Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84363
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor田蕙芬(Hwei-Fang Tien)
dc.contributor.authorChieh-Lung Chengen
dc.contributor.author鄭傑隆zh_TW
dc.date.accessioned2023-03-19T22:09:28Z-
dc.date.copyright2022-05-08
dc.date.issued2022
dc.date.submitted2022-05-02
dc.identifier.citation1. Pagano JS. Viruses and lymphomas. N Engl J Med. 2002;347(2):78-79. 2. Kim JH, Bang YJ, Park BJ, et al. Hepatitis B virus infection and B-cell non-Hodgkin's lymphoma in a hepatitis B endemic area: a case-control study. Jpn J Cancer Res. 2002;93(5):471-477. 3. Marcucci F, Mele A, Spada E, et al. High prevalence of hepatitis B virus infection in B-cell non-Hodgkin's lymphoma. Haematologica. 2006;91(4):554-557. 4. Engels EA, Cho ER, Jee SH. Hepatitis B virus infection and risk of non-Hodgkin lymphoma in South Korea: a cohort study. Lancet Oncol. 2010;11(9):827-834. 5. Su TH, Liu CJ, Tseng TC, et al. Chronic hepatitis B is associated with an increased risk of B-cell non-Hodgkin's lymphoma and multiple myeloma. Aliment Pharmacol Ther. 2019;49(5):589-598. 6. Dalia S, Chavez J, Castillo JJ, Sokol L. Hepatitis B infection increases the risk of non-Hodgkin lymphoma: a meta-analysis of observational studies. Leuk Res. 2013;37(9):1107-1115. 7. Li M, Gan Y, Fan C, et al. Hepatitis B virus and risk of non-Hodgkin lymphoma: An updated meta-analysis of 58 studies. J Viral Hepat. 2018;25(8):894-903. 8. Liang TJ. Hepatitis B: the virus and disease. Hepatology. 2009;49(5 Suppl):S13-21. 9. Yuen MF, Chen DS, Dusheiko GM, et al. Hepatitis B virus infection. Nat Rev Dis Primers. 2018;4:18035. 10. Kao JH, Chen DS. Global control of hepatitis B virus infection. Lancet Infect Dis. 2002;2(7):395-403. 11. Hsu HY, Chang MH, Chen DS, Lee CY, Sung JL. Baseline seroepidemiology of hepatitis B virus infection in children in Taipei, 1984: a study just before mass hepatitis B vaccination program in Taiwan. J Med Virol. 1986;18(4):301-307. 12. Hunt KE, Reichard KK. Diffuse large B-cell lymphoma. Arch Pathol Lab Med. 2008;132(1):118-124. 13. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-2390. 14. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503-511. 15. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851-862. 16. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937-1947. 17. Staudt LM, Dave S. The biology of human lymphoid malignancies revealed by gene expression profiling. Adv Immunol. 2005;87:163-208. 18. Lenz G, Davis RE, Ngo VN, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319(5870):1676-1679. 19. Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88-92. 20. Savage KJ, Johnson NA, Ben-Neriah S, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114(17):3533-3537. 21. Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181-185. 22. Pasqualucci L, Compagno M, Houldsworth J, et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med. 2006;203(2):311-317. 23. Compagno M, Lim WK, Grunn A, et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459(7247):717-721. 24. Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115-119. 25. Steidl C, Shah SP, Woolcock BW, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471(7338):377-381. 26. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268-3277. 27. Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018;378(15):1396-1407. 28. Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679-690. 29. Wright GW, Huang DW, Phelan JD, et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell. 2020;37(4):551-568 e514. 30. Sehn LH, Salles G. Diffuse Large B-Cell Lymphoma. N Engl J Med. 2021;384(9):842-858. 31. International Non-Hodgkin's Lymphoma Prognostic Factors P. A predictive model for aggressive non-Hodgkin's lymphoma. N Engl J Med. 1993;329(14):987-994. 32. Zhou Z, Sehn LH, Rademaker AW, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood. 2014;123(6):837-842. 33. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235-242. 34. Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(19):3121-3127. 35. Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379-391. 36. Pfreundschuh M, Schubert J, Ziepert M, et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 2008;9(2):105-116. 37. Wu SJ, Chiang CJ, Lin CT, Tien HF, Lai MS. A nationwide population-based cross-sectional comparison of hematological malignancies incidences between Taiwan and the United States of America. Ann Hematol. 2016;95(1):165-167. 38. Carbone A, Roulland S, Gloghini A, et al. Follicular lymphoma. Nat Rev Dis Primers. 2019;5(1):83. 39. Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin's lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin's Lymphoma Classification Project. Ann Oncol. 1998;9(7):717-720. 40. Chuang SS, Chen SW, Chang ST, Kuo YT. Lymphoma in Taiwan: Review of 1347 neoplasms from a single institution according to the 2016 Revision of the World Health Organization Classification. J Formos Med Assoc. 2017;116(8):620-625. 41. Katsushima H, Fukuhara N, Ichikawa S, et al. Non-biased and complete case registration of lymphoid leukemia and lymphoma for five years: a first representative index of Japan from an epidemiologically stable Miyagi Prefecture. Leuk Lymphoma. 2017;58(1):80-88. 42. Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):130-144. 43. Green MR. Chromatin modifying gene mutations in follicular lymphoma. Blood. 2018;131(6):595-604. 44. Ansell SM. Malignant B cells at the helm in follicular lymphoma. J Clin Oncol. 2013;31(21):2641-2642. 45. Kiaii S, Clear AJ, Ramsay AG, et al. Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. J Clin Oncol. 2013;31(21):2654-2661. 46. Friedberg JW, Taylor MD, Cerhan JR, et al. Follicular lymphoma in the United States: first report of the national LymphoCare study. J Clin Oncol. 2009;27(8):1202-1208. 47. Sarkozy C, Maurer MJ, Link BK, et al. Cause of Death in Follicular Lymphoma in the First Decade of the Rituximab Era: A Pooled Analysis of French and US Cohorts. J Clin Oncol. 2019;37(2):144-152. 48. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258-1265. 49. Relander T, Johnson NA, Farinha P, Connors JM, Sehn LH, Gascoyne RD. Prognostic factors in follicular lymphoma. J Clin Oncol. 2010;28(17):2902-2913. 50. Federico M, Bellei M, Marcheselli L, et al. Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol. 2009;27(27):4555-4562. 51. Pastore A, Jurinovic V, Kridel R, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015;16(9):1111-1122. 52. Al-Tourah AJ, Gill KK, Chhanabhai M, et al. Population-based analysis of incidence and outcome of transformed non-Hodgkin's lymphoma. J Clin Oncol. 2008;26(32):5165-5169. 53. Link BK, Maurer MJ, Nowakowski GS, et al. Rates and outcomes of follicular lymphoma transformation in the immunochemotherapy era: a report from the University of Iowa/MayoClinic Specialized Program of Research Excellence Molecular Epidemiology Resource. J Clin Oncol. 2013;31(26):3272-3278. 54. Federico M, Caballero Barrigon MD, Marcheselli L, et al. Rituximab and the risk of transformation of follicular lymphoma: a retrospective pooled analysis. Lancet Haematol. 2018;5(8):e359-e367. 55. Casulo C, Byrtek M, Dawson KL, et al. Early Relapse of Follicular Lymphoma After Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone Defines Patients at High Risk for Death: An Analysis From the National LymphoCare Study. J Clin Oncol. 2015;33(23):2516-2522. 56. Wang F, Xu RH, Luo HY, et al. Clinical and prognostic analysis of hepatitis B virus infection in diffuse large B-cell lymphoma. BMC Cancer. 2008;8:115. 57. Deng L, Song Y, Young KH, et al. Hepatitis B virus-associated diffuse large B-cell lymphoma: unique clinical features, poor outcome, and hepatitis B surface antigen-driven origin. Oncotarget. 2015;6(28):25061-25073. 58. Lim ST, Fei G, Quek R, et al. The relationship of hepatitis B virus infection and non-Hodgkin's lymphoma and its impact on clinical characteristics and prognosis. Eur J Haematol. 2007;79(2):132-137. 59. Law MF, Lai HK, Chan HN, et al. The impact of hepatitis B virus (HBV) infection on clinical outcomes of patients with diffuse large B-cell lymphoma. Eur J Cancer Care (Engl). 2015;24(1):117-124. 60. Ren W, Ye X, Su H, et al. Genetic landscape of hepatitis B virus-associated diffuse large B-cell lymphoma. Blood. 2018;131(24):2670-2681. 61. Yan X, Zhou M, Lou Z, et al. Diffuse large B-cell lymphoma with concurrent hepatitis B virus infection in the MabThera era: Unique clinical features and worse outcomes. J Cancer Res Ther. 2018;14(Supplement):S248-S253. 62. Wei Z, Zou S, Li F, et al. HBsAg is an independent prognostic factor in diffuse large B cell lymphoma patients in rituximab era: result from a multicenter retrospective analysis in China. Med Oncol. 2014;31(3):845. 63. Al-Mansour MM, Alghamdi SA, Alsubaie MA, Alesa AA, Khan MA. Negative effect of hepatitis in overall and progression-free survival among patients with diffuse large B-cell lymphoma. Infect Agent Cancer. 2018;13:18. 64. Fernandez-Rodriguez C, Rodriguez-Sevilla JJ, Fernandez-Ibarrondo L, et al. Worse outcome and distinct mutational pattern in follicular lymphoma with anti-HBc positivity. Blood Adv. 2022;6(1):82-86. 65. Yoffe B, Burns DK, Bhatt HS, Combes B. Extrahepatic hepatitis B virus DNA sequences in patients with acute hepatitis B infection. Hepatology. 1990;12(2):187-192. 66. Bouffard P, Lamelin JP, Zoulim F, Lepot D, Trepo C. Phytohemagglutinin and concanavalin A activate hepatitis B virus in peripheral blood mononuclear cells of patients with chronic hepatitis B virus infection. J Med Virol. 1992;37(4):255-262. 67. Yoffe B, Noonan CA, Melnick JL, Hollinger FB. Hepatitis B virus DNA in mononuclear cells and analysis of cell subsets for the presence of replicative intermediates of viral DNA. J Infect Dis. 1986;153(3):471-477. 68. Baginski I, Chemin I, Bouffard P, Hantz O, Trepo C. Detection of polyadenylated RNA in hepatitis B virus-infected peripheral blood mononuclear cells by polymerase chain reaction. J Infect Dis. 1991;163(5):996-1000. 69. Pontisso P, Vidalino L, Quarta S, Gatta A. Biological and clinical implications of HBV infection in peripheral blood mononuclear cells. Autoimmun Rev. 2008;8(1):13-17. 70. Murakami Y, Minami M, Daimon Y, Okanoue T. Hepatitis B virus DNA in liver, serum, and peripheral blood mononuclear cells after the clearance of serum hepatitis B virus surface antigen. J Med Virol. 2004;72(2):203-214. 71. Umeda M, Marusawa H, Seno H, et al. Hepatitis B virus infection in lymphatic tissues in inactive hepatitis B carriers. J Hepatol. 2005;42(6):806-812. 72. Wang Y, Wang H, Pan S, et al. Capable Infection of Hepatitis B Virus in Diffuse Large B-cell Lymphoma. J Cancer. 2018;9(9):1575-1581. 73. Zapatka M, Borozan I, Brewer DS, et al. The landscape of viral associations in human cancers. Nat Genet. 2020;52(3):320-330. 74. McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017;13(4):e1006211. 75. Hu Z, Zhu D, Wang W, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015;47(2):158-163. 76. Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018;67(4):1560-1599. 77. Thrift AP, El-Serag HB, Kanwal F. Global epidemiology and burden of HCV infection and HCV-related disease. Nat Rev Gastroenterol Hepatol. 2017;14(2):122-132. 78. Sung WK, Zheng H, Li S, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44(7):765-769. 79. Li M, Shen Y, Chen Y, et al. Characterization of hepatitis B virus infection and viral DNA integration in non-Hodgkin lymphoma. Int J Cancer. 2020;147(8):2199-2209. 80. Li CL, Li CY, Lin YY, et al. Androgen Receptor Enhances Hepatic Telomerase Reverse Transcriptase Gene Transcription After Hepatitis B Virus Integration or Point Mutation in Promoter Region. Hepatology. 2019;69(2):498-512. 81. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579-586. 82. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275-282. 83. Lin YY, Hsieh CH, Chen JH, et al. De novo assembly of highly polymorphic metagenomic data using in situ generated reference sequences and a novel BLAST-based assembly pipeline. BMC Bioinformatics. 2017;18(1):223. 84. Melchardt T, Troppan K, Weiss L, et al. A modified scoring of the NCCN-IPI is more accurate in the elderly and is improved by albumin and beta2 -microglobulin. Br J Haematol. 2015;168(2):239-245. 85. Matsue K, Kimura S, Takanashi Y, et al. Reactivation of hepatitis B virus after rituximab-containing treatment in patients with CD20-positive B-cell lymphoma. Cancer. 2010;116(20):4769-4776. 86. Kim SJ, Hsu C, Song YQ, et al. Hepatitis B virus reactivation in B-cell lymphoma patients treated with rituximab: analysis from the Asia Lymphoma Study Group. Eur J Cancer. 2013;49(16):3486-3496. 87. Wilcox RA, Ristow K, Habermann TM, et al. The absolute monocyte and lymphocyte prognostic score predicts survival and identifies high-risk patients in diffuse large-B-cell lymphoma. Leukemia. 2011;25(9):1502-1509. 88. Porrata LF, Markovic SN. Timely reconstitution of immune competence affects clinical outcome following autologous stem cell transplantation. Clin Exp Med. 2004;4(2):78-85. 89. Kim DH, Baek JH, Chae YS, et al. Absolute lymphocyte counts predicts response to chemotherapy and survival in diffuse large B-cell lymphoma. Leukemia. 2007;21(10):2227-2230. 90. Cox MC, Nofroni I, Laverde G, et al. Absolute lymphocyte count is a prognostic factor in diffuse large B-cell lymphoma. Br J Haematol. 2008;141(2):265-268. 91. Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115-123. 92. Zhao X, Guo X, Xing L, et al. HBV infection potentiates resistance to S-phase arrest-inducing chemotherapeutics by inhibiting CHK2 pathway in diffuse large B-cell lymphoma. Cell Death Dis. 2018;9(2):61. 93. Siddiqui M, Ristow K, Markovic SN, et al. Absolute lymphocyte count predicts overall survival in follicular lymphomas. Br J Haematol. 2006;134(6):596-601. 94. Pei SN, Chen CH, Lee CM, et al. Reactivation of hepatitis B virus following rituximab-based regimens: a serious complication in both HBsAg-positive and HBsAg-negative patients. Ann Hematol. 2010;89(3):255-262. 95. Buske C, Hoster E, Dreyling M, Hasford J, Unterhalt M, Hiddemann W. The Follicular Lymphoma International Prognostic Index (FLIPI) separates high-risk from intermediate- or low-risk patients with advanced-stage follicular lymphoma treated front-line with rituximab and the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) with respect to treatment outcome. Blood. 2006;108(5):1504-1508. 96. Maurer MJ, Bachy E, Ghesquieres H, et al. Early event status informs subsequent outcome in newly diagnosed follicular lymphoma. Am J Hematol. 2016;91(11):1096-1101. 97. Fowler NH, Cheah CY, Gascoyne RD, et al. Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica. 2016;101(5):531-540. 98. Wahlin BE, Aggarwal M, Montes-Moreno S, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1--positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16(2):637-650. 99. Tobin JWD, Keane C, Gunawardana J, et al. Progression of Disease Within 24 Months in Follicular Lymphoma Is Associated With Reduced Intratumoral Immune Infiltration. J Clin Oncol. 2019;37(34):3300-3309. 100. Li TY, Yang Y, Zhou G, Tu ZK. Immune suppression in chronic hepatitis B infection associated liver disease: A review. World J Gastroenterol. 2019;25(27):3527-3537. 101. Yang P, Markowitz GJ, Wang XF. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. Natl Sci Rev. 2014;1(3):396-412. 102. Lim CJ, Lee YH, Pan L, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut. 2019;68(5):916-927. 103. Rossi D, Bertoni F, Zucca E. Marginal-Zone Lymphomas. N Engl J Med. 2022;386(6):568-581. 104. Hogfeldt T, Jaing C, Loughlin KM, et al. Differential expression of viral agents in lymphoma tissues of patients with ABC diffuse large B-cell lymphoma from high and low endemic infectious disease regions. Oncol Lett. 2016;12(4):2782-2788. 105. Zhao LH, Liu X, Yan HX, et al. Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma. Nat Commun. 2016;7:12992. 106. Lu P, Chen J, Yan L, et al. RasGRF2 promotes migration and invasion of colorectal cancer cells by modulating expression of MMP9 through Src/Akt/NF-kappaB pathway. Cancer Biol Ther. 2019;20(4):435-443. 107. Du Y, Wang Z, Wan W. High Expression of ERK-related RASGRF2 predicts Poor prognosis in patients with Stomach Adenocarcinoma and correlates with M2 macrophage. J Cancer. 2021;12(23):7177-7189. 108. Li CL, Ho MC, Lin YY, et al. Cell-Free Virus-Host Chimera DNA From Hepatitis B Virus Integration Sites as a Circulating Biomarker of Hepatocellular Cancer. Hepatology. 2020;72(6):2063-2076. 109. Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541-550. 110. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921-R925. 111. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482-1492. 112. Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14(8):517-534. 113. Schurch CM, Bhate SS, Barlow GL, et al. Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front. Cell. 2020;182(5):1341-1359 e1319. 114. Black S, Phillips D, Hickey JW, et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat Protoc. 2021;16(8):3802-3835.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84363-
dc.description.abstract背景 許多研究已證實B型肝炎病毒(HBV)表面抗原(HBsAg)陽性的慢性HBV感染和B細胞非何杰金氏淋巴癌(B-cell NHLs)的發生有正向關係,尤其是B-cell NHL中的瀰漫性大B細胞淋巴癌(DLBCL)和濾泡型淋巴癌(FL)。然而,DLBCL或FL的患者同時有慢性HBV感染時的臨床特色和預後,目前尚不清楚。此外,因慢性HBV感染和B-cell NHL的發生有正向關係,發掘和探討影響HBV相關B細胞淋巴癌(HBV-associated B-cell NHL)預後和致癌機轉的因子值得我們深入研究。 研究目標 本研究分析了在現今標靶合併化學藥物治療的時代,HBsAg於DLBCL和FL患者所代表的預後意義。亦探討其中一個可能影響HBV-associated B-cell NHL的致癌機轉因子,HBV DNA能否嵌入(HBV integration)淋巴癌細胞的基因體?其嵌入的模式為何?及HBV integration是否影響預後和淋巴癌發生。 病人和實驗方法 本研究建構了兩組回溯性世代研究群體(cohort studies)。一是DLBCL cohort study, 收錄從2002至2016年於台大醫院新診斷DLBCL,並接受全身標準標靶合併化學治療(R-CHOP)的患者。另一是FL cohort study,收錄了從2006至2016年於台大醫院新診斷FL,並接受包含標靶藥物rituximab合併其它全身化學藥物治療的患者。本研究分析了HBsAg的有無於此兩群cohorts中的臨床特色和預後相關性。 此外,本研究利用捕獲型次世代基因定序平台(capture-NGS platform)來發掘45個B-cell NHL的腫瘤檢體中,是否存有HBV integration,及其嵌入的模式為何。 結果 首先在包括416位病患的DLCBL cohort中,98位(23.6%)為HBsAg陽性。HBsAg陽性的DLBCL患者,比起HBsAg陰性的患者而言,罹病年齡較年輕,腫瘤侵犯期別較廣泛,治療反應和預後皆較差。而多變項存活分析更發現HBsAg陽性對於DLBCL患者是一個獨立的預後不佳因子。 接著於擁有149位患者的FL cohort中,32位(21.5%)為HBsAg陽性。FL同時帶有HBsAg的慢性HBV感染患者,經常出現脾腫大,胸水或腹水,和治療期間肝指數異常等等臨床徵兆。另外,比起HBsAg陰性的患者,HBsAg陽性的FL病人對於標靶合併化學藥物的治療有較低的完全緩解率,較差的整體存活期和較短的無病存活期。在多變項存活分析中,HBsAg仍舊是一個獨立的預後不佳因子。有趣的是,比起HBsAg陰性的患者,HBsAg陽性的FL病人有較高機率發生疾病早期惡化(progression of disease within 24 months)。 最後藉由capture-NGS platform,在45個B-cell NHL的腫瘤檢體中,有28.9%(13/45)發現有HBV integration的現象,共偵測到354個HBV-lymphoma基因的嵌入接合片段。不過淋巴瘤的基因組並沒有發現有嵌入熱點(hotspot integration),而這些嵌入接合片段僅有極少數產生單株性(clonality)現象。另外,HBV integration並非穩定的存在於成對的初診斷和復發的腫瘤檢體中,且嵌合現象的有無並不影響DLBCL患者的預後。 結論 本研究發現同時有慢性HBV感染的DLBCL或FL患者,擁有特殊的臨床表徵,較低的治療反應和較差的存活率。本研究亦指出,HBsAg對於DLBCL或FL的患者而言,可當成是一個新的預測預後和存活的因子。 雖然HBV integration的現象確實存在於HBV-associated B-cell NHL,但其在腫瘤檢體中發生的頻率遠低於HBV-associated肝細胞癌。這些病毒-宿主基因嵌入接合片段於淋巴瘤的基因組中並無形成嵌入熱區,也僅有極少數發展成有意義的clonality現象。此外,HBV integration的現象於B-cell NHL的病程中並非穩定的存在,且其存在與否並不影響DLBCL患者預後。此皆暗示了HBV integration於HBV-associated B-cell NHL的生物學功能影響或許有限。 HBV-associated B-cell NHL的患者於現今的治療模式下,確實具有較差的預後。雖然嵌入式致突變進而導致淋巴瘤生成的機轉或許不能應用於HBV相關B-cell NHL,但是後續仍有許多值得研究的方向,如慢性HBV感染是否導致腫瘤免疫微環境(Tumor immune microenvironment)改變,進而影響患者的治療預後等。我們將進行更多,更深入的研究來確立HBV感染於B-cell NHL所扮演的真實生物學角色,並用以發展新的治療策略,來改善此類患者的預後。zh_TW
dc.description.abstractBackground Studies have shown a positive association between hepatitis B surface antigen (HBsAg)-positive hepatitis B virus (HBV) infection and B-cell non-Hodgkin lymphomas (NHLs), especially for diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). Nevertheless, the clinical implications of HBV infection in patients with DLBCL and FL are unclear. Moreover, factors that contribute to lymphomagenesis of HBV-associated B-cell NHL remain to be explored. Aims We aimed to examine the prognostic value of HBsAg in DLBCL and in FL. We further explored the factor that might lead to the development of HBV-associated lymphoma, the integration of HBV DNA into the genome of lymphoma cells. Methods We investigated the clinical relevance of HBsAg in immunocompetent patients with DLBCL and in those with FL, respectively. For the DLBCL cohort, patients who had received homogeneous rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone as the frontline therapy at National Taiwan University Hospital (NTUH) between 2002 and 2016 were selected. For the FL cohort, patients treated with frontline rituximab-containing chemoimmunotherapy at NTUH between 2006 and 2016 were recruited. Additionally, we selected 45 B-cell NHL cases and used the Hybridization capture-based next generation sequencing (NGS) to characterize the pattern of HBV DNA integration into the genome of lymphoma cells in their tumor samples. Results Among 416 analyzed patients in the DLBCL cohort, 98 (23.6%) were HBsAg-positive. HBsAg positivity was associated with a younger age and more advanced stage at diagnosis, more frequent hepatic impairment during perichemotherapy, and a trend of higher National Comprehensive Cancer Network-International Prognostic Index score. Compared with the HBsAg-negative patients, the HBsAg-positive patients had a poorer 5-year overall survival (OS) rate and shorter 5-year progression-free survival (PFS) rate. Multivariate analyses showed HBsAg was an independent unfavorable prognostic indicator. Regarding the FL cohort including 149 patients, 32 (21.5%) were HBsAg-positive. HBsAg positivity was positively associated with symptomatic splenomegaly, significant serous effusions, and peritreatment hepatic dysfunction. HBsAg-positive patients had significantly poorer OS and shorter PFS than had HBsAg-negative patients. Multivariate analysis still revealed that HBsAg is an independent adverse prognostic factor for OS. Intriguingly, HBsAg-positive patients had a higher incidence of progression of disease within 24 months than had HBsAg-negative patients (cumulative incidence rate, 25.8% vs. 12.4%, P = 0.045). Finally, by conducting high-throughput viral integration detection, a total of 354 HBV integrations were identified from 28.9% (13/45) of HBV-associated NHLs. Nevertheless, there was no clustered genomic hotspot of viral integration. Additionally, only few HBV integrations had clonality in the genome of B-cell NHL. Moreover, the HBV integration did not show persistence and stability by analyzing the paired diagnosis-relapse samples. Furthermore, the presence of HBV integration was not associated with the survival of patients with DLBCL. Conclusions We demonstrated that HBV infection is uniquely relevant to DLBCL and FL. Our research also provides evidences that HBsAg was an independent unfavorable factor significantly associated with survival, highlighting its potential as a novel prognostic predictor of the survival of patients with DLBCL or with FL. Although HBV DNA could indeed integrate into the genome of B-cell NHL, the sample frequency of integration events was far less than that in hepatocellular carcinoma. No significantly enriched viral integration hotspot was discovered. Additionally, only few cases were identified to have clonally expanded lymphoma cells carrying the same integrated viral DNA. Moreover, HBV integration was unstable during disease evolution and not associated with prognosis. Hence, the mechanism of insertional mutagenesis to drive lymphomagenesis might not be applicable to HBV-associated lymphoma. The other factor such as the influence of chronic HBV infection on the tumor immune microenvironment merits further investigation. We look forward to exploring the biological role of HBV infection in B-cell NHL and developing novel therapeutic strategies for this group of patients.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:09:28Z (GMT). No. of bitstreams: 1
U0001-2804202223281900.pdf: 12345228 bytes, checksum: da3adc1c53b5c5bea6095fd3a89dc0d0 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification letter from the oral examination committee …….………………..... I Acknowledgements………………………………………………………………..... II Chinese abstract………………………………………….…………........................III-1~III-3 Abstract …………………………………………………………………….……….IV-1~IV-3 1. Introduction 1.1 Positive association between HBV infection and B-cell NHLs…...……………1 1.2 Introduction of HBV and epidemiology of HBV infection in Taiwan…………3 1.3 Overview of DLBCL and FL 1.3.1 DLBCL…………………………………………………..………………..4 1.3.2 FL……………………………………………..…………………………..8 1.4 Clinical relevance and prognostic significance of HBV infection in DLBCL and FL: literature reviews 1.4.1 Prognostic implications of chronic HBV infection in DLBCL…..………11 1.4.2 Prognostic implications of chronic HBV infection in FL…………..……12 1.5 Lymphotropism of HBV………………………………………………………13 1.6 Capable infection of HBV in B-cell lymphoma………………………….……14 1.7 Tumorigenesis related to DNA virus: viral DNA integration…………………15 1.8 HBV DNA integration in B-cell lymphomas: literature review………………17 1.9 Capture-NGS technique used in our study 1.9.1 Overall workflow of the capture-NGS analysis………………………..…19 1.9.2 Identify HBV-human chimera DNA in HBV-related HCC…………….…19 1.10 The Aims of the current study………………………………………….……20 2. Materials and methods 2.1 Patients 2.1.1 DLBCL cohort…………………………………………………………….21 2.1.2 FL cohort……………………………………………………………….…22 2.1.3 Prophylactic antiviral therapy……………………………………………23 2.1.4 Evaluation of treatment response…………………………………………24 2.2 Clinical data collection……………………………………………………...…24 2.3 Statistical analysis……………..………………………………………………25 2.4 Sample collections…………………………………………………………..…26 2.5 DNA extractions…………………………………………………………….…27 2.6 Quantitative polymerase chain reaction analysis of the tumor samples…….…27 2.7 Capture-NGS analysis…………………………………………………………29 2.8 Capture probe set………………………………………………………………30 2.9 Bioinformatics analysis…………………….……………………………….…31 3. Results 3.1 Patient characteristics 3.1.1 DLBCL cohort………………………………………………………….…33 3.1.2 FL cohort……………….…………………………………………………34 3.2 Clinical features of patients with and without HBsAg 3.2.1 DLBCL cohort……………………………………………………………36 3.2.2 FL cohort…………………………………………………………………36 3.3 Impact of HBV infection on treatment responses and clinical outcomes 3.3.1 DLBCL cohort………………….…………………………………………37 3.3.2 FL cohort…………………………………………………………………40 3.4 Validation of the scoring system in an external DLBCL cohort…….……...…42 3.5 Transformation/POD24 events by HBsAg status in the FL cohort………...…42 3.6 Effects of HBeAg levels, HBV viral loads and prophylactic antiviral therapy on clinical outcomes 3.6.1 DLBCL cohort……………………………………………………………43 3.6.2 FL cohort…………………………………………………………………44 3.7 Hepatitis B reactivation and hepatic dysfunction 3.7.1 DLBCL cohort……………………………………………………………44 3.7.2 FL cohort…………………………………………………………………45 3.8 Study subjects for capture-NGS analysis…………………………………...…46 3.9 Identification of HBV integrations in HBV-associated B-cell NHLs…………47 3.10 The pattern of HBV integrations in HBV-associated B-cell NHLs……….…48 3.11 The prevalence of precore and BCP mutations in HBV-associated B-cell NHLs…………...…………………………………………………………….49 3.11 Comparison of the pattern of HBV integrations between HBV-related HCCs and HBV-associated B-cell NHLs…………...………………………………49 3.12 HBV integrations in paired diagnostic and relapsed samples from patients with HBV-associated B-cell NHLs…………………………………………….…51 3.13 The prognostic significance of HBV integrations in B-cell NHLs……….…52 4. Discussion……………………………………………………………………...52 5. Prospects…………………………………………………..…………………...72 6. References……………………………………….………………………….…82 7. Tables…………………………………………………………………………...93 8. Figure legends and Figures……………………………………………...123 9. Appendix………………………………………………………….…..……....144
dc.language.isoen
dc.subjectB型肝炎病毒表面抗原zh_TW
dc.subjectB型肝炎病毒感染zh_TW
dc.subject濾泡型淋巴癌zh_TW
dc.subject瀰漫性大B細胞淋巴癌zh_TW
dc.subjectB型肝炎病毒宿主基因體嵌入zh_TW
dc.subject預後zh_TW
dc.subjectPrognosisen
dc.subjectFollicular lymphomaen
dc.subjectHBV infectionen
dc.subjectHBsAgen
dc.subjectHBV integrationen
dc.subjectDiffuse large B-cell lymphomaen
dc.titleB型肝炎病毒相關B細胞淋巴癌之研究zh_TW
dc.titleThe Role of Hepatitis B Virus Infection in B-Cell Lymphoma and Its Clinical Implicationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.author-orcid0000-0001-5442-1079
dc.contributor.coadvisor葉秀慧(Shiou-Hwei Yeh)
dc.contributor.oralexamcommittee陳培哲(Pei-Jer Chen),高志平,陳彩雲
dc.subject.keyword瀰漫性大B細胞淋巴癌,濾泡型淋巴癌,B型肝炎病毒感染,B型肝炎病毒表面抗原,B型肝炎病毒宿主基因體嵌入,預後,zh_TW
dc.subject.keywordDiffuse large B-cell lymphoma,Follicular lymphoma,HBV infection,HBsAg,HBV integration,Prognosis,en
dc.relation.page144
dc.identifier.doi10.6342/NTU202200733
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-05-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2804202223281900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
12.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved