Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84371
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林居正(Jiu-Jenq Lin)
dc.contributor.authorChe-Yuan Changen
dc.contributor.author張哲源zh_TW
dc.date.accessioned2023-03-19T22:09:39Z-
dc.date.copyright2022-04-27
dc.date.issued2022
dc.date.submitted2022-04-14
dc.identifier.citation1. Yamamoto A, Takagishi K, Osawa T, Yanagawa T, Nakajima D, Shitara H, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg. 2010;19(1):116-20. 2.Khoschnau S, Milosavjevic J, Sahlstedt B, Rylance R, Rahme H, Kadum B. High prevalence of rotator cuff tears in a population who never sought for shoulder problems: a clinical, ultrasonographic and radiographic screening study. Eur J Orthop Surg Traumatol. 2020;30(3):457-63. 3. Tashjian RZ. Epidemiology, natural history, and indications for treatment of rotator cuff tears. Clin Sports Med. 2012;31(4):589-604. 4. Minagawa H, Yamamoto N, Abe H, Fukuda M, Seki N, Kikuchi K, et al. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village. J Orthop. 2013;10(1):8-12. 5. Weiner DS, Macnab I. Superior Migration of the Humeral Head. The Journal of Bone and Joint Surgery British volume. 1970;52-B(3):524-7. 6. de Witte PB, Henseler JF, van Zwet EW, Nagels J, Nelissen RG, de Groot JH. Cranial humerus translation, deltoid activation, adductor co-activation and rotator cuff disease - different patterns in rotator cuff tears, subacromial impingement and controls. Clin Biomech (Bristol, Avon). 2014;29(1):26-32. 7. Xu M, Li Z, Zhou Y, Ji B, Tian S, Chen G. Correlation between acromiohumeral distance and the severity of supraspinatus tendon tear by ultrasound imaging in a Chinese population. BMC Musculoskelet Disord. 2020;21(1):106. 8. Paletta GA, Warner JJP, Warren RF, Deutsch A, Altchek DW. Shoulder kinematics with two-plane x-ray evaluation in patients with anterior instability or rotator cuff tearing. Journal of Shoulder and Elbow Surgery. 1997;6(6):516-27. 9. Kozono N, Okada T, Takeuchi N, Hamai S, Higaki H, Shimoto T, et al. Dynamic kinematics of the glenohumeral joint in shoulders with rotator cuff tears. J Orthop Surg Res. 2018;13(1):9. 10. Terrier A, Reist A, Vogel A, Farron A. Effect of supraspinatus deficiency on humerus translation and glenohumeral contact force during abduction. Clin Biomech (Bristol, Avon). 2007;22(6):645-51. 11. Graham P. Rotator Cuff Tear. Orthop Nurs. 2018;37(2):154-6. 12. Abate M, Di Carlo L, Salini V, Schiavone C. Risk factors associated to bilateral rotator cuff tears. Orthop Traumatol Surg Res. 2017;103(6):841-5. 13. Lee ECS, Roach NT, Clouthier AL, Bicknell RT, Bey MJ, Young NM, et al. Three-dimensional scapular morphology is associated with rotator cuff tears and alters the abduction moment arm of the supraspinatus. Clin Biomech (Bristol, Avon). 2020;78:105091. 14. Seitz AL, McClure PW, Finucane S, Boardman ND, 3rd, Michener LA. Mechanisms of rotator cuff tendinopathy: intrinsic, extrinsic, or both? Clin Biomech (Bristol, Avon). 2011;26(1):1-12. 15. Mackenzie TA, Herrington L, Horlsey I, Cools A. An evidence-based review of current perceptions with regard to the subacromial space in shoulder impingement syndromes: Is it important and what influences it? Clin Biomech (Bristol, Avon). 2015;30(7):641-8. 16. Williamson PM, Hanna P, Momenzadeh K, Lechtig A, Okajima S, Ramappa AJ, et al. Effect of rotator cuff muscle activation on glenohumeral kinematics: A cadaveric study. J Biomech. 2020;105:109798. 17. Hawkes DH, Alizadehkhaiyat O, Kemp GJ, Fisher AC, Roebuck MM, Frostick SP. Shoulder muscle activation and coordination in patients with a massive rotator cuff tear: an electromyographic study. J Orthop Res. 2012;30(7):1140-6. 18. Campbell ST, Ecklund KJ, Chu EH, McGarry MH, Gupta R, Lee TQ. The role of pectoralis major and latissimus dorsi muscles in a biomechanical model of massive rotator cuff tear. J Shoulder Elbow Surg. 2014;23(8):1136-42. 19. Burkhart SS. Fluoroscopic comparison of kinematic patterns in massive rotator cuff tears. A suspension bridge model. Clin Orthop Relat Res. 1992;284(284):144-52. 20. Henseler JF, de Witte PB, de Groot JH, van Zwet EW, Nelissen RG, Nagels J. Cranial translation of the humeral head on radiographs in rotator cuff tear patients: the modified active abduction view. Med Biol Eng Comput. 2014;52(3):233-40. 21. Steenbrink F, de Groot JH, Veeger HE, Meskers CG, van de Sande MA, Rozing PM. Pathological muscle activation patterns in patients with massive rotator cuff tears, with and without subacromial anaesthetics. Man Ther. 2006;11(3):231-7. 22. Steenbrink F, de Groot JH, Veeger HE, van der Helm FC, Rozing PM. Glenohumeral stability in simulated rotator cuff tears. J Biomech. 2009;42(11):1740-5. 23. Steenbrink F, Nelissen RG, Meskers CG, van de Sande MA, Rozing PM, de Groot JH. Teres major muscle activation relates to clinical outcome in tendon transfer surgery. Clin Biomech (Bristol, Avon). 2010;25(3):187-93. 24. de Groot JH, van de Sande MA, Meskers CG, Rozing PM. Pathological Teres Major activation in patients with massive rotator cuff tears alters with pain relief and/or salvage surgery transfer. Clin Biomech (Bristol, Avon). 2006;21(1):27-32. 25. de Witte PB, van der Zwaal P, Visch W, Schut J, Nagels J, Nelissen RG, et al. Arm adductor with arm abduction in rotator cuff tear patients vs. healthy -- design of a new measuring instrument. Hum Mov Sci. 2012;31(2):461-71. 26. Oh JH, Jun BJ, McGarry MH, Lee TQ. Does a critical rotator cuff tear stage exist?: a biomechanical study of rotator cuff tear progression in human cadaver shoulders. J Bone Joint Surg Am. 2011;93(22):2100-9. 27. Overbeek CL, Kolk A, Nagels J, de Witte PB, van der Zwaal P, Visser CPJ, et al. Increased co-contraction of arm adductors is associated with a favorable course in subacromial pain syndrome. J Shoulder Elbow Surg. 2018;27(11):1925-31. 28. Halder AM, Zhao KD, O'Driscoll SW, Morrey BF, An KN. Dynamic contributions to superior shoulder stability. Journal of Orthopaedic Research. 2001;19(2):206-12. 29. Overbeek CL, Kolk A, de Groot JH, Visser CPJ, van der Zwaal P, Jens A, et al. Altered Cocontraction Patterns of Humeral Head Depressors in Patients with Subacromial Pain Syndrome: A Cross-sectional Electromyography Analysis. Clin Orthop Relat Res. 2019;477(8):1862-8. 30. Kronberg M, Nemeth G, Brostrom LA. Muscle activity and coordination in the normal shoulder. An electromyographic study. Clin Orthop Relat Res. 1990;257(257):76-85. 31. Kuechle DK, Newman SR, Itoi E, Morrey BF, An KN. Shoulder muscle moment arms during horizontal flexion and elevation. J Shoulder Elbow Surg. 1997;6(5):429-39. 32. Barra-Lopez ME, Lopez-de-Celis C, Perez-Bellmunt A, Puyalto-de-Pablo P, Sanchez-Fernandez JJ, Lucha-Lopez MO. The supporting role of the teres major muscle, an additional component in glenohumeral stability? An anatomical and radiological study. Med Hypotheses. 2020;141:109728. 33. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80(3):276-91. 34. Phadke V, Camargo P, Ludewig P. Scapular and rotator cuff muscle activity during arm elevation: A review of normal function and alterations with shoulder impingement. Rev Bras Fisioter. 2009;13(1):1-9. 35. Ludewig PM, Reynolds JF. The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther. 2009;39(2):90-104. 36. Kijima T, Matsuki K, Ochiai N, Yamaguchi T, Sasaki Y, Hashimoto E, et al. In vivo 3-dimensional analysis of scapular and glenohumeral kinematics: comparison of symptomatic or asymptomatic shoulders with rotator cuff tears and healthy shoulders. J Shoulder Elbow Surg. 2015;24(11):1817-26. 37. De Baets L, Jaspers E, Desloovere K, Van Deun S. A systematic review of 3D scapular kinematics and muscle activity during elevation in stroke subjects and controls. J Electromyogr Kinesiol. 2013;23(1):3-13. 38. Reinold MM, Macrina LC, Wilk KE, Dugas JR, Cain EL, Andrews JR. The effect of neuromuscular electrical stimulation of the infraspinatus on shoulder external rotation force production after rotator cuff repair surgery. Am J Sports Med. 2008;36(12):2317-21. 39. Jones S, Man WD, Gao W, Higginson IJ, Wilcock A, Maddocks M. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2016;10:6-20. 40. akınoğlu B, Kocahan T. Shoulder stabilization exercises and neuromuscular electrical stimulation can increase internal and external rotator muscle strength and normalize strength ratios. 2019;72:596-608. 41. Baker LL, Parker K. Neuromuscular electrical stimulation of the muscles surrounding the shoulder. Phys Ther. 1986;66(12):1930-7. 42. Bdaiwi AH, Mackenzie TA, Herrington L, Horsley I, Cools AM. Acromiohumeral Distance During Neuromuscular Electrical Stimulation of the Lower Trapezius and Serratus Anterior Muscles in Healthy Participants. J Athl Train. 2015;50(7):713-8. 43. Walker DL, Hickey CJ, Tregoning MB. The Effect of Electrical Stimulation Versus Sham Cueing on Scapular Position during Exercise in Patients with Scapular Dyskinesis. Int J Sports Phys Ther. 2017;12(3):425-36. 44. Boudreau N, Gaudreault N, Roy JS, Bedard S, Balg F. The Addition of Glenohumeral Adductor Coactivation to a Rotator Cuff Exercise Program for Rotator Cuff Tendinopathy: A Single-Blind Randomized Controlled Trial. J Orthop Sports Phys Ther. 2019;49(3):126-35. 45. Singh JP. Shoulder ultrasound: What you need to know. Indian J Radiol Imaging. 2012;22(4):284-92. 46. Neer C. Impingement Lesions. Clinical Orthopaedics and Related Research 1983;173:70-7. 47. Cofield RH. Subscapular muscle transposition for repair of chronic rotator cuff tears. Surg Gynecol Obstet. 1982;154(5):667-72. 48. Snyder S, editor. Arthroscopic classification of rotator cuff lesionsand surgical decision making. : Shoulder arthroscopy. 2nd ed.Philadelphia: Lippincott Williams & Wilkins 2003:201-7. 49. Gerber C FB, Hodler J. . The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am 2000(82):505-15. 50. Lenza M, Buchbinder R, Takwoingi Y, Johnston RV, Hanchard NC, Faloppa F. Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered. Cochrane Database Syst Rev. 2013(9):CD009020. 51. Aliprandi A, Messina C, Arrigoni P, Bandirali M, Di Leo G, Longo S, et al. Reporting rotator cuff tears on magnetic resonance arthrography using the Snyder's arthroscopic classification. World J Radiol. 2017;9(3):126-33. 52. Al-Shawi A, Badge R, Bunker T. The detection of full thickness rotator cuff tears using ultrasound. J Bone Joint Surg Br. 2008;90(7):889-92. 53. Sharma G, Bhandary S, Khandige G, Kabra U. MR Imaging of Rotator Cuff Tears: Correlation with Arthroscopy. J Clin Diagn Res. 2017;11(5):TC24-TC7. 54. Morag Y, Jacobson JA, Miller B, De Maeseneer M, Girish G, Jamadar D. MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics. 2006;26(4):1045-65. 55. Chiu CH, Chen P, Chen AC, Hsu KY, Chang SS, Chan YS, et al. Shoulder ultrasonography performed by orthopedic surgeons increases efficiency in diagnosis of rotator cuff tears. J Orthop Surg Res. 2017;12(1):63. 56. Moosikasuwan JB, Miller TT, Burke BJ. Rotator cuff tears: clinical, radiographic, and US findings. Radiographics. 2005;25(6):1591-607. 57. Reddy AS, Mohr KJ, Pink MM, Jobe FW. Electromyographic analysis of the deltoid and rotator cuff muscles in persons with subacromial impingement. J Shoulder Elbow Surg. 2000;9(6):519-23. 58. McCully SP, Suprak DN, Kosek P, Karduna AR. Suprascapular nerve block results in a compensatory increase in deltoid muscle activity. J Biomech. 2007;40(8):1839-46. 59. Steenbrink F, Meskers CG, Nelissen RG, de Groot JH. The relation between increased deltoid activation and adductor muscle activation due to glenohumeral cuff tears. J Biomech. 2010;43(11):2049-54. 60. Cordasco FA, Chen NC, Backus SI, Kelly BT, Williams RJ, 3rd, Otis JC. Subacromial injection improves deltoid firing in subjects with large rotator cuff tears. HSS J. 2010;6(1):30-6. 61. Mesiha MM, Derwin KA, Sibole SC, Erdemir A, McCarron JA. The biomechanical relevance of anterior rotator cuff cable tears in a cadaveric shoulder model. J Bone Joint Surg Am. 2013;95(20):1817-24. 62. Keener JD, Wei AS, Kim HM, Steger-May K, Yamaguchi K. Proximal humeral migration in shoulders with symptomatic and asymptomatic rotator cuff tears. J Bone Joint Surg Am. 2009;91(6):1405-13. 63. Burkhart SS, Esch JC, Jolson RS. The rotator crescent and rotator cable: An anatomic description of the shoulder's “suspension bridge”. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 1993;9(6):611-6. 64. Rahu M, Kolts I, Poldoja E, Kask K. Rotator cuff tendon connections with the rotator cable. Knee Surg Sports Traumatol Arthrosc. 2017;25(7):2047-50. 65. Huri G, Kaymakoglu M, Garbis N. Rotator cable and rotator interval: anatomy, biomechanics and clinical importance. EFORT Open Rev. 2019;4(2):56-62. 66. Pinkowsky GJ, ElAttrache NS, Peterson AB, Akeda M, McGarry MH, Lee TQ. Partial-thickness tears involving the rotator cable lead to abnormal glenohumeral kinematics. J Shoulder Elbow Surg. 2017;26(7):1152-8. 67. Bureau NJ, Blain-Pare E, Tetreault P, Rouleau DM, Hagemeister N. Sonographic Visualization of the Rotator Cable in Patients With Symptomatic Full-Thickness Rotator Cuff Tears: Correlation With Tear Size, Muscular Fatty Infiltration and Atrophy, and Functional Outcome. J Ultrasound Med. 2016;35(9):1899-905. 68. Morag Y, Jamadar DA, Boon TA, Bedi A, Caoili EM, Jacobson JA. Ultrasound of the rotator cable: prevalence and morphology in asymptomatic shoulders. AJR Am J Roentgenol. 2012;198(1):27-30. 69. Sconfienza LM, Orlandi D, Fabbro E, Ferrero G, Martini C, Savarino E, et al. Ultrasound assessment of the rotator cuff cable: comparison between young and elderly asymptomatic volunteers and interobserver reproducibility. Ultrasound Med Biol. 2012;38(1):35-41. 70. Morag Y, Jacobson JA, Lucas D, Miller B, Brigido MK, Jamadar DA. US appearance of the rotator cable with histologic correlation: preliminary results. Radiology. 2006;241(2):485-91. 71. Hik F, Ackland DC. The moment arms of the muscles spanning the glenohumeral joint: a systematic review. J Anat. 2019;234(1):1-15. 72. Lin JJ, Hsieh SC, Cheng WC, Chen WC, Lai Y. Adaptive patterns of movement during arm elevation test in patients with shoulder impingement syndrome. J Orthop Res. 2011;29(5):653-7. 73. Uwamahoro R, Sundaraj K, Subramaniam ID. Assessment of muscle activity using electrical stimulation and mechanomyography: a systematic review. Biomed Eng Online. 2021;20(1):1. 74. Petterson S, Snyder-Mackler L. The use of neuromuscular electrical stimulation to improve activation deficits in a patient with chronic quadriceps strength impairments following total knee arthroplasty. J Orthop Sports Phys Ther. 2006;36(9):678-85. 75. Piper CC, Hughes AJ, Ma Y, Wang H, Neviaser AS. Operative versus nonoperative treatment for the management of full-thickness rotator cuff tears: a systematic review and meta-analysis. J Shoulder Elbow Surg. 2018;27(3):572-6. 76. Ryosa A, Laimi K, Aarimaa V, Lehtimaki K, Kukkonen J, Saltychev M. Surgery or conservative treatment for rotator cuff tear: a meta-analysis. Disabil Rehabil. 2017;39(14):1357-63. 77. Kukkonen J, Joukainen A, Lehtinen J, Mattila KT, Tuominen EK, Kauko T, et al. Treatment of non-traumatic rotator cuff tears: A randomised controlled trial with one-year clinical results. Bone Joint J. 2014;96-B(1):75-81. 78. Lambers Heerspink FO, van Raay JJ, Koorevaar RC, van Eerden PJ, Westerbeek RE, van 't Riet E, et al. Comparing surgical repair with conservative treatment for degenerative rotator cuff tears: a randomized controlled trial. J Shoulder Elbow Surg. 2015;24(8):1274-81. 79. Moosmayer S, Lund G, Seljom U, Svege I, Hennig T, Tariq R, et al. Comparison between surgery and physiotherapy in the treatment of small and medium-sized tears of the rotator cuff: A randomised controlled study of 103 patients with one-year follow-up. J Bone Joint Surg Br. 2010;92(1):83-91. 80. Moosmayer S, Lund G, Seljom US, Haldorsen B, Svege IC, Hennig T, et al. Tendon repair compared with physiotherapy in the treatment of rotator cuff tears: a randomized controlled study in 103 cases with a five-year follow-up. J Bone Joint Surg Am. 2014;96(18):1504-14. 81. Ainsworth R. Physiotherapy rehabilitation in patients with massive, irreparable rotator cuff tears. Musculoskeletal Care. 2006;4(3):140-51. 82. Levy O, Mullett H, Roberts S, Copeland S. The role of anterior deltoid reeducation in patients with massive irreparable degenerative rotator cuff tears. J Shoulder Elbow Surg. 2008;17(6):863-70. 83. Oh JH, Park MS, Rhee SM. Treatment Strategy for Irreparable Rotator Cuff Tears. Clin Orthop Surg. 2018;10(2):119-34. 84. Yian EH, Sodl JF, Dionysian E, Schneeberger AG. Anterior deltoid reeducation for irreparable rotator cuff tears revisited. J Shoulder Elbow Surg. 2017;26(9):1562-5. 85. Billuart F, Gagey O, Skalli W, Mitton D. Biomechanics of the deltoideus. Surg Radiol Anat. 2006;28(1):76-81. 86. Graichen H, Bonel H, Stammberger T, Englmeier KH, Reiser M, Eckstein F. Subacromial space width changes during abduction and rotation--a 3-D MR imaging study. Surg Radiol Anat. 1999;21(1):59-64. 87. Hinterwimmer S, Von Eisenhart-Rothe R, Siebert M, Putz R, Eckstein F, Vogl T, et al. Influence of adducting and abducting muscle forces on the subacromial space width. Med Sci Sports Exerc. 2003;35(12):2055-9. 88. Graichen H, Bonel H, Stammberger T, Haubner M, Rohrer H, Englmeier KH, et al. Three-dimensional analysis of the width of the subacromial space in healthy subjects and patients with impingement syndrome. AJR Am J Roentgenol. 1999;172(4):1081-6. 89. MacKenzie SJ, Rannelli LA, Yurchevich JJ. Neuromuscular adaptations following antagonist resisted training. J Strength Cond Res. 2010;24(1):156-64. 90. Farber AJ, Castillo R, Clough M, Bahk M, McFarland EG. Clinical assessment of three common tests for traumatic anterior shoulder instability. J Bone Joint Surg Am. 2006;88(7):1467-74. 91. Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology 2000;39(4):382-8. 92. Ludewig PM, Cook TM. Alterations in Shoulder Kinematics and Associated Muscle Activity in People With Symptoms of Shoulder Impingement. Physical Therapy. 2000;80(3):276-91. 93. Karduna AR, McClure PW, Michener LA, Sennett B. Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng. 2001;123(2):184-90. 94. Fabiszewska E, Pasicz K, Grabska I, Skrzynski W, Slusarczyk-Kacprzyk W, Bulski W. Evaluation of Imaging Parameters of Ultrasound Scanners: Baseline for Future Testing. Pol J Radiol. 2017;82:773-82. 95. Lewis JS, Green A, Wright C. Subacromial impingement syndrome: the role of posture and muscle imbalance. J Shoulder Elbow Surg. 2005;14(4):385-92. 96. Struyf F, Meeus M, Fransen E, Roussel N, Jansen N, Truijen S, et al. Interrater and intrarater reliability of the pectoralis minor muscle length measurement in subjects with and without shoulder impingement symptoms. Man Ther. 2014;19(4):294-8. 97. Huang CM, Wang TJ, Chen WY. The Analysis of Item Difficulty for the Chinese Version of the Flexilevel Shoulder Function Scale (FLEX-SF Scale). FJPT. 2009;34(3):177-84. 98. Pijls BG, Kok FP, Penning LI, Guldemond NA, Arens HJ. Reliability study of the sonographic measurement of the acromiohumeral distance in symptomatic patients. J Clin Ultrasound. 2010;38(3):128-34. 99. Longo S, Corradi A, Michielon G, Sardanelli F, Sconfienza LM. Ultrasound evaluation of the subacromial space in healthy subjects performing three different positions of shoulder abduction in both loaded and unloaded conditions. Phys Ther Sport. 2017;23:105-12. 100. Shih YF, Liao PW, Lee CS. The immediate effect of muscle release intervention on muscle activity and shoulder kinematics in patients with frozen shoulder: a cross-sectional, exploratory study. BMC Musculoskelet Disord. 2017;18(1):499. 101. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361-74. 102. 3SPACE®FASTRAK®USER'S MANUAL Colchester, Vermont U.S.A. 2002. 103. Wang HK, Lin JJ, Pan SL, Wang TG. Sonographic evaluations in elite college baseball athletes. Scand J Med Sci Sports. 2005;15(1):29-35. 104. Kozono N, Okada T, Takeuchi N, Hamai S, Higaki H, Shimoto T, et al. In vivo dynamic acromiohumeral distance in shoulders with rotator cuff tears. Clin Biomech (Bristol, Avon). 2018;60:95-9. 105. McCreesh KM, Crotty JM, Lewis JS. Acromiohumeral distance measurement in rotator cuff tendinopathy: is there a reliable, clinically applicable method? A systematic review. Br J Sports Med. 2015;49(5):298-305. 106. Ohl X, Hagemeister N, Zhang C, Billuart F, Gagey O, Bureau NJ, et al. 3D scapular orientation on healthy and pathologic subjects using stereoradiographs during arm elevation. J Shoulder Elbow Surg. 2015;24(11):1827-33. 107. Ishikawa H, Muraki T, Morise S, Yamamoto N, Itoi E, Izumi SI. Differences in scapular motion and parascapular muscle activities among patients with symptomatic and asymptomatic rotator cuff tears, and healthy individuals. JSES Int. 2021;5(2):238-46. 108. Ackland DC, Pak P, Richardson M, Pandy MG. Moment arms of the muscles crossing the anatomical shoulder. J Anat. 2008;213(4):383-90. 109. Haveri S, Uppin RB, Patil K. The diagnostic value of the combination of clinical tests for the diagnosis of supraspinatus tendon tears. Indian Journal of Health Sciences and Biomedical Research (KLEU). 2019;12(1). 110. Gold RH, Seeger LL, Yao L. Imaging shoulder impingement. Skeletal Radiol. 1993;22(8):555-61. 111. Chopp JN, Dickerson CR. Resolving the contributions of fatigue-induced migration and scapular reorientation on the subacromial space: an orthopaedic geometric simulation analysis. Hum Mov Sci. 2012;31(2):448-60. 112. Barsi GI, Popovic DB, Tarkka IM, Sinkjaer T, Grey MJ. Cortical excitability changes following grasping exercise augmented with electrical stimulation. Exp Brain Res. 2008;191(1):57-66. 113. Kibler WB, Sciascia AD. Disorders of the Scapula and Their Role in Shoulder Injury. Kibler WB, Sciascia AD, editors2017. 114. Baumer TG, Chan D, Mende V, Dischler J, Zauel R, van Holsbeeck M, et al. Effects of Rotator Cuff Pathology and Physical Therapy on In Vivo Shoulder Motion and Clinical Outcomes in Patients With a Symptomatic Full-Thickness Rotator Cuff Tear. Orthop J Sports Med. 2016;4(9):2325967116666506. 115. McClure PW, Michener LA, Sennett BJ, Karduna AR. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg. 2001;10(3):269-77. 116. Overbeek CL, Kolk A, de Witte PB, Nagels J, Nelissen R, de Groot JH. Pain does not explain reduced teres major co-contraction during abduction in patients with Subacromial Pain Syndrome. Clin Biomech (Bristol, Avon). 2022;91:105548. 117. Overbeek CL, Kolk A, de Groot JH, de Witte PB, Gademan MGJ, Nelissen R, et al. Middle-aged adults cocontract with arm ADductors during arm ABduction, while young adults do not. Adaptations to preserve pain-free function? J Electromyogr Kinesiol. 2019;49:102351.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84371-
dc.description.abstract研究背景:無症狀個案相對肩峰下疼痛患者,於大圓肌表現出較高共同收縮性(即較低活性比),於胸大肌則表現出較低共同收縮性(即較高活性比)模式。神經肌肉電刺激於不同內收肌對旋轉肌全層破裂(Full-thickness rotator cuff tear, FT-RCT)患者肩胛運動學與肩峰下空間的效益,目前尚不清楚。實驗目的:本次實驗目的包含(1)探討電刺激於旋轉肌全層破裂患者之大圓肌及胸大肌,相對無電刺激下在休息角度下、60度、90度肩主動外展之肩峰下空間與在肩胛平面下手臂上抬時肩胛動作的差異。(2)量測電刺激對相關內收肌共同收縮活性比的立即效應。實驗設計:本實驗招募30位診斷為旋轉肌全層破裂的患者,個別於無電刺激、大圓肌與胸大肌電刺激下記錄主要量測項目。實驗使用超音波影像測量主動肩外展之肩峰下空間以及使用三維電磁動作分析儀紀錄在肩胛平面下手臂上抬時之肩胛動作,並於60%最大等長內收與外展力量下量測大圓肌與胸大肌於電刺激前後之共同收縮比。實驗結果: 在三個肩膀位置下,神經肌肉電刺激於大圓肌相對無電刺激對肩峰下空間顯著增加(休息姿勢下改變值=0.43 mm, p<0.001; 60度外展姿勢下改變值=0.88 mm, p<0.001; 90度外展姿勢下改變值=0.87 mm, p<0.001)。在肩休息位置下,電刺激於胸大肌相對無電刺激對肩峰下空間顯著降低(改變值=0.78 mm, p<0.001)。此外,電刺激於大圓肌相對電刺激於胸大肌(60度、90度上抬p < 0.001;90度下降p <0.001;60度下降p = 0.001)與無電刺激狀態(60度上抬p = 0.007;90度上抬p = 0.001;90度下降p < 0.001;60度下降p = 0.012)在手臂抬高60度、90度位置對肩胛骨上轉顯著增加。電刺激於胸大肌相對電刺激於大圓肌在手臂上抬期間顯著降低肩胛骨外轉(p = 0.003)。電刺激前後大圓肌的共同收縮活性均顯著低於胸大肌的共同收縮活性比(p <0.05)。實驗結論:在手臂抬高期間,電刺激於大圓肌相對於無電刺激狀態顯著增加肩胛骨上轉與相關之肩峰下空間,尤其是手臂上抬60度及90度的位置。有無電刺激在胸大肌上對肩峰下空間並無明顯改變,且電刺激於胸大肌將相對降低肩胛上轉與外轉,此機轉與肩夾擠有關。旋轉肌全層破裂患者偏向於使用大圓肌進行共同收縮,儘管活性比並沒有在神經肌肉電刺激後被改變。zh_TW
dc.description.abstractBackground: Asymptomatic subjects present higher and lower co-contraction in teres major (TM) and pectoralis major (PM) compared to patients with subacromial pain syndrome, respectively. The effects of neuromuscular electrical stimulation (NMES) on adductors for the acromiohumeral distance (AHD) and scapular kinematics in patients with symptomatic full-thickness rotator cuff tear (FT-RCT) are unclear. Objective: The objectives in this study were to (1) determine the effects of NMES on TM or PM for AHD at shoulder resting position, 60°, 90° abduction, and scapular kinematics during arm elevation in patients with FT-RCT; (2) evaluate the immediate effect of NMES on the AR of the associated adductors. Design: Thirty subjects diagnosed with FT-RCT were recruited and recorded the primary outcomes before stimulation, during NMES on TM and PM. We measured the AHD at active shoulder abduction under ultrasonography and scapular kinematics during arm elevation by three-dimensional electromagnetic motion analyses. The TM and PM activation ratio were calculated on pre- and post- NMES immediately at the 60% maximum isometric abducted and adducted force. Results: In three shoulder positions, the AHD were significant increased during NMES on TM compared to control (resting position = 0.43 mm, p < 0.001; 60°abduction = 0.88 mm, p < 0.001; 90°abduction = 0.87 mm, p < 0.001). In resting position, the AHD was significantly decreased during NMES on PM compared to control (difference = 0.78 mm, p < 0.001). Besides, the scapular UR were greater during NMES on TM compared with NMES on PM (elevation 60° and 90°, p < 0.001; lowering 90° and 60°, p < 0.01) and control (elevation 60° and 90°, p < 0.05; lowering 90° and 60°, p < 0.01). Scapular ER significantly decreased during NMES on PM than that with NMES on TM during humeral elevation (p = 0.003). Despite NMES or not, ARs of TM were significantly higher than those of PM (p < 0.05). Conclusions: NMES on TM relatively increased the scapular UR and related to AHD compared with control, especially at 60° and 90° of humeral elevation. However, there was no detectable changes in AHD during NMES on PM compared to control at 60° and 90° of arm elevation. Additionally, the decreased scapular UR and ER during arm elevation with NMES on PM is associated with possible subacromial impingement. Co-contraction of TM plays an important role for patients with FT-RCT, even though activation ratio remains similar after NMES.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:09:39Z (GMT). No. of bitstreams: 1
U0001-1304202215075300.pdf: 32334457 bytes, checksum: b353f7fc4cfb76fc65797111974a9335 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 2 誌謝 3 中文摘要 6 Abstract 8 Table of contents 10 List of tables 14 List of figures 15 Chapter 1 - Nature of the study 16 1.1 Background 16 1.2 Statement of the Problems 21 1.3 Purposes of the Study 22 1.4 Hypotheses 22 Chapter 2 - Literature review 24 2.1 Full-thickness Rotator Cuff Tear 24 2.2 Diagnostic tests for assessing FT-RCT 25 2.3 The functions of rotator cuff (RC) muscles 27 2.4 GH kinematics alteration related to AHD in patients with RCT 27 2.5 Biomechanics of the rotator cuff cable in RCT 30 2.6 The roles of the humeral depressors 31 2.7 Activation ratio of the co-contraction patterns 34 2.8 Alterations of scapular kinematics and associated muscles activation 37 2.9 Effects of Neuromuscular Electrical Stimulation (NMES) on AHD 39 2.10 Treatments of the FT-RCT 40 Chapter 3 – Methods 43 3.1 Study Design 43 3.2 Participants 43 3.3 Instrumentation 45 3.4 Procedures 50 3.5 Outcomes and Data Reduction 55 3.6 Statistical analysis 57 Chapter 4 - Results 59 4.1 Physical examination of the subjects 59 4.2 Acromiohumeral distance (AHD) 60 4.3 Scapular kinematics during humeral elevation 61 4.3.1 Scapular upward rotation 61 4.3.2 Scapular external/ internal rotation 62 4.3.3 Scapular posterior/ anterior tilt 63 4.4 Activation ratio (AR) of humeral adductors 63 Chapter 5 - Discussions 65 Chapter 6 - Conclusions 71 References 72 Tables 86 Figures 100 Appendix 118 Appendix 1. Chinese version of the Flexilevel Shoulder Function Scale 118 Appendix 2. Concordance Table and Scoring Rules for the FLEX-SF 122 Appendix 3. Permission of Institutional Review Board and Consent 124
dc.language.isoen
dc.title神經肌肉電刺激於旋轉肌全層破裂患者之肱骨內收肌對肩峰下空間與肩胛骨運動學之效果zh_TW
dc.titleThe Effects of Neuromuscular Electrical Stimulation on Humeral Adductors for Acromiohumeral Distance and Scapular Kinematics in Patients with Full-Thickness Rotator Cuff Tearen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳柏村(Po-Tsun Chen),張宗訓(Chung-Hsun Chang),楊靜蘭(Jing-Lan Yang)
dc.subject.keyword肩旋轉肌全層破裂,肱骨內收肌,肩峰下空間,神經肌肉電刺激,肩胛動作,zh_TW
dc.subject.keywordfull-thickness rotator cuff tear,humerus adductors,acromiohumeral distance,neuromuscular electrical stimulation,scapular kinematics,en
dc.relation.page130
dc.identifier.doi10.6342/NTU202200695
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-04-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
dc.date.embargo-lift2022-04-27-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
U0001-1304202215075300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
31.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved