Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84272
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童寶玲(Pao-Ling Torng)
dc.contributor.authorHo-Jun Shihen
dc.contributor.author施和均zh_TW
dc.date.accessioned2023-03-19T22:07:30Z-
dc.date.copyright2022-07-11
dc.date.issued2022
dc.date.submitted2022-06-22
dc.identifier.citationAdair, T.H. & Montani, J.P. Angiogenesis. San Rafael (CA): Morgan & Claypool Life Sciences; 2010. Allemani, C. et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 391, 1023-75. doi: 10.1016/S0140-6736(17)33326-3 (2018). Aprelikova, O., Wood, M., Tackett, S., Chandramouli, G.V. & Barrett, J.C. Role of ETS transcription factors in the hypoxia-inducible factor-2 target gene selection. Cancer Res. 66, 5641-7. doi: 10.1158/0008-5472.CAN-05-3345 (2006). Bagavandoss, P. & Wilks, J.W. Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res Commun. 170, 867-72. doi: 10.1016/0006-291x(90)92171-u (1990). Baxter, R.C. Insulin-like growth factor binding protein-3 (IGFBP3): Novel ligands mediate unexpected functions. J Cell Commun Signal. 7, 179-189. doi: 10.1007/s12079-013-0203-9 (2013). Baxter, R.C. Nuclear actions of insulin-like growth factor-binding protein-3. Gene. 569, 7-13. doi: 10.1016/j.gene.2015.06.028 (2015). Baxter, R.C. Signalling pathways involved in antiproliferative effects of IGFBP-3: a review. Mol Pathol. 54, 145-48. doi: 10.1136/mp.54.3.145 (2001). Bertout, J.A. et al. HIF2alpha inhibition promotes P53 pathway activity, tumor cell death, and radiation responses. PNAS. 106, 14391-6. doi: 10.1073/pnas.0907357106 (2009). Birner, P., Schindl, M., Obermair, A., Breitenecker, G., & Oberhuber, G. Expression of hypoxia-inducible factor 1 alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res. 7, 1661-8 (2001). Bissell, M.J. & Radisky, D. Putting tumours in the context. Nat Rev Cancer. 1, 46-54. doi: 10.1038/35094059 (2001). Bleuel, K., Popp, S., Fusenig, N.E., Stanbridge, E.J. & Boukamp, P. Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin-1 overexpression through halted tumor vascularization. Proc Natl Acad Sci USA. 96, 2065-70. doi: 10.1073/pnas.96.5.2065 (1999). Bracken, C.P., Whitelaw, M.L. & Peet, D.J. The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci. 60, 1376-1393. doi: 10.1007/s00018-003-2370-y (2003). Bristow, R.G. & Hill, R.P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 8, 180-92. doi: 10.1038/nrc2344 (2008). Buckbinder, L. et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 377,646-9. doi: 10.1038/377646a0 (1995). Burger, R.A. et al. 2011 Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 365, 2473-83. doi: 10.1056/NEJMoa1104390 (2011). Cai, Q., Dozmorov, M. & Oh, Y. IGFBP-3/IGFBP-3 receptor system as an anti-tumor and anti-metastatic signaling in cancer. Cells. 9, 1261-85. doi:10.3390/cells9051261 (2020). Campbell, P.G., Durham, S.K., Suwanichkul, A., Hayes, J.D., & Powell, D.R. Plasminogen binds the heparin-binding domain of insulin-like growth factor-binding protein-3. Am J Physiol. 275, E321-31. doi:10.1152/ajpendo.1998.275.2.E321 (1998). Camuzi, D. et al. Regulation is in the air: The relationship between hypoxia and epigenetics in cancer. Cells. 8, 300. doi: 10.3390/cells8040300 (2019). Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 394, 485-90. doi: 10.1038/28867 (1998). Cavallaro, U. & Christofori, C. Cell adhesion and signaling by cadherins and Ig-CAMs in cancer. Natl Rev Cancer. 4,118-32. doi: 10.1038/nrc1276 (2004). Chambers, A.F., Groom, A.C. & MacDonald, I.C. Dissemination of growth of cancer cells in metastatic sites. Nat Rev Cancer. 2, 563-72. doi: 10.1038/nrc865 (2002) Chen, C.N. et al. Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Ann Surg Oncol. 16, 524-33. doi: 10.1245/s10434-008-0243-1 (2009). Cheng, Y. et al. Cytokeratin 18 regulates the transcription and alternative splicing of apoptotic‑related genes and pathways in HeLa cells. Oncol Rep. 42, 301-12. doi:10.3892/or.2019.7166 (2019). Choi, K.J. et al. Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. Cancer Res. 67, 3654-62. doi: 10.1158/0008-5472.CAN-06-1759 (2007). Choueiri, T. K. et al. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat med. 27: 802-805. doi: 10.1038/s41591-021-01324-7 (2021). Chun, S.Y. et al. Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1alpha and HIF-2alpha target genes. Mol Cancer. 13, 9-293. doi: 10.1186/1476-4598-9-293 (2010). Cohen, P., Lamson, G., Okajima, T. & Rosenfeld, R.G. Transfection of the human IGFBP-3 gene into Balb/c fibroblasts: a model for the cellular function of IGFBPs. Growth Regul. 3, 23-6 (1993). Coleman, R.L. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 390, 1949-61. doi: 10.1016/S0140-6736(17)32440-6 (2017). Collett-Solberg, P.F. & Cohen, P. Genetic, chemistry, and function of the IGF/IGFBP system. Endocrine. 12, 1-16. doi: 10.1385/ENDO:12:2:121 (2000). Colombo, N. et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 21(Suppl 5), v23-30. doi: 10.1093/annonc/mdq244 (2010). Courtney, K.D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol. 36: 867-874. doi: 10.1200/JCO.2017.74.2627 (2018). De Bock, K., Mazzone, M., & Carmeliet, P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol. 8, 393- 404. doi: 10.1038/nrclinonc.2011.83 (2011). Douglas, N., Tang, H., Nakhuda, G.S., Sauer, M., & Zimmermann, R. Oocyte expression of hypoxia and hypoxia inducible factors (HIF). Fertility and Sterility. 84, S390. doi:10.1016/j.fertnstert.2005.07.1020 (2005). Du, X.L. et al. Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. Oncogene. 28, 3714-22. doi: 10.1038/onc.2009.237 (2009). Endo, H., & Inoue, M. Dormancy in cancer. Cancer Sci. 110, 474-480. doi: 10.1111/cas.13917 (2019). Ergün, S. et al. Endostatin inhibits angiogenesis by stabilization of newly formed endothelial tubes. Angiogenesis. 4, 193-206. doi: 10.1023/a:1014027218980 (2001). Feldser, D. et al. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 59, 3915-8 (1999). Fields, J.K., Günther, S. & Sundberg, E.J. Structural basis of IL-1 family cytokine signaling. Front Immunol. 10, 1412. doi: 10.3389/fimmu.2019.01412 (2019). Firth, S.M., & Baxter, R.C. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev.23, 824–854. doi: 10.1210/er.2001-0033 (2002). Florczyk, U. et al. Opposite effects of HIF-1α and HIF-2α on the regulation of IL-8 expression in endothelial cells. Free Radic Biol Med. 51, 1882-92. doi: 10.1016/j.freeradbiomed.2011.08.023 (2011). Folkman, J. Angiogenesis. Annu Rev Med. 57, 1-18. doi: 10.1146/annurev.med.57.121304.131306 (2006). Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 285, 1182-86. doi: 10.1056/NEJM197111182852108 (1971). Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 133, 275-88. doi: 10.1084/jem.133.2.275 (1971). Franklin, S.L., Ferry, R.J., & Jr., Cohen, P. Rapid insulin-like growth factor (IGF)-independent effects of IGF binding protein-3 on endothelial cell survival. J Clin Endocrinol Metab. 88, 900-7. doi: 10.1210/jc.2002-020472 (2003). Garcia, A., & Singh, H. Bevacizumab and ovarian cancer. Ther Adv Med Oncol. 5, 133-141. doi: 10.1177/1758834012467661 (2013). Gatenby, R.A. & Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 4, 891-9. doi: 10.1038/nrc1478 (2004). Gilany, K. & Vafakhan, M. Hypoxia: a review. JPS. 1, 43-60. doi:10.22037/jps.v1i2.1616 (2010). Good, D.J. et al. A tumor suppressor-dependent inhibitor of angiogenesis in immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA. 87, 6624-28. doi: 10.1073/pnas.87.17.6624 (1990). Graeber, T.G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 379, 88-91. doi: 10.1038/379088a0 (1996). Greenaway, J. et al. Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1). J Cell Physiol. 210, 807-18. doi: 10.1002/jcp.20904 (2007). Guo, N., Krutzsch, H.C., Inman, J.K., & Roberts, D.D. Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer research. 57, 1735-42 (1997). Gupta, K., Gupta, P., Wild, R., Ramakrishnan, S. & Hebbel, R.P. Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis. 3, 147-58. doi: 10.1023/a:1009018702832 (1999). Guzy, R.D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401-8. doi: 10.1016/j.cmet.2005.05.001 (2005). Haase, V.H. The VHL tumor suppressor: master regulator of HIF. Curr Pharm Des. 15, 3895-3903. doi: 10.2174/138161209789649394 (2009). Hanafusa, T. et al. Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by tumor specific methylation. BMC Cancer. 5, 9. doi: 10.1186/1471-2407-5-9 (2005). Harris, A.L. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2, 38-47. doi: 10.1038/nrc704 (2002). Health and Vital Statistics, 2018. Ministry of Health and Welfare, Taiwan. Hehlgans, T., Seitz, C., Lewis, C. & Männel, D.N. Hypoxic upregulation of TNF receptor type 2 expression involves NF-IL-6 and is independent of HIF-1 or HIF-2. J Interferon Cytokine Res. 21, 757-62. doi: 10.1089/107999001753124480 (2001). Heinrich, E.L. et al. The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. Cancer Microenvironment. 5, 5-18. doi: 10.1007/s12307-011-0089-0 (2012). Higashimura, Y. et al. Up-regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression by HIF-1 activity depending on Sp1 in hypoxic breast cancer cells. Arch Biochem Biophys. 509, 1-8. doi: 10.1016/j.abb.2011.02.011 (2011). Hirota, K. & Semenza, G.L. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol. 59, 15-26. doi: 10.1016/j.critrevonc.2005.12.003 (2006). Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 93, 266-76. doi: 10.1093/jnci/93.4.266 (2001). Hockel, M., Schlenger, K., Hockel, S. & Vaupel, P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res. 59, 4525-28 (1999). Horiuchi, A. et al. Hypoxia upregulates ovarian cancer invasiveness via the binding of HIF-1a to a hypoxia-induced, methylation-free hypoxia response element of S100A4 gene. Int. J. Cancer. 131, 1755-1767. doi: 10.1002/ijc.27448 (2012). Horiuchi, A. et al. Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Res. 22, 2697-02 (2002). Hunt, T.K., Knighton, D.R., Thakral, K.K., Goodson, W.H. 3rd, & Andrews, W.S. Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages. Surgery. 96, 48-54 (1984). Imai, T. et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol. 163, 1437-47. doi: 10.1016/S0002-9440(10)63501-8 (2003). Isenberg, J.S. & Roberts, D.D. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol. 319, C45-C63. doi: 10.1152/ajpcell.00089.2020 (2020). Jaques, G. et al. Nuclear localization of insulin-like growth factor binding protein 3 in a lung cancer cell line. Endocrinology. 138, 1767-1770. doi: 10.1210/endo.138.4.5177 (1997). Ji, P. et al. Correlation study showing no concordance between EPAS-1/HIF-2α mRNA and protein expression in transitional cell cancer of the bladder. Urology. 61, 851-857. doi: 10.1016/s0090-4295(02)02405-6 (2003). Jiang, J., Tang, Y.L., & Liang, X.H. EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther. 11, 714-23. doi: 10.4161/cbt.11.8.15274 (2011). Jiang, Y., Pagadala, J., Miller, D.D. & Steinle, J.J. Insulin-like growth factor-1 binding protein 3 (IGFBP3) promotes recovery from trauma-induced expression of inflammatory and apoptotic factors in retina. Cytokine. 70, 115-119. doi: 10.1016/j.cyto.2014.07.004 (2014) Jiménez, B. et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. 6, 41-8. doi: 10.1038/71517 (2000). Kalas, W. et al. Restoration of thrombospondin 1 expression in tumor cells harbouring mutant ras oncogene by treatment with low doses of doxycycline. Biochem Biophys Res Commun. 310, 109-14. doi: 10.1016/j.bbrc.2003.08.128 (2003). Kalluri, R. & Weinberg, R.A. The basics of epithelial-mesenchymal transition. J Clin Invest. 119, 1420–8. Doi:10.1172/JC39104 (2009). Kietzmann, T., Cornesse, Y., Brechtel, K., Modaressi, S., & Jungermann, K. Perivenous expression of the mRNA of the three hypoxia-inducible factor α-subunits, HIF1α, HIF2α and HIF3α, in rat liver. Biochem J. 354, 531-7. doi: 10.1042/0264-6021:3540531 (2001). Klemba, A. et al. Hypoxia-mediated decrease of ovarian cancer cells reaction to treatment: significance for chemo- and immunotherapies. Int J Mol Sci. 21, 9492. doi: 10.3390/ijms21249492. doi: 10.3390/ijms21249492 (2020). Knosel, T., Emde, V., Schluns, K., Schlag, P.M., Dietel, M., & Petersen, I. Cytokeratin profiles identify diagnostic signatures in colorectal cancer using multiplex analysis of tissue microarrays. Cell Oncol. 28, 167-75 (2006). Kostecka, Z. & Blahovec, J. Insuline-like growth factor binding proteins and their functions. Endocrine Regulation. 33, 90-94 (1999). Koukourakis, M.I. et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys. 53, 1192-202. doi: 10.1016/s0360-3016(02)02848-1 (2002). Kumar, D., Das, P.K. & Sarmah, B.K. Reference gene validation for normalization of RT-qPCR assay associated with germination and survival of rice under hypoxic condition. J Appl Genet. 59, 419-430. doi: 10.1007/s13353-018-0466-1 (2018). Kunz, M. & Ibrahim, S.M. Molecular responses to hypoxia in tumor cells. Mol Cancer. 2, 23. doi: 10.1186/1476-4598-2-23 (2003). Kurz, H., Burri, P.H. & Djonov, V.G. Angiogenesis and vascular remodeling by intussusception: From form to function. News Physiol Sci. 18, 65-70. doi: 10.1152/nips.01417.2002 (2003). Kyoko Yoshida, K. et al. Expression of Cytokeratin 14 and 19 in Process of Oral Carcinogenesis. Bull Tokyo Dent Coll. 56, 105-11. doi: 10.2209/tdcpublication.56.105 (2015). Kypreou, K.P. et al. Altered expression of calreticulin during the development of fibrosis. Proteomics. 8, 2407-19. doi: 10.1002/pmic.200700831 (2008). Lawler, J. & Detmar, M. Tumor progression: the effects of thrombospondin-1 and -2. Int J of Biochem Cell Bio. 36, 1038-45. doi: 10.1016/j.biocel.2004.01.008 (2004). Lawler, J. & Hynes, R.O. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. JCB. 103, 1635-48. doi:10.1083/jcb.103.5.1635 (1986). Lawler, J. The functions of thrombospondin-1 and-2. Curr Opin Cell Biol. 12, 634-40. doi: 10.1016/s0955-0674(00)00143-5 (2000). Lawler, P.R. & Lawler, J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med. 2, a006627. doi: 10.1101/cshperspect.a006627 (2012). Lawrie, T.A., Winter-Roach, B.A., Heus, P. & Kitchener, H.C. Adjuvant (post-surgery) chemotherapy for early-stage epithelial ovarian cancer. Cochrane Database Syst Rev. 2015, CD004706. doi: 10.1002/14651858.CD004706.pub5 (2015). Le QT, Denko NC, & Giaccia, A.J. Hypoxic gene expression and metastasis. Cancer Metastasis Rev. 23, 293-310. doi: 10.1023/B:CANC.0000031768.89246.d7 (2004). Ledermann, J. et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomized phase 2 trial. Lancet Oncol. 15, 852-61. doi: 10.1016/S1470-2045(14)70228-1 (2014). Ledermann, J.A. et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol.24(Suppl 6), vi24–vi32. doi: 10.1093/annonc/mdt333 (2013). Ledermann, J.A. et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 29(Suppl 4), iv259. doi: 10.1093/annonc/mdy157 (2018). Liu, B. et al. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis. Oncogene. 26,1811-9. doi: 10.1038/sj.onc.1209977 (2007). Lu, Y.C. et al. Changes in tumor growth and metastatic capacities of J82 human bladder cancer cells suppressed by down-regulation of calreticulin expression. Am J Pathol. 179, 1425-33. doi: 10.1016/j.ajpath.2011.05.015 (2011). Lwin, Z.M. et al. Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Modern Pathology. 23, 1559-66. doi: 10.1038/modpathol.2010.173 (2010). Ma, J. et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor and IGF-binding protein-3. J Natl Cancer Inst. 91, 620-25. doi: 10.1093/jnci/91.7.620 (1999). MacDonald, R.G., Schaffer, B.S., Kang, I.G., Hong, S.M., Kim, E.J. & Park, J.H. Growth inhibition and differentiation of the human colon carcinoma cell line, Caco-2, by constitutive expression of insulin-like growth factor binding protein-3. J Gastroenterol Hepatol. 14, 72-8. doi: 10.1046/j.1440-1746.1999.01803.x (1999). Maher, E.R. HIF2 and endocrine neoplasia: an evolving story. Endocr Relat Cancer. 30, 5-7. doi: 10.1530/ERC-13-0146 (2013). Manjili, M.H. Tumor Dormancy and Relapse: From a natural byproduct of evolution to a disease state. Cancer Res. 77, 2564-2569. doi: 10.1158/0008-5472.CAN-17-0068 (2017). Marchetti, C., Muzii, L., Romito, A., & Panici, P.B. First-line treatment of women with advanced ovarian cancer: focus on bevacizumab. Onco Targets Ther. 12, 1095–1103. doi: 10.2147/OTT.S155425 (2019). Martin, J.L. & Baxter, R.C. Insulin-like growth factor binding protein-3: Biochemistry and physiology. Growth Regulation. 2, 88-89 (1992). Menz, A. et al. Diagnostic and prognostic impact of cytokeratin 18 expression in human tumors: a tissue microarray study on 11,952 tumors. Mol Med. 27, 16. doi: 10.1186/s10020-021-00274-7 (2021). Mirza, M.R. et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 375, 2154-64. doi: 10.1056/NEJMoa1611310 (2016). Mohlin, S., Hamidian, A., & Påhlman, S. HIF2A and IGF2 expression correlates in human neuroblastoma cells and normal immature sympathetic neuroblasts. Neoplasia. 15, 328-34. doi: 10.1593/neo.121706 (2013). Monzavi, R. & Cohen, P. IGFs and IGFBPs: role in health and disease. Best Pract Res Clin Endocrinol Metab. 16, 433-47. doi: 10.1053/beem.2002.0212 (2002). Moschos, S.J., & Mantzoros, C.S. The role of the IGF systemin cancer: from basic to clinical studies and clinical applications. Oncology. 63, 317-32. doi: 10.1159/000066230 (2002). Nabeshima, k., Inoue, T., Shimao, Y., Kataoka, H. & Koono, M. Cohort migration of carcinoma cells: Differentiated colorectal carcinoma cells move as coherent cell clusters or sheets. Histol Histopathol. 14, 1183-97. doi: 10.14670/HH-14.1183 (1999). Natsuizaka, M. et al. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis. FASEB J. 26, 2620-2630. doi: 10.1096/fj.11-198598 (2012). Nunes, S.C. et al. Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity. Sci Rep. 8, 9513. doi: 10.1038/s41598-018-27753-y (2018). Oganesian, A., Armstrong, L.C., Migliorini, M.M., Strickland, D.K. & Bornstein, P. Thrombospondins use the VLDL receptor and a nonapoptotic pathway to inhibit cell division in microvascular endothelial cells. Mol Biol Cell. 19, 563-71. doi: 10.1091/mbc.e07-07-0649 (2008). Oh, S.H. et al. Insulin-like growth factor binding protein-3 suppresses vascular endothelial growth factor expression and tumor angiogenesis in head and neck squamous cell carcinoma. Cancer Sci. 103, 1259-66. doi: 10.1111/j.1349-7006.2012.02301.x. (2012). Panetti, T.S., Chen, H., Misenheimer, T.M., Getzler, S.B. & Mosher, D.F. Endothelial cell mitogenesis induced by LPA: inhibition by thrombospondin-1 and thrombospondin-2. J Lab Clin Med. 129, 208-16. doi: 10.1016/s0022-2143(97)90141-4 (1997). Pantel, K. & Brakenhoff, R.H. Dissecting the metastatic cascade. Nat Rev Cancer. 4, 448-456. doi: 10.1038/nrc1370 (2004). Perren, T.J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 365, 2484-96. doi: 10.1056/NEJMoa1103799 (2011). Qing, G. & Simon, M.C. Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev. 19, 60-6. doi: 10.1016/j.gde.2008.12.001 (2009). Radulescu, R.T. Nuclear localization signal in insulin-lie growth factor-binding protein type-3. Trends Biochem Sci. 19, 278. doi: 10.1016/0968-0004(94)90004-3 (1994). Rajah, R., Balentinis, B. & Cohen, P. Insulin-like growth factor binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-β1 on programmed cell death through a p53- and IGF-independent mechanism. J Biol Chem. 272, 12181-8. doi: 10.1074/jbc.272.18.12181 (1997). Rankin, E.B. & Acacia, A.J. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15, 678-85. doi: 10.1038/cdd.2008.21 (2008). Rapisarda, A. & Melillo, G. Overcoming disappointing results with anti-angiogenic therapy by targeting hypoxia. Nat Rev Clin Oncol. 9, 378-90. doi: 10.1038/nrclinonc.2012.64 (2012). Reed, M.J., Koike, T., Sadoun, E., Sage, E.H., & Puolakkainen, P. Inhibition of TIMP1 enhances angiogenesis in vivo and cell migration in vitro. Microvascular Research. 65, 9-17. doi: 10.1016/s0026-2862(02)00026-2 (2003). Roberts, D.D. Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J. 10,1183-91 (1996). Rodriguez-Manzaneque, J.C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A. 98, 12485-90. doi: 10.1073/pnas.171460498.2001 (2001). Rodriguez-Manzaneque, J.C., Lane, T.F., Ortega, M.A., Hynes, R.O., Lawler, J. & Iruela-Arispe, M.L. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA. 98, 12485-90. doi: 10.1073/pnas.171460498 (2001). Saxena, K. & Jolly, M.K. Acute vs. Chronic vs. Cyclic Hypoxia: their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules. 9, 339. doi: 10.3390/biom9080339 (2019). Schedlich, L.J., Young, T.F., Firth, S.M. & Baxter, R.C. Insulin-like growth factor-binding protein (IGFBP)-3 and IGFBP-5 share a common nuclear transport pathway in T47D human breast carcinoma cell. J Bio Chem. 273, 18347-52. doi: 10.1074/jbc.273.29.18347 (1998). Scrideli, C.A. et al. Prognostic significance of co-overexpression of the EGFR/IGFBP-2/HIF-2A genes in astrocytomas. J Neurooncol. 83, 233-9. doi: 10.1007/s11060-007-9328-0 (2007). Semenza, G.L. Perspectives on oxygen sensing. Cell. 98, 281-4. doi: 10.1016/s0092-8674(00)81957-1 (1999). Semenza, G.L. Regulation of metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 19, 12-6. doi: 10.1101/sqb.2011.76.010678 (2009). Seo, D.W. et al. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell. 114, 171-80. doi: 10.1016/s0092-8674(03)00551-8 (2003). Sheibani, N. & Frazier, W.A. Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis. Proc Natl Acad Sci USA. 92, 6788-92. doi: 10.1073/pnas.92.15.6788 (1995). Shibahara, S., Han, F., Li, B. & Takeda, K. Hypoxia and heme oxygenases: oxygen sensing and regulation of expression. Antioxid Redox Signal. 9, 2209-25. doi: 10.1089/ars.2007.1784 (2007). Shimogai, R. et al. Expression of hypoxia-inducible factor 1alpha gene affects the outcome in patients with ovarian cancer. Int J Gynecol Cancer. 18, 499-505. doi: 10.1111/j.1525-1438.2007.01055.x (2008). Shrivastav, S.V., Bhardwaj, A., Pathak, K.A. & Shrivastav, A. Insulin-like growth factor binding protein-3 (IGFBP-3): unraveling the role in mediating IGF-independent effects within the cell. Front Cell Dev Biol. 8, 286. doi: 10.3389/fcell.2020.00286 (2020). Streit, M. et al. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol. 155, 441-52. doi: 10.1016/S0002-9440(10)65140-1 (1999). Talks, K.L. et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 157, 411-21. doi: 10.1016/s0002-9440(10)64554-3 (2000). Taraboletti, G., Roberts, D., Liotta, L.A. & Giavazzi, R. Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J Cell Biol. 111, 765-72. doi: 10.1083/jcb.111.2.765 (1990). Thiery, J.P. Epithelial-mesenchymal-transitions in tumor progression. Nat Rev Cancer. 2, 442-54. doi: 10.1038/nrc822 (2002). Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W., & McKnight, S.L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12, 3320-4. doi: 10.1101/gad.12.21.3320 (1998). Torng, P.L. et al. Insulin-like growth factor binding protein-3 (IGFBP3) acts as an invasion-metastasis suppressor in ovarian endometrioid carcinoma. Oncogene. 27, 2137-47. doi: 10.1038/sj.onc.1210864 (2008). Torng, P.L. et al. Promoter methylation of IGFBP3 and P53 expression in ovarian endometrioid carcinoma. Mol Cancer. 8, 120. doi: 10.1186/1476-4598-8-120 (2009). Tse, J.C. & Kalluri, R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 101, 816-29. doi: 10.1002/jcb.21215 (2007) Tsuji, T., Ibaragi, S. & Hu, G.F. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Research. 69, 7135-39. doi: 10.1158/0008-5472.CAN-09-1618 (2009). Valentinis, B., Bhala, A., DeAngelis, T., Baserga, R., & Cohen, P. The human insulin-like growth factor (IGF) binding protein-3 inhibit the growth of fibroblasts with a targeted disruption of the IGF-I receptor gene. Molec Endocrinol. 9, 361-67. doi: 10.1210/mend.9.3.7539889 (1995). Vaupel, P. & Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26, 225-39. doi: 10.1007/s10555-007-9055-1 (2007). Volpert, O.V. et al. Inhibition of angiogenesis by interleukin 4. J Exp Med. 188, 1039-46. doi: 10.1084/jem.188.6.1039 (1998). Volpert, O.V., Lawler, J. & Bouck, N.P. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental lung metastases via thrombospondin-1. Proc Natl Acad Sci. USA. 95, 6343-48. doi: 10.1073/pnas.95.11.6343 (1998). Wang D, Nagpal ML, Shimasaki S, Ling N, Lin T. Interleukin-1 induces insulin-like growth factor binding protein-3 gene expression and protein production by Leydig cells. Endocrinology. 136, 4049-55. doi: 10.1210/endo.136.9.7544275 (1995). Wang, H.T. et al. Calreticulin promotes tumor lymphocyte infiltration and enhances the antitumor effects of immunotherapy by up-regulating the endothelial expression of adhesion molecules. Int J Cancer. 130, 2892-902. doi: 10.1002/ijc.26339 (2011). Woelfle, U., Sauter, G., Santjer, S., Brakenhoff, R., & Pantel, K. Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clin Cancer Res. 10, 2670-4 (2004). Wouters, B.G. & Koritzinsky, M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 8, 851-64. doi: 10.1038/nrc2501 (2008). Wu, Y. & Zhou, B.P. New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin. 40, 643-50. doi: 10.1111/j.1745-7270.2008.00443.x (2008). Xie, L. et al. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 6, 603-10. doi: 10.1593/neo.04241 (2004). Xu, X.C. et al. Increased expression of cytokeratins CK8 and CK19 is associated with head and neck carcinogenesis. Cancer Epidemiol Biomarkers Prev. 4, 871-6 (1995). Yamada, P.M. & Lee, K.W. Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol. 296, C954–C976. doi: 10.1152/ajpcell.00598.200 (2009). Yamauchi, M., Imajoh-Ohmi, S. & Shibuya, M. Novel antiangiogenic pathway of thrombospondin-1 mediated by suppression of the cell cycle. Cancer Sci. 98, 1491-7. doi: 10.1111/j.1349-7006.2007.00534.x (2007). Yotnda, P., Wu, D., & Swanson, A.M. Hypoxic tumors and their effect on immune cells and cancer therapy. Methods Mol Biol. 651, 1-29. doi: 10.1007/978-1-60761-786-0_1 (2010). Zhang, B. et al. Cytokeratin 18 knockdown decreases cell migration and increases chemosensitivity in non-small cell lung cancer. J Cancer Res Clin Oncol. 142, 2479-87 (2016). Zhang, X. et al. Thrombospondin-1 modulates vascular endothelial growth factor activity at the receptor level. FASEB J. 23, 3368-76. doi: 10.1096/fj.09-131649 (2009). Zhao, H.Y. et al. Molecular basis for the induction of an angiogenesis inhibitor, thrombospondin-1, by 5-fluorouracil. Cancer Res. 68, 7035-41. doi: 10.1158/0008-5472.CAN-07-6496 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84272-
dc.description.abstract卵巢癌(ovarian cancer)是致命的婦科癌症,多數的患者被診斷出罹患卵巢癌時已經是晚期,即便經手術、藥物治療,但是復發機率高,死亡率亦高。血清類胰島素生長因子結合蛋白-3(IGFBP-3)已被證實具有抑制細胞生長的功能,過去的研究也證實IGFBP3在低侵襲性的卵巢上皮細胞癌(epithelial ovarian cancer, EOC)中有較多的表現,同時IGFBP3有抑制高侵襲性卵巢上皮細胞癌生長的功能。在本研究中,首先找到了一個與IGFBP3有相同表現趨勢、有抑制血管新生功能的蛋白質,血小板反應蛋-1(Thrombospondin-1, THBS1, TSP1);在EOC 細胞系中恢復IGFBP3的表現後,THBS1的表現也隨之增加。IGFBP3的表現能有效抑制HUVECs的網狀結構生成,也顯著的抑制雞胚胎尿囊絨毛膜 (chick embryo chorioallantoic membrane, CAM)的血管發育;但這些血管生成被抑制的現象在將THBS1剔除之後就被恢復。在小鼠異種移植試驗中發現,有表現IGFBP3的EOC腫瘤其生長會被抑制,同時腫瘤中的血管的生成也被抑制。在啟動子(promoter)活性試驗中發現,THBS1的啟動子在IGFBP3存在時會被激發。實驗結果顯示,IGFBP3可以透過調控THBS1的啟動子來調節THBS1的生成,並且透過THBS1達到抑制血管生長進而減緩腫瘤增殖,但是這個調控作用只是短暫的。腫瘤在增長且沒有足夠的血管提供氧氣時會進入缺氧狀態,接著,腫瘤細胞會活化缺氧誘導因子(hypoxia-inducible factors, HIFs)以調節細胞的代謝並誘導新血管生成以對應缺氧刺激。小鼠實驗中發現,生長被抑制的腫瘤再增生,是腫瘤在缺氧環境下,初期以活化HIF-1α、後期以活化 HIF-2α來達到調節細胞生長、促進新血管的生成,來對應腫瘤的缺氧壓力。過去的研究指出,HIF-1α 和 HIF-2α 都與 IGFBP3 表達有關;本研究透過細胞實驗與異種移植腫瘤的免疫組織染色結果顯示,在高侵襲性卵巢上皮細胞癌中HIF-2α是主要被活化的缺氧誘導因子,而且卵巢癌細胞是活化HIF-1α或 HIF-2α是與細胞的IGFBP3表現量有關聯量。在這個研究中,首先確定IGFBP3主要透過細胞內訊號調控機制來活化THBS1的表現,從而減少腫瘤的血管生成。第二是確定HIF-2α為EOC面對缺氧環境時的主要調節機制。當腫瘤或細胞進入缺氧環境,高侵襲性的EOC細胞傾向活化HIF-2α,HIF-2α對於上皮性卵巢癌從生長抑制狀態轉變為增殖狀態扮演重要調控角色。同時,由於THBS1的表現與IGFBP3呈現正相關,HIF-2α則與IGFBP3有負關聯,這個研究結果未來可能能為卵巢癌的診斷與治療策略提供有效的參考指標。zh_TW
dc.description.abstractOvarian cancer is the most lethal gynecological cancer, and it is frequently diagnosed at advanced stages with recurrences after treatments. Insulin-like growth factor-binding protein-3 (IGFBP3) has been postulated as a mediator of growth suppression signaling. It was shown to function as a suppressor of invasion in epithelial ovarian cancer (EOC). In this study, we identified an angiogenesis inhibitor, thrombospondin-1 (THBS1), which correlated with IGFBP3 expression in EOC cells. After the restoration of IGFBP3 expression in the high invasiveness (with weak IGFBP3 expression) EOC cell line, the transfectants showed an increase in IGFBP3 associated with a parallel increase in THBS1. IGFBP3 decreased cell capillary tube formation in HUVECs, and decreased blood vessel development in chick embryo chorioallantoic membrane (CAM) assay; angiogenic capacity was restored after THBS1 depletion in both assays. Luciferase promoter assay illustrated that the THBS1 promoter was activated in the presence of both intracellular and extracellular IGFBP3. Heterotransplantation of IGFBP3 transfectants significantly decreased tumor growth and vascular formation. Although IGFBP3 can effectively downregulate tumor proliferation and suppress vasculogenesis through THBS1 regulation, its effects are only transient. This is consistent with the model that tumors enter a hypoxic state when they grow large and become less vascular. Then, the tumor cells adapt to hypoxic stress by activating HIFs to regulate cell metabolism, cell proliferation and induce vasculogenesis. When IGFBP3 was transiently expressed in highly invasive ovarian cancer heterotransplants, the xenograft tumors demonstrated a transient growth arrest associated with tumor de-vascularization causing tumor cell hypoxia. Then, tumor re-proliferation was associated with early HIF-1α and later HIF-2α activations. Both HIF-1α and HIF-2α were related to IGFBP3 expressions. Immunostaining and xenograft studies showed that HIF-2α was the major activated HIFs protein when IGFBP-3 was down-regulated. In conclusion, we have identified a novel association between IGFBP3 expression and THBS1 up-regulation, which consequently results in a decrease in angiogenesis. IGFBP3 could activate THBS1 through promoter regulation mainly via an intracellular signaling pathway. Such ability in angiogenesis-regulation could be associated with tumor progression. Furthermore, it seems that the presentation of HIF-2α at tumor hypoxia during tumor devascularization is crucial in switching the cancer cells from a dormancy state to proliferation. Our study demonstrated a novel mechanism for how cancer cells may overcome growth restrictions during hypoxia and maintain their aggressive behavior. These cancer hallmarks in angiogenesis and hypoxia could be utilized as better target therapy in the future.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:07:30Z (GMT). No. of bitstreams: 1
U0001-0206202204453700.pdf: 5766678 bytes, checksum: 47d0e9031f9d4569817c7e1fe1569272 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 I 中文摘要 III 英文摘要Abstract V 目錄 Contents VII Chapter 1. Introduction 1 1.1 Ovarian Cancer 1 1.2 Hypoxia 3 1.3 Angiogenesis 4 1.4 Insulin-like growth factor-binding protein 3 5 1.5 Thrombospondin-1 8 1.6 Hypoxia induces factors 9 1.7 Study Aim 12 Chapter 2. Materials and Methods 13 2.1 List of Material 13 2.1.1 Animal 13 2.1.2 Reagent and Kit 13 2.1.3 Antibody and Recombinant protein 15 2.2 Equipment and software 16 2.2.1 Equipment 16 2.2.2 Software 16 2.3 Cell lines and culture condition 17 2.4 Protein expression plasmid 17 2.5 Gene silencing 18 2.6 Transfection of cell line 18 2.7 Gene expression analysis 19 2.7.1 Microarray 19 2.7.2 Real-time quantitative PCR 19 2.8 Protein expression analysis- Western blotting 20 2.9 Angiogenesis analysis 21 2.9.1 In vitro- HUVECs tube formation assay 21 2.9.2 In vivo- Chick Chorioallantoic Membrane (CAM) Assay 22 2.9.3 Human Angiogenesis protein expression assay 22 2.10 Luciferase promoter assay 22 2.10.1 Promoter region and plasmid construct 22 2.10.2 Luciferase assay 23 2.11 Mouse tumor xenograft model 24 2.12 Immuno-cytochemistry 24 2.13 Immuno-histochemistry 25 Chapter 3. Results 26 3.1 Identification of gene expression patterns related to cancer invasion 26 3.2 IGFBP3 regulates angiogenesis through THBS1 in vitro and in vivo 27 3.3 Tumor regrowth from growth arrest under the expression of IGFBP3 29 3.4 IGFBP3 inhibits tumor growth likely through upregulation of THBS1 29 3.5 Early HIF-1α and late HIF-2α expressions in the presence of IGFBP3 31 3.6 Hypoxia induces HIF-1α but not HIF-2α in cells with less invasive capabilities 32 3.7 IGFBP3 regulates THBS1 expression through an intracellular pathway 33 3.8 Regulation of HIF synthesis in P0 and P4 under hypoxia 34 3.9 Identification of IGFBP3 related angiogenesis-related proteins 35 3.10 Angiogenesis-related protein expressions under oxygen stress 35 Chapter 4. Discussion 37 4.1 IGFBP3 inhibits angiogenesis through intracellular regulation of THBS1 37 4.2 HIF-2α is a critical protein that displays the switch from tumor growth arrest to tumor proliferation and provides the tumor cell to adapt to the hypoxic environment. 40 4.3 Progression of EOC 43 4.4 Target therapy of EOC 45 Chapter 5. Perspective 46 5.1 Role of IGFBP3 in the regulation of EOC 46 5.2 Diagnostic and Therapeutic in EOC according to IGFBP3 expression 46 5.3 OVTW-059 cell model 47 Chapter 6. Summery 48 Chapter 7. Reference 54 Chapter 8. Tables and Figures 66 Table 1. Primers for Real-Time PCR 66 Table 2. The sequence of THBS1 siRNA 67 Table 3. Primer-pairs for Luciferase Promoter Activity Assay 68 Table 4. cDNA microarray analysis 69 Figure 1. IGF-dependent and IGF-independent roles of IGFBP3. 72 Figure 2. Receptors and signaling functions of THBS1. 73 Figure 3. Study aims and design. 75 Figure 4. Immuno-cytochemistry staining of IGFBP3 and THBS1. 76 Figure 5. IGFBP3 expression in OVTW059-P0, P4, and P4 transfectants. 77 Figure 6. IGFBP3 expression in cancer cell lines. 78 Figure 7. IGFBP3 regulates angiogenesis through THBS1 in in vitro assays. 79 Figure 8. IGFBP3 regulates angiogenesis through THBS1in in vivo assays. 80 Figure 9. Growth of P4-pBIG2i and P4-pBIG2i-hIGFBP3 in SCID mice. 81 Figure 10. Gross heterotransplantation of P4-pBIG2i and P4-pBIG2i-hIGFBP3 in SCID mice. 82 Figure 11. RT-qPCR and western blot analysis of the expression of IGFBP3, THBS1, and HIFs in xenograft. 83 Figure 12. Immunohistochemistry staining of xenografts. 84 Figure 13. Immunocytochemistry staining of cell line culture under normoxic and hypoxic conditions. 85 Figure 14. Western blot analysis of protein expression of the cell under oxygen stress. 86 Figure 15. Luciferase promoter assay of promoter regulation. 87 Figure 16. IGFBP3 differentially regulated HIF-1α and HIF-2α synthesis in low and high invasion ability cells. 89 Figure 17. Angiogenesis-related protein expression under different IGFBP3 expression. 90 Figure 18. Angiogenesis-related protein expression under different IGFBP3 expression and oxygen stress. 91 Figure 19. Schematic model of how IGFBP3 regulates THBS1 in epithelial ovarian cancer cells. 92 Figure 20. Clinical roles of HIF-1α and HIF-2α related to IGFBP3 in EOC. 93 Figure 21. Epithelial-type ovarian cancer progression pathway. 94 Chapter 9. Appendix 95 9.1 Supplement data 95 9.2 Publication 104
dc.language.isoen
dc.subject卵巢癌zh_TW
dc.subject血小板反應蛋白-1zh_TW
dc.subject缺氧誘導因子zh_TW
dc.subject血清類胰島素生長因子結合蛋白-3zh_TW
dc.subject血管新生zh_TW
dc.subjectovarian canceren
dc.subjectIGFBP3en
dc.subjectTHBS1en
dc.subjectHIFsen
dc.subjectangiogenesisen
dc.titleIGFBP3透過調控血管增生與缺氧誘導因子的表現趨勢來抑制卵巢上皮細胞癌的侵襲與惡化zh_TW
dc.titleIGFBP3 inhibits the invasion and progression of epithelial ovarian cancer by regulating the expression of angiogenesis and activation of hypoxia-inducible factoren
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.author-orcid0000-0001-9356-454X
dc.contributor.coadvisor陳祈玲(Chi-Ling Chen)
dc.contributor.oralexamcommittee張俊彥(Jang-Yang Chang),楊宏志(Hung-Chih Yang),蔡有光(Yeou-Guang Tsay)
dc.subject.keyword血清類胰島素生長因子結合蛋白-3,血小板反應蛋白-1,缺氧誘導因子,血管新生,卵巢癌,zh_TW
dc.subject.keywordIGFBP3,THBS1,HIFs,angiogenesis,ovarian cancer,en
dc.relation.page104
dc.identifier.doi10.6342/NTU202200857
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-06-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
dc.date.embargo-lift2027-06-01-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-0206202204453700.pdf
  未授權公開取用
5.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved