gobron, N., Pinty, B., Verstraete, M. M., & Widlowski, J. (2000). Advanced Vegetation Indices Optimized for up-Coming Sensors: Design, Performance, and Applications. IEEE Transactions on Geoscience and Remote Sensing, 38 (6), 2489-2505. doi:10.1109/36.885197
Guo, W., Carroll, M. E., Singh, A., Swetnam, T. L., Merchant, N., Sarkar, S., Singh, A. K., & Ganapathysubramanian, B. (2021). Uas-Based Plant Phenotyping for Research and Breeding Applications. Plant Phenomics (Washington, D.C.), 2021, 9840192-9840192. doi:10.34133/2021/9840192
Guo, W., Fukatsu, T., & Ninomiya, S. (2015). Automated Characterization of Flowering Dynamics in Rice Using Field-Acquired Time-Series Rgb Images. Plant Methods, 11 (1), 7. doi:10.1186/s13007-015-0047-9
Guo, W., Zheng, B., Potgieter, A. B., Diot, J., Watanabe, K., Noshita, K., Jordan, D. R., Wang, X., Watson, J., Ninomiya, S., & Chapman, S. C. (2018). Aerial Imagery Analysis – Quantifying Appearance and Number of Sorghum Heads for Applications in Breeding and Agronomy. Frontiers in Plant Science, 9 (1544). doi:10.3389/fpls.2018.01544 
Hasan, M. M., Chopin, J. P., Laga, H., & Miklavcic, S. J. (2018). Detection and Analysis of Wheat Spikes Using Convolutional Neural Networks. Plant Methods, 14, 100-100. doi:10.1186/s13007-018-0366-8
Hassanat, A. B. A. (2018). Two-Point-Based Binary Search Trees for Accelerating Big Data Classification Using Knn. PloS One, 13 (11), e0207772-e0207772. doi:10.1371/journal.pone.0207772
Hayat, M. A., Wu, J., & Cao, Y. (2020). Unsupervised Bayesian Learning for Rice Panicle Segmentation with Uav Images. Plant Methods, 16 (1), 18. doi:10.1186/s13007-020-00567-8
Henrich, V., Krauss, G., Götze, C., & Sandow, C. (2012). Idb-Www.Indexdatabase.De, Entwicklung Einer Datenbank Für Fernerkundungsindizes. Ak Fernerkundung, Bochum, 4.-5. 10. 2012.
Holman, F. H., Riche, A. B., Michalski, A., Castle, M., Wooster, M. J., & Hawkesford, M. J. (2016). High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using Uav Based Remote Sensing. Remote Sensing. 8 (12), 1031. doi:10.3390/rs8121031
Hu, J., & Min, J. (2018). Automated Detection of Driver Fatigue Based on Eeg Signals Using Gradient Boosting Decision Tree Model. Cognitive Neurodynamics, 12 (4), 431-440. doi:10.1007/s11571-018-9485-1
Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (Savi). Remote Sensing of Environment, 25 (3), 295-309. doi:https://doi.org/10.1016/0034-4257 (88)90106-X
Huete, A. R. (2004). 11 - Remote Sensing for Environmental Monitoring. In J. F. Artiola, I. L. Pepper, & M. L. Brusseau(Eds.), Environmental Monitoring and Characterization. 183-206. Burlington: Academic Press.
IBM Corp. Released 2011. Ibm Spss Statistics for Windows, Version 20.0. Armonk, Ny: Ibm Corp.
Jiang, Q., Fang, S., Peng, Y., Gong, Y., Zhu, R., Wu, X., Ma, Y., Duan, B., & Liu, J. (2019). Uav-Based Biomass Estimation for Rice-Combining Spectral, Tin-Based Structural and Meteorological Features. Remote Sensing. 11 (7), 890. doi:https://doi.org/10.3390/rs11070890:
Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sensing of Environment, 112 (10), 3833-3845. doi:https://doi.org/10.1016/j.rse.2008.06.006
Kung, S. Y., (Ed.). (2014). Knn, Pnn, and Bayes Classifiers. In Kernel Methods and Machine Learning (pp. 549-560). Cambridge: Cambridge University Press.
Kurtulmuş, F., & Kavdir, İ. (2014). Detecting Corn Tassels Using Computer Vision and Support Vector Machines. Expert Systems with Applications, 41 (16), 7390-7397. doi:https://doi.org/10.1016/j.eswa.2014.06.013
Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors(Basel, Switzerland), 18 (8), 2674. doi:10.3390/s18082674
Liang, S., & Wang, J., (Eds.). (2020). Chapter 3 - Compositing, Smoothing, and Gap-Filling Techniques. In Advanced Remote Sensing(Second Edition) (pp. 107-130) : Academic Press.
Liu, T., Sun, C., Wang, L., Zhong, X., Zhu, X., & Guo, W. (2014). In-Field Wheatear Counting Based on Image Processing Technology. Nongye Jixie Xuebao/ Transactions of the Chinese Society for Agricultural Machinery, 45 (2), 282-290.
Lu, H., Cao, Z., Xiao, Y., Fang, Z., Zhu, Y., & Xian, K. (2015). Fine-Grained Maize Tassel Trait Characterization with Multi-View Representations. Computers and Electronics in Agriculture, 118, 143-158. doi:https://doi.org/10.1016/j.compag. 2015.08.027
Lu, N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T. (2019). Improved Estimation of Aboveground Biomass in Wheat from Rgb Imagery and Point Cloud Data Acquired with a Low-Cost Unmanned Aerial Vehicle System. Plant Methods, 15 (1), 17. doi:10.1186/s13007-019-0402-3
Madec, S., Jin, X., Lu, H., De Solan, B., Liu, S., Duyme, F., Heritier, E., & Baret, F. (2019). Ear Density Estimation from High Resolution Rgb Imagery Using Deep Learning Technique. Agricultural and Forest Meteorology, 264, 225-234. doi:https://doi.org/10.1016/j.agrformet.2018.10.013
Marín Navas, C., Delgado Bermejo, J. V., McLean, A. K., León Jurado, J. M., Torres, A., & Navas González, F. J. (2021). Discriminant Canonical Analysis of the Contribution of Spanish and Arabian Purebred Horses to the Genetic Diversity and Population Structure of Hispano-Arabian Horses. Animals : an open access journal from MDPI, 11 (2), 269. doi:10.3390/ani11020269
McHugh, M. L. (2011). Multiple Comparison Analysis Testing in Anova. Biochemia Medica,, 21 (3), 203-209.
Mengni, Y., Zhiguo, C., & Zhenghong, Y. (2013). An Image-Based Approach for Automatic Detecting Tasseling Stage of Maize Using Spatio-Temporal Saliency. Paper presented at the Proc.SPIE.
Oh, M.-h., Olsen, P., & Ramamurthy, K. N. (2019). Counting and Segmenting Sorghum Heads. arXiv preprint arXiv:1905.13291.
Pandey, A., & Jain, A. (2017). Comparative Analysis of Knn Algorithm Using Various Normalization Techniques. International Journal of Computer Network Information Security, 9, 36-42.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-Learn: Machine Learning in Python. The Journal of Machine Learning Research, 12, 2825-2830.
Portillo-Portillo, J., Leyva, R., Sanchez, V., Sanchez-Perez, G., Perez-Meana, H., Olivares-Mercado, J., Toscano-Medina, K., & Nakano-Miyatake, M. (2016). Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis. Sensors(Basel, Switzerland), 17 (1), 6. doi:10.3390/s17010006
QGIS Development Team. (2020). Qgis Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.
Quinto, B. (2020). Next-Generation Machine Learning with Spark Covers Xgboost, Lightgbm, Spark Nlp, Distributed Deep Learning with Keras, and More / by Butch Quinto (1st ed. 2020. ed.). Berkeley, CA: Apress.
R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL:https://www.r-project.org/.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104. doi:https://doi.org/10.1016/j.isprsjprs.2011.11.002
Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of Soil-Adjusted Vegetation Indices. Remote Sensing of Environment, 55 (2), 95-107. doi:https://doi.org/10.1016/0034-4257 (95)00186-7
Roujean, J.-L., & Breon, F.-M. (1995). Estimating Par Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sensing of Environment, 51 (3), 375-384. doi:https://doi.org/10.1016/0034-4257 (94)00114-3
Sadeghi-Tehran, P., Sabermanesh, K., Virlet, N., & Hawkesford, M. J. (2017). Automated Method to Determine Two Critical Growth Stages of Wheat: Heading and Flowering. Frontiers in Plant Science, 8, 252-252. doi:10.3389/fpls.2017.00252
Sadeghi-Tehran, P., Virlet, N., Ampe, E. M., Reyns, P., & Hawkesford, M. J. (2019). Deepcount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks. 10 (1176). doi:10.3389/fpls.2019.01176
Sandino, J., Pegg, G., Gonzalez, F., & Smith, G. (2018). Aerial Mapping of Forests Affected by Pathogens Using Uavs, Hyperspectral Sensors, and Artificial Intelligence. Sensors. 18 (4), 944. doi: https://doi.org/10.3390/s18040944
Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, N. R., & Pavek, M. J. (2015). Low-Altitude, High-Resolution Aerial Imaging Systems for Row and Field Crop Phenotyping: A Review. European Journal of Agronomy, 70, 112-123. doi:https://doi.org/10.1016/j.eja.2015.07.004
Simeone, O. (2018). A Very Brief Introduction to Machine Learning with Applications to Communication Systems. IEEE Transactions on Cognitive Communications and Networking, 4 (4), 648-664. doi:10.1109/TCCN.2018.2881442
Sripada, R. P., Heiniger, R. W., White, J. G., & Weisz, R. (2005). Aerial Color Infrared Photography for Determining Late-Season Nitrogen Requirements in Corn. Agronomy Journal. 97 (5), 1443-1451. doi:https://doi.org/10.2134/agronj2004. 0314
Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random Forest:  A Classification and Regression Tool for Compound Classification and Qsar Modeling. Journal of Chemical Information and Computer Sciences, 43 (6), 1947-1958. doi:10.1021/ci034160g
Tang, L., Gao, H., Yoshihiro, H., Koki, H., Tetsuya, N., Liu, T.-s., Tatsuhiko, S., & Xu, Z.-j. (2017). Erect Panicle Super Rice Varieties Enhance Yield by Harvest Index Advantages in High Nitrogen and Density Conditions. Journal of Integrative Agriculture,16 (7),1467-1473. doi:https://doi.org/10.1016/S2095-3119 (17)61667-8
Tattaris, M., Reynolds, M. P., & Chapman, S. C. (2016). A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding. Frontiers in Plant Science, 7 (1131). doi:10.3389/fpls.2016.01131
Tucker, C. J., Elgin, J. H., McMurtrey, J. E., & Fan, C. J. (1979). Monitoring Corn and Soybean Crop Development with Hand-Held Radiometer Spectral Data. Remote Sensing of Environment, 8 (3), 237-248. doi:https://doi.org/10.1016/0034-4257 (79)90004-X
Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, Ca: Createspace.
Vergara-Díaz, O., Zaman-Allah, M. A., Masuka, B., Hornero, A., Zarco-Tejada, P., Prasanna, B. M., Cairns, J. E., & Araus, J. L. (2016). A Novel Remote Sensing Approach for Prediction of Maize Yield under Different Conditions of Nitrogen Fertilization. Frontiers in Plant Science, 7, 666-666. doi:10.3389/fpls.2016.00666
Wardak, M., Schiepers, C., Dahlbom, M., Cloughesy, T., Chen, W., Satyamurthy, N., Czernin, J., Phelps, M. E., & Huang, S.-C. (2011). Discriminant Analysis of ¹⁸F-Fluorothymidine Kinetic Parameters to Predict Survival in Patients with Recurrent High-Grade Glioma. Clinical cancer research : an official journal of the American Association for Cancer Research, 17 (20), 6553-6562. doi:10.1158/1078-0432.CCR-10-3290
Welch, B. L. (1951). On the Comparison of Several Mean Values: An Alternative Approach. Biometrika, 38 (3/4), 330-336. doi:10.2307/2332579
Wenbing, T., Yane, Z., Dongxing, Z., Wei, Y., & Minzan, L. (2011). Corn Tassel Detection Based on Image Processing. Paper presented at the Proc.SPIE.
Wu, G., Miller, N. D., de Leon, N., Kaeppler, S. M., & Spalding, E. P. (2019). Predicting Zea Mays Flowering Time, Yield, and Kernel Dimensions by Analyzing Aerial Images. Frontiers in Plant Science, 10, 1251-1251. doi:10.3389/fpls.2019.01251
Xiong, X., Duan, L., Liu, L., Tu, H., Yang, P., Wu, D., Chen, G., Xiong, L., Yang, W., & Liu, Q. (2017). Panicle-Seg: A Robust Image Segmentation Method for Rice Panicles in the Field Based on Deep Learning and Superpixel Optimization. Plant Methods, 13 (1), 104. doi:10.1186/s13007-017-0254-7
Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X., Zhang, R., Feng, H., Zhao, X., Li, Z., Li, H., & Yang, H. (2017). Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Frontiers in Plant Science, 8, 1111-1111. doi:10.3389/fpls.2017.01111
Yang, Z., Gao, S., Xiao, F., Li, G., Ding, Y., Guo, Q., Paul, M. J., & Liu, Z. (2020). Leaf to Panicle Ratio(Lpr): A New Physiological Trait Indicative of Source and Sink Relation in Japonica Rice Based on Deep Learning. Plant Methods, 16 (1), 117. doi:10.1186/s13007-020-00660-y
Yang, Z., Willis, P., & Mueller, R. (2008). Impact of Band-Ratio Enhanced Awifs Image on Crop Classification Accuracy. In The 17th William T. Pecora Memorial Remote Sensing Symposium. 1, 1-11.
Zhang, F., & Zhou, G. (2019). Estimation of Vegetation Water Content Using Hyperspectral Vegetation Indices: A Comparison of Crop Water Indicators in Response to Water Stress Treatments for Summer Maize. BMC Ecology, 19 (1), 18. doi:10.1186/s12898-019-0233-0
Zhou, C., Liang, D., Yang, X., Xu, B., & Yang, G. (2018). Recognition of Wheat Spike from Field Based Phenotype Platform Using Multi-Sensor Fusion and Improved Maximum Entropy Segmentation Algorithms. Remote Sensing. 10 (2), 246. doi:10.3390/rs10020246
Zhou, C., Ye, H., Hu, J., Shi, X., Hua, S., Yue, J., Xu, Z., & Yang, G. (2019). Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform. Sensors. 19 (14), 3106. doi: https://doi.org/10.3390/s19143106
Zhou, K., Deng, X., Yao, X., Tian, Y., Cao, W., Zhu, Y., Ustin, S. L., & Cheng, T. (2017). Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with near-Ground Imaging Spectroscopy Data. Sensors(Basel, Switzerland), 17 (3), 578. doi:10.3390/s17030578
Zhu, Y., Cao, Z., Lu, H., Li, Y., & Xiao, Y. (2016). In-Field Automatic Observation of Wheat Heading Stage Using Computer Vision. Biosystems Engineering, 143, 28-41. doi:https://doi.org/10.1016/j.biosystemseng.2015.12.015
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84376-
dc.description.abstract水稻是台灣最主要的糧食作物,穗外表型對於提高產量和穀物品質的育種研究十分重要,傳統調查外表型的方法仰賴人工採樣,需要花費較多時間。本研究嘗試建立一個藉由無人機拍攝及多光譜影像分析來分辨田間水稻穗型的方法。本研究使用無人機拍攝多光譜影像,以QGIS提取多光譜影像中不同穗型的植株光譜平均數值,接著以逐步迴歸方法初步篩選對於分類較有貢獻的光譜與植生指數組合,並比較線性判別分析、KNN與XGBoost的分類結果。水稻穗型分為:0 (未抽穗);1 (直立);2 (半直立);3 (下垂);4 (極度下垂)。本研究找到四個對於穗型分類較有潛力的植生指數:Clgreen、Clrededge、NDVSI、GSAVI,並發現穗型與收穫時間有較高的關聯性。線性判別分析的分類結果顯示,準確率最高為 62.1%; KNN模型的分類結果顯示,在訓練集中準確率最高的為64.18%,在測試集中準確率最高的為61.94%; XGBoost模型的分類結果顯示,在訓練集中準確率最高的為62.13%,在測試集中準確率最高的為60.45%。研究結果顯示,藉由無人機拍攝及多光譜影像分析,可以分辨田間水稻穗型,用以判斷水稻成熟情形,有效減少育種研究時水稻性狀調查人力。zh_TW
dc.description.abstractRice (Oryza sativa L.) is the main food crop in Taiwan, and the panicle phenotype is essential for breeding research in terms of improving yield and grain quality. In this study, we propose a method to recognize the panicle type (type 0: not heading, type 1: erect, type 2: half erect, type 3: sagging, type 4: extremely sagging) by using multispectral images collected by unmanned aerial vehicles (UAV). We used UAV to acquire multispectral images from field and QGIS to extract the average values of plant spectra of different panicle types from the multi-spectral images, then used stepwise regression to initially screen the optimal combination between spectra bands and vegetation indices that are more beneficial for the following analysis, classification. We compared the classification results of linear discriminant analysis, KNN and XGBoost. Four vegetation indices for rice panicle types classification were found in stepwise regression Clgreen, Clrededge, NDVSI, GSAVI. We found high correlation between panicle type and harvest time. The highest classification accuracy of discriminant analysis was 62.1%. The similar results can be seen in KNN model (64.18% in the training set and 61.94% in the test set) and XGBoost (62.13% in the training set and 60.45% in the test set). The results show that we can recognize rice panicle type and growth stage with a UAV-based, multi-spectral airborne imagery analysis, which effectively save the human resources for paddy rice agronomic characteristics investigation of breeding research.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:09:46Z (GMT). No. of bitstreams: 1
U0001-2603202200210200.pdf: 6871744 bytes, checksum: e96e6074c8b8a5bdec772da28fc973a8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄
致謝 I
摘要 II
Abstract III
圖目錄 VI
表目錄 VII
縮寫字對照表 IX
壹、 前言 1
1.1 研究背景 1
1.2 禾本科作物穗部影像辨識 3
1.3 機器學習 7
1.4 判別分析 8
1.5 KNN 8
1.6 XGBOOST 9
1.7 研究目的 10
貳、 材料方法 11
2.1 田區配置 11
2.2 水稻穗外表型態分類 14
2.3 水稻收穫日期與產量構成要素 16
2.4 田間地面控制點製作與裝設 16
2.5 無人機航拍影像數據蒐集 20
2.6 多光譜影像處理 22
2.7 關注區域 (ROI) 多光譜數值萃取 22
2.8 植生指數 (VEGETATION INDEX, VI) 計算 24
2.9 統計分析 26
2.10 穗型分類 28
參、 結果 32
3.1 穗型調查結果 32
3.2 中間作材料不同穗型與產量構成要素的差異 34
3.3 中間作穗型與收穫日期的關係 43
3.4 中間作與二期作多光譜影像分析 46
3.5 多光譜與植生指數熱圖分析 56
3.6 線性判別分析模型 58
3.7 KNN模型 71
3.8 XGBOOST模型 76
3.9 分類模型效益分析 81
肆、 結論與未來發展 84
4.1 結論 84
4.2 未來發展 85
參考文獻 88
附錄 97
附表 1 97
附表 2 101
附表 3 105
附表 4 110
附表 6 138
程式碼 1 139
程式碼 2 140
程式碼 3 141
程式碼 4 143
-
dc.language.isozh_TW-
dc.subjectKNNzh_TW
dc.subjectXGBoostzh_TW
dc.subjectKNNzh_TW
dc.subject線性判別分析zh_TW
dc.subject無人機zh_TW
dc.subject多光譜zh_TW
dc.subject穗型zh_TW
dc.subject穗型zh_TW
dc.subject多光譜zh_TW
dc.subject無人機zh_TW
dc.subject線性判別分析zh_TW
dc.subjectXGBoostzh_TW
dc.subjectmultispectral imagesen
dc.subjectPanicle typeen
dc.subjectmultispectral imagesen
dc.subjectUAVen
dc.subjectLDAen
dc.subjectKNNen
dc.subjectXGBoosten
dc.subjectPanicle typeen
dc.subjectKNNen
dc.subjectXGBoosten
dc.subjectLDAen
dc.subjectUAVen
dc.title以無人機多光譜影像分析增進田間水稻穗外表型態於育種上的利用zh_TW
dc.titleEnhanced Paddy Rice Panicle Phenotyping for Breeding Application Based on UAV Multi-Spectral Image Analysisen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.coadvisor董致韡zh_TW
dc.contributor.coadvisorChih-Wei Tungen
dc.contributor.oralexamcommittee劉力瑜;楊嘉凌zh_TW
dc.contributor.oralexamcommitteeLi-Yu Liu;Jia-Ling Yangen
dc.subject.keyword穗型,多光譜,無人機,線性判別分析,KNN,XGBoost,zh_TW
dc.subject.keywordPanicle type,multispectral images,UAV,LDA,KNN,XGBoost,en
dc.relation.page145-
dc.identifier.doi10.6342/NTU202200663-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-03-31-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2025-07-01-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved