請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84320
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江宏仁 | zh_TW |
dc.contributor.advisor | Hong-Ren Jiang | en |
dc.contributor.author | 王瑞宇 | zh_TW |
dc.contributor.author | Ruei-Yu Wang | en |
dc.date.accessioned | 2023-03-19T22:08:30Z | - |
dc.date.available | 2023-12-29 | - |
dc.date.copyright | 2022-09-29 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Young, T., III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 1805. 95: p. 65-87.
2. Wenzel, R.N., RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994 3. Cassie, A.B.D. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40(0): p. 546-551 4. Butt, H.-J., et al., Contact angle hysteresis. Current Opinion in Colloid & Interface Science, 2022. 59: p. 101574 5. Nilsson, M.A. and J.P. Rothstein, Using sharp transitions in contact angle hysteresis to move, deflect, and sort droplets on a superhydrophobic surface. Physics of Fluids, 2012. 24(6): p. 062001 6. Marckwald, W., Ueber Phototropie. Zeitschrift für Physikalische Chemie, 1899. 30U(1): p. 140-145 7. Hirshberg, Y., Photochromie dans la serie de la bianthrone. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1950. 231(18): p. 903-904 8. Yang, D., et al., Photon Control of Liquid Motion on Reversibly Photoresponsive Surfaces. Langmuir, 2007. 23(21): p. 10864-10872 9. Hirshberg, Y. and E. Fischer, 128. Low-temperature photochromism and its relation to thermochromism. Journal of the Chemical Society (Resumed), 1953(0): p. 629-636 10. Berkovic, G., V. Krongauz, and V. Weiss, Spiropyrans and Spirooxazines for Memories and Switches. Chemical Reviews, 2000. 100(5): p. 1741-1754 11. Klajn, R., Spiropyran-based dynamic materials. Chemical Society Reviews, 2014. 43(1): p. 148-184. 12. Heng, S., et al., Nanoliter-scale, Regenerable Ion Sensor: Sensing with Surface Functionalized Microstructured Optical Fiber. RSC Adv., 2013. 3: p. 8308-8317. 13. Wang, S., Y. Song, and L. Jiang, Photoresponsive surfaces with controllable wettability. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2007. 8(1): p. 18-29 14. Tian, W. and J. Tian, An insight into the solvent effect on photo-, solvato-chromism of spiropyran through the perspective of intermolecular interactions. Dyes and Pigments, 2014. 105: p. 66-74. 15. Shiraishi, Y., M. Itoh, and T. Hirai, Thermal isomerization of spiropyran to merocyanine in aqueous media and its application to colorimetric temperature indication. Physical Chemistry Chemical Physics, 2010. 12(41): p. 13737-13745 16. Schnurbus, M., et al., Spiropyran Sulfonates for Photo- and pH-Responsive Air–Water Interfaces and Aqueous Foam. Langmuir, 2020. 36(25): p. 6871-6879. 17. Rosario, R., et al., Photon-Modulated Wettability Changes on Spiropyran-Coated Surfaces. Langmuir, 2002. 18(21): p. 8062-8069. 18. Rosario, R., et al., Lotus Effect Amplifies Light-Induced Contact Angle Switching. The Journal of Physical Chemistry B, 2004. 108(34): p. 12640-12642. 19. Marmur, A., The Lotus Effect: Superhydrophobicity and Metastability. Langmuir, 2004. 20(9): p. 3517-3519 20. Athanassiou, A., et al., Photocontrolled Variations in the Wetting Capability of Photochromic Polymers Enhanced by Surface Nanostructuring. Langmuir, 2006. 22(5): p. 2329-2333 21. Mele, E., et al., Smart photochromic gratings with switchable wettability realized by green-light interferometry. Applied Physics Letters, 2006. 88(20): p. 203124 22. Bremer, M., et al., Noncovalent Spiropyran Coatings for Photoinduced Wettability Switching. Journal of Nanomaterials, 2017. 2017: p. 6498601 23. Benito-Lopez, F., et al., Spiropyran modified micro-fluidic chip channels as photonically controlled self-indicating system for metal ion accumulation and release. Sensors and Actuators B: Chemical, 2009. 140(1): p. 295-303 24. Whelan, J., et al., Photochemical and thermal spiropyran (SP)-merocyanine (MC) interconversion: a dichotomy in dependence on viscosity. Physical Chemistry Chemical Physics, 2012. 14(39): p. 13684-13691. 25. Nam, Y.-S., et al., Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing. Chemical Communications, 2014. 50(32): p. 4251-4254. 26. Euchler, D., et al., Monolithic Spiropyran-Based Porous Polysilsesquioxanes with Stimulus-Responsive Properties. ACS Applied Materials & Interfaces, 2020. 12(42): p. 47754-47762. 27. 詹登棋, 非均質多孔隙表面的浸潤現象, in 應用力學研究所. 2014, 國立臺灣大學. p. 1-52 28. Lee, J., et al., Effect of thermal treatment on the chemical resistance of polydimethylsiloxane for microfluidic devices. Journal of Micromechanics and Microengineering, 2013. 23(3): p. 035007 29. Arun Kumar, D., J. Merline Shyla, and F.P. Xavier, Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications. Applied Nanoscience, 2012. 2(4): p. 429-436 30. Delgado-Macuil, R., et al., ATR spectroscopy applied to photochromic polymer analysis. Materials Characterization, 2007. 58(8): p. 771-775 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84320 | - |
dc.description.abstract | 近年來,光敏材料的發展快速,由於其異構化的特性可在不同刺激下進行轉換,而光照條件下之技術具有非接觸與非侵入,且可以控制光波長以及設計光照圖案之優點,但是目前為止大多著墨光敏材料於固態基質上之濕潤性變化,鮮少研究動態響應下的應用,因此本研究希望透過液滴流動的結果與分析,能夠對系統有更深的理解。
本篇論文使用螺吡喃做為光敏材料,採用聚二甲基矽氧烷(PDMS)作為固態基質表面,透過雷射使PDMS表面具有二氧化矽微結構,使其表面性質呈現超疏水,並將螺吡喃塗佈於超疏水表面上,發現該表面的濕潤性會隨著UV光以及可見光的切換改變螺吡喃的異構化性質。透過量測液滴於未照光以及照光表面的靜態接觸角變化,觀察到接觸角會隨著螺吡喃塗佈量、UV光照時間以及環境光照時間的影響。接著分析不同表面結構對於動態接觸角的影響,讓液滴於傾斜表面上滑落並量測其遲滯現象,隨著雷切速率越快的表面,遲滯角有變大的趨勢,並發現於未照光和照光區域有不同的遲滯現象。 我們進一步透過設計光照圖案,使液滴通過與中軸呈30度至70度的過渡線夾角並產生偏折,發現於45度之過渡線夾角時,液滴有最大的偏折角度。於環境光下,量測MC螺吡喃結構還原與偏折角以及遲滯角的關係,觀察到遲滯現象主要由後退角所影響,並計算液滴於偏折下的橫向速度,將其與理論模型做比較,發現實驗值明顯較大,表示不能只用遲滯角差異來解釋,還有其他因素之影響。最後我們透過改變傾斜角度使液滴進入光照區域之速度不同,而造成停止或減速的運動,也藉由讓液滴沿著光照邊界流動達到引導液滴運動的效果。 | zh_TW |
dc.description.abstract | In recent years, the development of photosensitive material is rapid. Due to their photoswitchable characteristics, they can change their properties under different light stimuli, which can be used to control the surface wettability. However, previous studies are mainly focused the static wettability changes of photosensitive materials on solid substrates, and only few are mentioned the application under dynamic response. Therefore, we study the dynamical response of the droplet through analysis of droplet flow on photosensitive surface.
In this paper, spiropyran is used as a photosensitive material and coated on the nanoporous PDMS surface. The nanoporous surface of PDMS is made by laser scanning. It is found that the wettability of spiropyran coated surface can be switched under UV and visible light. We measured the contact angle of droplet on surface with and without UV and measured that contact angle can be affected with spiropyran coating amounts、UV exposure time and ambient exposure. In order to study the dynamic response of droplet, we analyzed the effect of different surface structures on the dynamic contact angles. On freely rolling experiment, it is found that the hysteresis angle tends to be larger with the higher laser velocity, and different hysteresis phenomena are found in the surface without UV and surface with UV. We also designed the mask pattern to make droplet flow through the various transition angle to deflect droplet. It was found that the droplet had largest deflection angle when the transition angle was 45 degree. We measured the relationship between the reduction of SP and deflection angle and dynamic contact angle. It was observed the hysteresis phenomenon was almost affected by the receding angle. We calculated the lateral velocity of the droplet and compared with the theoretical model. Finally, we apply this method to dynamically control the droplet for deceleration and guidance. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:08:30Z (GMT). No. of bitstreams: 1 U0001-2309202216045900.pdf: 4231289 bytes, checksum: 8eaef5c41f785e86576cc7b1614b20bb (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 x 符號說明 xi 第一章 緒論 1 1.1 前言 1 1.2 背景理論 2 1.2.1 Surface tension表面張力 2 1.2.2 Young’s Equation 楊氏方程式 3 1.2.3 Wenzel Equation 4 1.2.4 Cassie-Baxter Equation 5 1.2.5 接觸角遲滯 Contact Angle Hysteresis, CAH 6 1.2.6 動態下之液滴偏折模型 7 1.3 文獻回顧 9 1.4 研究動機 17 第二章 實驗材料及儀器設備 18 2.1 聚二甲基矽氧烷(Polydimethylsiloxane,PDMS) 18 2.2 螺吡喃(Sipropyran) 18 2.3 甲苯 19 2.4 注針泵 19 2.5 雷射雕刻機 20 2.6 實驗樣本製作與分析方法 20 2.6.1 PDMS製成 20 2.6.2 疏水多孔性表面製作 21 2.6.3 螺吡喃塗佈層 22 2.6.4 液滴接觸角量測 22 2.6.5 光照圖案上之液滴遲滯角實驗架設 23 2.6.6 影像擷取與分析 24 第三章 結果與討論 25 3.1 靜態分析 25 3.1.1 光譜分析 25 3.1.2 不同雷切速率下的PDMS表面結構 27 3.1.3 PDMS氧化物結構之表徵量測 30 3.1.4 光照時間對液滴接觸角影響 35 3.1.5 小結 38 3.2 疏水表面結構與CAH分析 38 3.2.1 雷切速率之結構對CAH的影響 39 3.2.2 雷切功率之結構對接觸角的影響 41 3.3 水滴路徑偏折實驗 49 3.3.1 過渡線角度對液滴偏折影響 49 3.3.2 液滴偏折與模型討論 52 3.4 動態控制液滴之應用 57 3.4.1 液滴減速之應用 57 3.4.2 引導液滴運動之應用 59 第四章 總結與未來展望 60 參考文獻 61 | - |
dc.language.iso | zh_TW | - |
dc.title | 光控奈米孔洞表面上的液滴運動 | zh_TW |
dc.title | Optical control of droplet motion on the nanoporous surfaces | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王安邦;林耿慧 | zh_TW |
dc.contributor.oralexamcommittee | An-Bang Wang;Keng-hui Lin | en |
dc.subject.keyword | 光敏材料,超疏水表面,動態接觸角,微奈米結構,螺吡喃, | zh_TW |
dc.subject.keyword | photosensitive materials,superhydrophobic surface,dynamic contact angle,micro-nano structure,spiropyran, | en |
dc.relation.page | 63 | - |
dc.identifier.doi | 10.6342/NTU202203929 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-09-27 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
dc.date.embargo-lift | 2025-09-30 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 目前未授權公開取用 | 4.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。