請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84345完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林晃巖(Hoang-Yan Lin) | |
| dc.contributor.author | Chih-Hao Chuang | en |
| dc.contributor.author | 莊智皓 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:09:03Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-05-25 | |
| dc.identifier.citation | [1]S. Kejian and W. Fei, 'The development of stereoscopic display technology,' in 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 2010, vol. 4: IEEE, pp. V4-276-V4-280. [2]Y. Yamaguchi and Y. Takaki, 'See-through integral imaging display with background occlusion capability,' Applied optics, vol. 55, no. 3, pp. A144-A149, 2016. [3]D. Wang and H. Wang, 'About stereoscopic vision and true 3D volumetric display technology [J],' Advanced Display, vol. 9, pp. 16-26, 2009. [4]B. T. Schowengerdt, E. J. Seibel, J. P. Kelly, N. L. Silverman, and T. A. Furness III, 'Binocular retinal scanning laser display with integrated focus cues for ocular accommodation,' in Stereoscopic Displays and Virtual Reality Systems X, 2003, vol. 5006: International Society for Optics and Photonics, pp. 1-9. [5]L.-z. MU and H.-j. ZHANG, 'Principles and applications of three dimensional video display,' Physics Experimentation, 2008. [6]D. G. Lowe, 'Three-dimensional object recognition from single two-dimensional images,' Artificial intelligence, vol. 31, no. 3, pp. 355-395, 1987. [7]J. Hofmeister, T. G. Frank, A. Cuschieri, and N. J. Wade, 'Perceptual aspects of two-dimensional and stereoscopic display techniques in endoscopic surgery: review and current problems,' in Seminars in laparoscopic surgery, 2001, vol. 8, no. 1: Sage Publications Sage CA: Thousand Oaks, CA, pp. 12-24. [8]J. Hong et al., 'Three-dimensional display technologies of recent interest: principles, status, and issues,' Applied optics, vol. 50, no. 34, pp. H87-H115, 2011. [9]T. Okoshi, Three-dimensional imaging techniques. Elsevier, 2012. [10]L. Hodges and D. McAllister, 'Stereo Computer Graphics and other True 3D Technologies,' Chapter, vol. 5, pp. 71-89, 1993. [11]J. Månsson, 'Stereovision: A model of human stereopsis,' 1997. [12]I. Sexton and D. Crawford, 'Parallax barrier 3DTV,' in Three-Dimensional Visualization and Display Technologies, 1989, vol. 1083: SPIE, pp. 84-94. [13]D. Gabor, 'A new microscopic principle,' nature, vol. 161, pp. 777-778, 1948. [14]K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, 'A stereo display prototype with multiple focal distances,' ACM transactions on graphics (TOG), vol. 23, no. 3, pp. 804-813, 2004. [15]Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, 'Viewing-angle-enhanced integral imaging system using a curved lens array,' Optics express, vol. 12, no. 3, pp. 421-429, 2004. [16]J. Hong, S.-W. Min, and B. Lee, 'Integral floating display systems for augmented reality,' Applied optics, vol. 51, no. 18, pp. 4201-4209, 2012. [17]X. Xia et al., 'A 360-degree floating 3D display based on light field regeneration,' Optics express, vol. 21, no. 9, pp. 11237-11247, 2013. [18]T.-C. Poon, Digital holography and three-dimensional display: Principles and Applications. Springer Science & Business Media, 2006. [19]B. Brown and A. Lohmann, 'Computer-generated binary holograms,' IBM Journal of research and Development, vol. 13, no. 2, pp. 160-168, 1969. [20]C.-Y. Chen, W.-C. Li, H.-T. Chang, C.-H. Chuang, and T.-J. Chang, '3-D modified Gerchberg–Saxton algorithm developed for panoramic computer-generated phase-only holographic display,' JOSA B, vol. 34, no. 5, pp. B42-B48, 2017. [21]H.-E. Hwang, H. T. Chang, and W.-N. Lie, 'Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain,' Optics letters, vol. 34, no. 24, pp. 3917-3919, 2009. [22]H.-E. Hwang, H. T. Chang, and W.-N. Lie, 'Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems,' Optics express, vol. 17, no. 16, pp. 13700-13710, 2009. [23]T. Shimobaba and T. Ito, 'A color holographic reconstruction system by time division multiplexing with reference lights of laser,' Optical review, vol. 10, no. 5, pp. 339-341, 2003. [24]W. Zaperty, T. Kozacki, and M. Kujawińska, 'Native frame rate single SLM color holographic 3D display,' Photonics Letters of Poland, vol. 6, no. 3, pp. 93-95, 2014. [25]R. W. Gerchberg, 'A practical algorithm for the determination of phase from image and diffraction plane pictures,' Optik, vol. 35, pp. 237-246, 1972. [26]Y. Ogihara and Y. Sakamoto, 'Fast calculation method of a CGH for a patch model using a point-based method,' Applied optics, vol. 54, no. 1, pp. A76-A83, 2015. [27]D. Arai, T. Shimobaba, T. Nishitsuji, T. Kakue, N. Masuda, and T. Ito, 'An accelerated hologram calculation using the wavefront recording plane method and wavelet transform,' Optics Communications, vol. 393, pp. 107-112, 2017. [28]K. Choi, H. Kim, and B. Lee, 'Synthetic phase holograms for auto-stereoscopic image displays using a modified IFTA,' Optics express, vol. 12, no. 11, pp. 2454-2462, 2004. [29]J.-P. Liu, W.-Y. Hsieh, T.-C. Poon, and P. Tsang, 'Complex Fresnel hologram display using a single SLM,' Applied optics, vol. 50, no. 34, pp. H128-H135, 2011. [30]W. Koek, N. Bhattacharya, J. Braat, T. Ooms, and J. Westerweel, 'Influence of virtual images on the signal-to-noise ratio in digital in-line particle holography,' Optics express, vol. 13, no. 7, pp. 2578-2589, 2005. [31]J. C. Dainty, Laser speckle and related phenomena. Springer science & business Media, 2013. [32]F. Riechert, G. Bastian, and U. Lemmer, 'Laser speckle reduction via colloidal-dispersion-filled projection screens,' Applied optics, vol. 48, no. 19, pp. 3742-3749, 2009. [33]K. Matsushima, Introduction to Computer Holography: Creating Computer-Generated Holograms as the Ultimate 3D Image. Springer Nature, 2020. [34]T. Lipowiecki, 'Optical noises in amplitude holography, developed by nonlinear properties of recording media,' Optica Ápplicata, vol. 11, no. 1, 1981. [35]T. Kanade, 'Recovery of the three-dimensional shape of an object from a single view,' Artificial intelligence, vol. 17, no. 1-3, pp. 409-460, 1981. [36]J. Liang, D. Doermann, and H. Li, 'Camera-based analysis of text and documents: a survey,' International Journal of Document Analysis and Recognition (IJDAR), vol. 7, no. 2, pp. 84-104, 2005. [37]S.-C. Kim and E.-S. Kim, 'Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,' Applied optics, vol. 48, no. 6, pp. 1030-1041, 2009. [38]K. Wakunami et al., 'Projection-type see-through holographic three-dimensional display,' Nature communications, vol. 7, no. 1, pp. 1-7, 2016. [39]T. Sugie et al., 'High-performance parallel computing for next-generation holographic imaging,' Nature Electronics, vol. 1, no. 4, pp. 254-259, 2018. [40]P. Zhou, Y. Li, S. Liu, and Y. Su, 'Dynamic compensatory Gerchberg–Saxton algorithm for multiple-plane reconstruction in holographic displays,' Optics Express, vol. 27, no. 6, pp. 8958-8967, 2019. [41]G. Makey et al., 'Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors,' Nature photonics, vol. 13, no. 4, pp. 251-256, 2019. [42]P. Refregier and B. Javidi, 'Optical image encryption based on input plane and Fourier plane random encoding,' Optics letters, vol. 20, no. 7, pp. 767-769, 1995. [43]G. Unnikrishnan, J. Joseph, and K. Singh, 'Optical encryption by double-random phase encoding in the fractional Fourier domain,' Optics letters, vol. 25, no. 12, pp. 887-889, 2000. [44]G. Situ and J. Zhang, 'Double random-phase encoding in the Fresnel domain,' Optics Letters, vol. 29, no. 14, pp. 1584-1586, 2004. [45]L. Chen and D. Zhao, 'Optical image encryption based on fractional wavelet transform,' Optics Communications, vol. 254, no. 4-6, pp. 361-367, 2005. [46]P. C. Mogensen and J. Glückstad, 'Phase-only optical encryption,' Optics Letters, vol. 25, no. 8, pp. 566-568, 2000. [47]C.-H. Chuang, C.-Y. Chen, H.-T. Chang, H.-Y. Lin, and C.-F. Kuo, 'Reducing Defocused-Information Crosstalk to Multi-View Holography by Using Multichannel Encryption of Random Phase Distribution,' Applied Sciences, vol. 12, no. 3, p. 1413, 2022. [48]Q. Huynh-Thu, P. Le Callet, and M. Barkowsky, 'Video quality assessment: From 2D to 3D—Challenges and future trends,' in 2010 IEEE International Conference on Image Processing, 2010: IEEE, pp. 4025-4028. [49]J. Zujovic, T. N. Pappas, and D. L. Neuhoff, 'Structural texture similarity metrics for image analysis and retrieval,' IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2545-2558, 2013. [50]A. Boev, A. Gotchev, K. Egiazarian, A. Aksay, and G. B. Akar, 'Towards compound stereo-video quality metric: a specific encoder-based framework,' in 2006 IEEE Southwest Symposium on Image Analysis and Interpretation, 2006: IEEE, pp. 218-222. [51]A. Benoit, P. Le Callet, P. Campisi, and R. Cousseau, 'Quality assessment of stereoscopic images,' EURASIP journal on image and video processing, vol. 2008, pp. 1-13, 2009. [52]Y. Peng, X. Dun, Q. Sun, and W. Heidrich, 'Mix-and-match holography,' ACM Trans. Graph., vol. 36, no. 6, pp. 191:1-191:12, 2017. [53]U. Sara, M. Akter, and M. S. Uddin, 'Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study,' Journal of Computer and Communications, vol. 7, no. 3, pp. 8-18, 2019. [54]B. Katz, N. T. Shaked, and J. Rosen, 'Synthesizing computer generated holograms with reduced number of perspective projections,' Optics express, vol. 15, no. 20, pp. 13250-13255, 2007. [55]C.-Y. Chen, C.-H. Chuang, H.-Y. Lin, and D.-Y. Zhuo, 'Imaging evaluation of computer-generated hologram by using three-dimensional modified structural similarity index,' Journal of Optics, 2022. [56]M. M. Mukaka, 'A guide to appropriate use of correlation coefficient in medical research,' Malawi medical journal, vol. 24, no. 3, pp. 69-71, 2012. [57]C. Chang, J. Xia, and Y. Jiang, 'Holographic image projection on tilted planes by phase-only computer generated hologram using fractional Fourier transformation,' Journal of Display Technology, vol. 10, no. 2, pp. 107-113, 2013. [58]Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, 'Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,' Applied optics, vol. 52, no. 1, pp. A290-A299, 2013. [59]Y. Takaki and N. Okada, 'Hologram generation by horizontal scanning of a high-speed spatial light modulator,' Applied Optics, vol. 48, no. 17, pp. 3255-3260, 2009. [60]M. Bayraktar and M. Özcan, 'Method to calculate the far field of three-dimensional objects for computer-generated holography,' Applied optics, vol. 49, no. 24, pp. 4647-4654, 2010. [61]K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, 'Calculating the Fresnel diffraction of light from a shifted and tilted plane,' Optics express, vol. 20, no. 12, pp. 12949-12958, 2012. [62]Y. Matsumoto and Y. Takaki, 'Time‐multiplexed color image generation by viewing‐zone scanning holographic display employing MEMS‐SLM,' Journal of the Society for Information Display, vol. 25, no. 8, pp. 515-523, 2017. [63]M. Makowski et al., 'Color image projection based on Fourier holograms,' Optics letters, vol. 35, no. 8, pp. 1227-1229, 2010. [64]C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging. John Wiley & Sons, 2003. [65]S. A. Benton, 'Hologram reconstruction with extended incoherent sources,' J. Opt. Soc. Am, vol. 59, p. 1545, 1969. [66]S.-F. Lin, D. Wang, Q.-H. Wang, and E.-S. Kim, 'Full-color holographic 3D display system using off-axis color-multiplexed-hologram on single SLM,' Optics and Lasers in Engineering, vol. 126, p. 105895, 2020. [67]B. Cederström, 'A multi-prism lens for hard x-rays,' KTH, 2002. [68]J. W. Goodman, 'Statistical properties of laser speckle patterns,' in Laser speckle and related phenomena: Springer, 1975, pp. 9-75. [69]S. Lowenthal and D. Joyeux, 'Speckle removal by a slowly moving diffuser associated with a motionless diffuser,' JOSA, vol. 61, no. 7, pp. 847-851, 1971. [70]C.-Y. Chen, H.-T. Chang, T.-J. Chang, and C.-H. Chuang, 'Full-color and less-speckled modified Gerchberg–Saxton algorithm computer-generated hologram floating in a dual-parabolic projection system,' Chinese Optics Letters, vol. 13, no. 11, p. 110901, 2015. [71]C.-Y. Chen et al., 'Speckle reduction by combination of digital filter and optical suppression in a modified Gerchberg–Saxton algorithm computer-generated hologram,' Applied optics, vol. 53, no. 27, pp. G163-G168, 2014. [72]C.-Y. Chen, W.-C. Su, C.-H. Lin, M.-D. Ke, Q.-L. Deng, and K.-Y. Chiu, 'Reduction of speckles and distortion in projection system by using a rotating diffuser,' Optical review, vol. 19, no. 6, pp. 440-443, 2012. [73]C. Rydberg, J. Bengtsson, and T. Sandström, 'Dynamic laser speckle as a detrimental phenomenon in optical projection lithography,' Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 5, no. 3, p. 033004, 2006. [74]J. Artigas, A. Felipe, and M. Buades, 'Contrast sensitivity of the visual system in speckle imagery,' JOSA A, vol. 11, no. 9, pp. 2345-2349, 1994. [75]Q.-L. Deng, B.-S. Lin, P.-J. Wu, K.-Y. Chiu, P.-L. Fan, and C.-Y. Chen, 'A hybrid temporal and spatial speckle-suppression method for laser displays,' Optics Express, vol. 21, no. 25, pp. 31062-31071, 2013. [76]V. Yurlov, A. Lapchuk, S. Yun, J. Song, and H. Yang, 'Speckle suppression in scanning laser display,' Applied Optics, vol. 47, no. 2, pp. 179-187, 2008. [77]V. Yurlov et al., 'Speckle suppression in scanning laser displays: aberration and defocusing of the projection system,' Applied Optics, vol. 48, no. 1, pp. 80-90, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84345 | - |
| dc.description.abstract | 本論文主要的研究目標在於探究電腦生成全像的優化顯示方法,並從演算法、影像評估方法、光學機構三方面進行優化與設計。 基於優化型 Gerchberg-Saxton 演算法(Modified Gerchberg-Saxton Algorithm, MGSA)的架構下,本研究提出以空間多工的方式,藉由避除零階光與共軛光,使影像達到優化效果。此外,本研究針對觀看視野範圍,提出有效視域演算法(Effective Viewshed Algorithm, EVA),並以此方法進行資訊點範圍的選取,實現於觀看視野範圍內的影像資訊最佳化重建。另外,對於多影像的同軸顯示,提出相位相位加密(Phase-locked)的方式,有效降低了非解像資訊的干擾。基於MGSA的架構,本研究提出之功能擴充,都具備顯示優化之結果。 另一方面,大多數的影像評估方法都是為二維資訊所設計,因為三維電腦全像包含多深度之資訊點,一般的評價方法會因為未解像資訊而影響評估結果。本研究率先提出了三維結構相似性指標(3D structural similarity index, 3D SSIM)的評估方法,基於SSIM的公式進行修正,並提出對應評估系統。所提之3D SSIM的評估方法,有效解決二維評估方法對於全像影像的失真估算。該方法對於三維電腦生成全像而言,將會是往後重要的評估指標與方法。 最後,針對全像色彩再現系統進行優化設計與討論。在系統設計的過程中,對於不同波長間的影像大小與重建位移誤差,以演算法空間多工的方式成功完成影像資訊的修正。並以單一波導的光學設計方法,改善合光系統的複雜度與面板使用率,並將整體系統大小縮小86.6%。並因應雷射光斑問題,提出震動光波導之方法,將重建影像之光強度被均化,使雷射光斑受到了抑制,以此改善了影像品質。 | zh_TW |
| dc.description.abstract | In this dissertation, the goal is to investigate the optimized display method for computer-generated holograms, as well as to optimize algorithms, methods for evaluating images, and optical systems. Using the Modified Gerchberg-Saxton Algorithm (MGSA) framework, this work proposes an image optimization technique that avoids zero-order light and conjugate light. Further, we propose the Effective Viewshed Algorithm (EVA) for selecting the range of information points within the viewing field to optimize the reconstruction of the image information. In addition, a phase-locked approach is proposed for displaying multiple images concurrently, which effectively reduces crosstalk caused by non-reconstructed information. According to the MGSA, the functional extensions proposed in this study have optimized results. The experimental image evaluation methods are generally designed for two-dimensional information. In 3D holograms, the non-reconstructed information will affect the general evaluation result. This study is the first to propose a 3-D SSIM evaluation method based on the SSIM formula and a corresponding evaluation system. In comparison to the 2D SSIM method, the 3D SSIM evaluation method effectively estimates quality of holographic images. In the future, this method will be an important evaluation indicator and method for 3D computer-generated holograms For the full-color holographic display system, the optimization method is designed and discussed. Using the algorithmic spatial multiplexing method, it is possible to successfully correct the image size and reconstruction displacement errors between different wavelengths within the system design. Single waveguide optical design reduces the overall system size by 86.6% and improves the complexity of the optical system. Furthermore, we propose a method of vibrating waveguides to resolve the speckle problem, in which the intensity of the reconstructed image is homogenized to reduce speckles and you get a better image. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:09:03Z (GMT). No. of bitstreams: 1 U0001-2305202223042100.pdf: 7555151 bytes, checksum: 5107c8656db52ad2b8968f16ca809b33 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 前言 1 1-2 立體顯示技術之演進 2 1-3 研究動機與目的 7 1-4 本論文之架構 8 第二章 電腦生成全像演算法之優化 9 2-1 優化型3D Modified Gerchberg-Saxton演算法 9 2-2 優化型Gerchberg-Saxton演算之空間多工方法 12 2-3 空間多工方法優化之影像結果 13 2-4 以有效視域方法進行影像優化 17 2-4-1 影像優化之有效視域方法流程 18 2-4-2 有效視域方法進行影像優化之結果分析 21 2-5 以隨機相位進行影像加密優化演算法 23 2-5-1 影像優化之相位加密流程 24 2-5-2 相位加密影像優化之結果分析 27 2-5-3 相位加密影像優化結果討論 29 2-6 本章小結 31 第三章 三維全像影像評估方法 32 3-1 全像影像評估方法 32 3-2 結構相似性評估方法 33 3-3 三維結構相似性評估方法 34 3-4 3D SSIM的光學評估系統 37 3-5 重建影像評估分析結果與討論 40 3-6 本章小結 44 第四章 全彩電腦生成全像之光學系統優化 45 4-1 三維電腦全像色彩再現 46 4-2 三維電腦全像色彩再現修正結果驗證 49 4-3 微型化三維電腦全像色彩再現系統設計 52 4-4 基於光波導系統之雷射光斑抑制方法 62 4-5 本章小結 67 第五章 結論 68 第六章 未來展望 70 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光斑 | zh_TW |
| dc.subject | 光波導 | zh_TW |
| dc.subject | 優化型Gerchberg-Saxton演算法 | zh_TW |
| dc.subject | 三維結構相似度指標 | zh_TW |
| dc.subject | 三維全彩電腦全像 | zh_TW |
| dc.subject | Modified Gerchberg-Saxton algorithm | en |
| dc.subject | speckle | en |
| dc.subject | waveguide | en |
| dc.subject | 3D full-color computer generated hologram | en |
| dc.subject | 3D structural similarity index | en |
| dc.title | 3D電腦生成全像系統之建構與影像顯示及評估方法 | zh_TW |
| dc.title | Construction, Imaging and Assessment of 3D Computer Generated Holography Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-3291-5913 | |
| dc.contributor.oralexamcommittee | 陳建宇(Chien-Yu Chen),鄭超仁(Chau-Jern Cheng),李宗憲(Tsung-Xian Lee),鄧清龍(Qing-Long Deng) | |
| dc.subject.keyword | 優化型Gerchberg-Saxton演算法,三維結構相似度指標,三維全彩電腦全像,光波導,光斑, | zh_TW |
| dc.subject.keyword | Modified Gerchberg-Saxton algorithm,3D structural similarity index,3D full-color computer generated hologram,waveguide,speckle, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202200798 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-05-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2305202223042100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
